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ABSTRACT Despite the popularity of wireless sensor networks (WSNs) in a wide range of applications,
security problems associated with them have not been completely resolved. Middleware is generally
introduced as an intermediate layer between WSNs and the end user to resolve some limitations, but most of
the existing middleware is unable to protect data from malicious and unknown attacks during transmission.
This paper introduces a secure wireless sensor network middleware (SWSNM) based on an unsupervised
learning technique called generative adversarial network algorithm. SWSNM consists of two networks: a
generator (G) network and a discriminator (D) network. The G creates fake data that are similar to the real
sample and combines it with real data from the sensors to confuse the attacker. The D contains multi-layers
that have the ability to differentiate between real and fake data. The output intended for this algorithm shows
an actual interpretation of the data that is securely communicated through the WSN. The framework is
implemented in Python with experiments performed using Keras. Results illustrate that SWSNM algorithm
improves the accuracy of the data and enhances its security by protecting data from adversaries. In addition,
the SWSNM algorithm consumes significantly less energy, has higher throughput, and lower end-to-end
delay when compared with a similar conventional approach.

INDEX TERMS Middleware, unsupervised learning, WSNs, generator, discriminator, visualization,
confusion matrix, security, GANs, energy consumption, delay.

I. INTRODUCTION
The rapid increase in the use of wireless sensor networks
(WSNs) in a variety of scientific and industrial applications
has pushed the research envelope in the field of computer and
systems engineering [1]. The countless sensor nodes installed
within WSNs enable wireless communication between nodes
and devices. Distributed systems can be designed for data
collection and processing using resource-constrained sensor
nodes. Some of the tasks that WSNs perform are signal
processing, data aggregation, quality of service, and wireless
communication. Secure communication between WSNs has
been a challenge in recent years [2]. WSNs produce mas-
sive data through their low-capacity sensors, which results
in the loss of important information during transmission.
In addition, sensor nodes have several limitations such as
security, data aggregation, middleware requirements, power
consumption, and the heterogeneity of the sensors’ networks.

Previous research has shown that using middleware as an
intermediate layer betweenWSNs and the end user provides a

solution to the previously mentioned limitations. The middle-
ware provides a bridging platform between the applications
and the hardware components of WSNs. The middleware
controls the sensor data nodes while providing them tempo-
rary storage [3]. The ability to synchronize newer nodes with
the existing nodes allows the middleware to be more efficient
while providing support to various resources. This allows
minimum or no disturbance in the network’s performance if
changes occur to the network [4]. Since the data sent over the
wireless networks is sensitive, it is prone to unwanted intru-
sions. Security parameters, such as resource distribution and
resource management, enable secure communication within
WSNs. End-to-end security auditing can also be enabled to
achieve secure communication between nodes [5].

The loss of data during transmission to and from the mid-
dleware is still prone to attacks. Alshinina and Elleithy [4]
showed a comprehensive, systematic study of the most recent
research on WSNs’ middleware and compared existing effi-
cient system designs, addressed most significant challenges,
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made several distinguished contributions including security,
data aggregation, message exchange, and quality of service.
The authors concluded that the middleware has to be both
scalable to dynamic resources and secure at the same time.
It was also hypothesized that synchronizing newer nodes
with the existing nodes would allow the middleware to per-
form more efficiently while providing support to various
resources.

II. RELATED WORK
In the last decade, wireless sensor networks (WSNs) have
been applied in monitoring systems that are capable of con-
trolling and monitoring various indoor premises, agricultural
lands, and forest monitoring applications [6]. Foremost issues
associated with WSNs are related to network security due
to an increase in the usage of these devices. Traditional
security algorithms in WSNs have achieved security goals
such as base station protection [7], cryptography [8], attack
detections [9], and security location and routing [10]–[12].
Many researchers have developed significant solutions to
address WSNs’ security challenges. The Intrusion Detec-
tion System (IDS) is a security management system that
monitors all events within a network. IDS is capable of
detecting attacks without compromising network security.
The anomaly detection types of Intrusion Detection (ID) can
detect any abnormal behavior in the online data. Misuse
detection is another type of ID, which works on offline data
and is able to detect known attacks [13], [14]. These sensors
introduce massive data for processing and transmission to the
base station. Standard security algorithms are not suitable for
WSNs due to limitations in power consumption, low memory
(storage capacity), communication capabilities and resource
constraints in sensors [15], [16].

The communication and exchange of information between
sensors is a critical challenge due to energy consumption in
network. This information must be protected against various
threats [17], [18]. The networks should be secured by support
security properties such as confidentiality, authenticity, avail-
ability, and integrity. Standard [17] applied cryptographic
algorithms such as signature and encryption/decryption.
However, these mechanisms used secret keys that are unsuit-
able to the large scale of WSNs due to the large memory
requirement to store these keys [17]. Most of these sensors
lack physical protection, which leads to compromised nodes.
Compromising one or more nodes in a network allows the
adversary to launch different attacks to disrupt inter-network
communication [19]. There are various attacks such as adver-
sary, compromised node(s), eavesdropper, etc. [20]. These
attacks are capable of dropping packets or modify them,
resulting in an impact in the performance of WSNs. Source
location privacy (SLPs) are mechanisms that protect sensor
data from attacks by generating fake nodes. The fake node and
packets (dummy message) create fake identity and packets
without mentioning the source and destination identity. The
drawback of this technique is that it requires more energy and
overhead [19], [20].

A. WSNs MIDDLEWARE
Recently, middleware has been integrated with WSNs
to address some of the aforementioned challenges.
Alshinina and Elleithy [4] reviewed and discussed various
middleware approaches such as SOMM, USEME, ESOA,
and MiSense.

Most middleware approaches lack the security mechanism
to secure the network and sensitive data from malicious
attacks. While middleware systems are primarily developed
for WSNs, different agents use it for various applications to
detect any intrusion using the agent model. Lingaraj et al. [21]
introduced mobile agent middleware called Eagilla that is
integrated with the WSN for sensing data. This framework
provides scalability and flexibility to the network. The agent
is responsible for communication and acts as a mobile to
move around in the network and update required tasks. Sensor
nodes in the network act as a cluster head (CH) and run their
agents based on the functionalities of the CH. The CH is
applied to increase network scalability and the application
is controlled by CH instead of the base station. There are
three types of sensor nodes; free, client, and server. Free
nodes act as independent nodes and can leave or join the
cluster/network at any time. Server nodes are the CH that
pass the communications to and from the base station. Finally,
client nodes have communication authority with the CH. This
framework increases the network scalability and supports
heterogeneity of sensor hardware.

B. MACHINE LEARNING FOR WSNs
Middleware systems have also been introduced to apply
machine learning (ML) algorithms. The work presented
in [22] applied an unsupervised learning technique called
self-organizing map (SOM) into WSN. Avram et al. [23]
introduced SOM to address the problem of detecting network
attacks in ad hoc networks. The limitation of SOM is that
it is not suitable to detect attacks in complex and enormous
dataset that are typically used in WSNs. Machine learn-
ing middleware (MaML) tackled the problem of ontology
heterogeneity. However, the potential problem in MaML is
the overhead. The dynamic behavior of a WSN has been
continuously optimized due to system design requirements.
In order to eliminate the need for an unnecessary redesign of
the network, machine learning (ML) techniques are adopted
in WSNs [24]. The designers of sensor networks describe
Machine Learning as an algorithm and a collection tool that
is used to create prediction models. ML improves resource
allocation, utilization, and delegation in an effort to pro-
long the life of the network. ML uses mathematical models
that are based on statistical methods for artificial intelligent
data sampling. It learns and adapts to a constantly chang-
ing environment [25]. Interfacing techniques in ML play
an important role in WSN applications. ML interfacing is
carried out in three steps: the processing of data, data aggre-
gation, and interfacing [26]. These steps are used for mon-
itoring and modeling the dynamic environments associated
with WSNs.
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Machine learning is used to create prediction models, and
these algorithms are categorized into supervised, unsuper-
vised, and reinforcement learning [27]. Supervised learning
takes place when the data sample (or the training set) is
labeled. Machine learning algorithms such as support vector
machine (SVM), decision tree (DT), and K-nearest neigh-
bor (K-NN) have successfully addressed several challenges
of WSNs such as data aggregation, localization, clustering,
energy aware, detection and real-time routing.

The purpose of using an unsupervised learning is to clas-
sify data into different groups as clusters and enable them to
investigate the similarity between the input samples. Rein-
forced learning takes place when results from learning assist
in some sort of environment change. Reinforcement learning
algorithms control the behavior of the agent (as sensor nodes)
within their environments. Based on the rules, the agents in
the environment can select the action to transmit it from one
state to another [27]. Neural Networks (NNs) are ML models
that can solve several challenges and tasks in WSNs such as
quality of service (QoS) and security. There is an immense
need to boost the security to improve the QoS through NNs,
which are comprised of distributed computation nodes as well
as WSNs [27].

Machine learning algorithms are used to address non-
functional requirements associated with WSNs. However,
accuracy problems might be associated with each of the
machine learning algorithms. One of them, a non-functional
requirement in WSNs, is security. Machine learning algo-
rithms provide solutions to resource constraints that pose a
major security challenge in WSNs [28]. The observations in
the network can sometimes be misleading due to a number of
factors, such as unexpected attacks or intrusions from intrud-
ers, so it becomes important to detect a particular anomaly
through machine learning algorithms and maintain a secure
network [24]. When machine learning is applied to WSNs,
it helps decrease the vulnerability of WSNs to misleading
information and unwanted attacks.

The implementation of ML also drastically increases the
reliability of the network by eliminating misleading infor-
mation and unexpected intrusions. Additionally, ML tech-
niques also increase the lifespan of the WSN by significantly
reducing energy required by the sensor nodes. Moreover,
ML also reduces (and strives to eliminate) human interven-
tion, resulting in the meticulous use of the WSNs.

The design of WSN is challenging because of its dynamic
environment that makes the models’ parameter optimization
difficult. Genetic Algorithm (GA) is well known for flexibil-
ity and can be applied in a wide variety of scenarios inWSNs.
GA is applied to address many WSN challenges such as
communication, topology control, and for finding the shortest
path in a large-scale dynamic network [29]. Vasseur et al. [30]
introduced a new approach for predictive learning machine
to detect traffic outside of service level agreements (SLA).
The request is to make predications for one or more SLA in
the network. The requirement of network traffic parameter
and SLA are linked with network traffic parameter depending

on the number of SLA. The learning machine (LM) employs
to map the estimates of network performance metrics with
target SLA.

Literature [31]–[34] presents a number of machine learn-
ing algorithms that address the security problems in WSNs.
Janakiram et al. [31] showed the detection of outliers using
Bayesian belief networks (BBNs). The authors correlated
both temporal and spatial data points to identify similar read-
ings in neighboring nodes. These readings are approximated
and matched with one another to find possible outliers in the
data obtained from sensor nodes. Conditional relationships
are built to not only identify outlying data points, but also
to fill in the missing data [31]. Similar to the investigation of
k-nearest neighbor presented in [35], Branch et al. [32] devel-
oped an outlier detection method within the network using
k-nearest neighbor. A major disadvantage, however, of using
the k-nearest method is that it requires a large memory space
to store data.

Black hole attacks are common in the transmission of data
in WSNs. In such attacks, misleading routing reply messages
are sent by the nodes whenever route requests are received.
These misleading messages result in the termination of the
route discovery; real routing reply messages are ignored [24].
Kapalantzis et al. [33] presented a mechanism of detect-
ing similar forwarding attacks using support vector machine
(SVM). This mechanism detects black hole attacks by using
routing information, bandwidth, and the hop count of the
nodes [33]. Rajasegarar et al. [34] were able to combine
SVM to the outlier detection scheme to establish a one-class,
quarter-sphere SVM anomaly recognition technique [34].
The SVMmethods are far superior due to their efficient learn-
ing and enhanced performance in non-linear and complex
network problems.

On the basis of the related work and its implications,
it is noted that most existing middleware approaches do
not provide a comprehensive system to handle massive
data and communicate between sensors and the base sta-
tion securely. Since data is most prone to attack during
its transmission, a robust method that not only provides
secure communication, but also enhances the efficiency of
the network is needed. This paper introduces a novel tech-
nique, based on machine learning that originates fake data
to secure communication between sensor nodes and base
station by deceiving the attacker. This technique eliminates
the need to generate fake packets or nodes for security and
reduces power consumption, end-to-end delay, and increases
throughput.

The remaining parts of this paper are organized as follows:
Section III describe the motivation and research problem.

Section IV explains the Generative Adversarial Networks
(GANs) algorithm. The proposed unsupervised learning
for WSNs’ middleware methodology is illustrated in
Section V. Section VI provides experimental results and
discussion. Section VII provides details of NS2 simulation.
Finally, Section VIII shows significant conclusions from the
research.
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III. MOTIVATIONS AND RESEARCH PROBLEM
To address the security challenges of WSNs, we developed
an intelligent WSN middleware based on an unsupervised
learning approach that provides a comprehensive security
algorithm that can handle large-scale WSNs.

The proposed middleware is able to secure information
and resources from malicious attacks and also detect node
misbehavior. The special characteristics of WSN such as
power consumption, throughput, and network lifetime are
taken into account in this contribution. The proposed intelli-
gent wireless sensor network middleware, which is based on
generative adversarial networks, has improved the traditional
middleware and other security mechanism but can handle the
heterogeneous characteristics of sensor nodes and is capable
of filtering and passing only real data. To the best of our
knowledge, it is the first time that the GANs algorithm has
been used for solving the security problem in WSNs’ mid-
dleware. Additionally, in the proposed contribution, WSNs’
middleware applies a GAN that is capable of filtering and
detecting anomalies in the data.

The proposed approach is motivated by the limitations
of the existing middleware and will improves performance
based on the following reasons:

1) The proposed techniques provide a unique WSN mid-
dleware which can control and monitor sensor data
by using intelligent, unsupervised machine learning to
secure the data. The power consumption and overhead
can be increased by updating and filtering unneces-
sary information from the sensors. This problem is
addressed through the proposed unsupervised learning.

2) From the given samples, the generator network creates
fake data very similar to the real data. This fake data
is combined with the real data from sensors so that
the attackers cannot differentiate between them. In this
case, there is no need to generate fake packets or data
to confuse the attackers, which significantly decreases
power consumption.

3) Different analytical models are developed: Confusion
Matrix, Visualization, and different CNNs layers con-
firm the validation of the proposed algorithm.

4) We provide a comprehensive comparison with other
approaches such as Eagilla for verification of the pro-
posed approach. The following metrics are used in
comparison: average energy consumption, throughput,
and end-to-end delay.

IV. GENERATIVE ADVERSARIAL NETWORKS (GANs)
The GANs, inspired by Goodfellow et al. [36] in 2014, are a
class of artificial intelligence and are used in unsupervised
ML. The GANs contain two networks: the generator (G)
network and the discriminator (D) network as a minimax two
player game [36]–[38].

The generator network creates fake data similar to the real
samples, and the fake data passes through the discriminator
network (D) with data from the real distribution as inputs.

Figure 1 represents the general model of a GANs algo-
rithm. The G network is designed to learn the distribution
of the training data, while the D network is designed to
calculate the probability of the data originating from the
training data (real) rather than the generator data (fake). These
networks improved WSNs’ performance and optimization
during iterative optimization and mutual confrontation. The
discriminator improves by extending the target dataset. The
generator and discriminator networks must be differentiable
during implementation. The proposed GANs provide an effi-
cient way to learn deep representations without extensively
explained training data. These networks achieve this by deriv-
ing backpropagation results from the competitive process
including a pair of networks as shown in Figure 2.

minGmaxD = x ∈ D logD (x)+ x ∈ g log (1−D (G (z)))

(1)

The general formula for GANs is shown in equation 1.
The D takes real data (x) and fake data from the generator,
represented as G(z), and the output is the probability of that
data being real (p(x)). Thus, the D network is capable of
increasing the likelihood of identifying real data and lowering
the probability of accepting fake data (from the generator).
The G network takes vector random number (z) as the input.
The first term corresponds to optimizing the probability of
the real data (x) (close to 1) and the second term corresponds
to optimizing the probability of the fake data (G(z)) (close to
zero) [36]–[38].

FIGURE 1. GANs framework illustrates the sample flow from generator
network (G) to discriminator network (D).

FIGURE 2. Two models which are learned during the training process for
a GAN are the discriminator (D) and the generator (G).

The proposed GANs are based on a minimax game where
one agent attempts to maximize the probability while the
other attempts to minimize it. G’s ability to generate new data
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that is similar to the real samples is thus improved. The idea is
to confuse the attacker and prevent them from differentiating
between the new data from the generator and the real data
from the sensors and dataset. The D differentiates between
real and attack data by maximizing the probability of the real
data to 1 and minimizing the probability of fake data (from
the G or an attacker) to 0.

V. THE PROPOSED WSN MIDDLEWARE
We introduce an intelligent security system for WSNs’ mid-
dleware based on GANs to improve traditional middleware
in terms of security mechanism, handling of heterogeneous
characteristics of sensor nodes, and to filter and pass only
the real data. To the best of our knowledge, it is the first
time that the GANs algorithm has been used for solving the
security problem in WSNs’ middleware. Additionally, in the
proposed contribution, WSNs’ middleware applies a GAN
that is capable of filtering and detecting anomalies in the data.
The proposed procedure is described in Algorithm 1:

A. DATASET
Many conventional classifiers fail to differentiate between
normal and attack traffic. The benchmark NSL-KDD
dataset [39] is used to detect any intrusion in the sensors’
data in the system. The NSL-KDD contains an imbalance of
classes in normal and attack data traffic. The ratio of attack
to normal traffic is comparatively low. The phenomenon of
normal traffic outweighing the attack traffic is referred to as
the Class Imbalance Problem (CIP). This occurs when the
minority class, also known as the attack class, exhibits a much
lower representation in comparison to that of the majority,
or normal, attack classes. The CIP benefits the attack traffic,
and the intrusion detection system is unable to withstand it.
Therefore, there is a strong need to identify specialized tech-
niques to counteract such an attack by placing an importance
on minority classes.

The proposed approach solves the imbalance problem
through the proposed generator model. The main difference
between this model and existing algorithms is that the gener-
ator creates a balanced data that is more representative of the
real data by providing the generator only one feature vector
of this dataset. This feature is then used as feedback in the
discriminator, enabling it to distinguish between fake data
(corresponding to 0) and real data (corresponding to 1).

B. GENERATOR NETWORK
The proposed generator network (G) is used to create various
attacks data (fake) from one sample (which is acquired from
the NSL-KDD dataset). Crucially, generator has no any direct
access to the real data (dataset) G learns only through its
interactions with D. The discriminator has access to both the
real data and the synthetic data drawn from the dataset. From
the error backpropagation results, as shown in Figure 2, the
G uses it to retrain the generator again, leading it towards
being able to produce fake data of better quality.

Algorithm 1 The Proposed Framework Pseudocode

1: Inputs: training set : X = {(xi, yi)}Ni=1,Ng: sample size
is randomly selected from X for Generator (G) to learn
data distribution
Inputs: MF : number of fake data will be generated
from the G once the training is completed, n : mini-

batch
size, Tts is testing set

2: Outputs:MF samples generated from the G, Accuracy
3: Select Ng samples (x) randomly from original data
4: For i = 1 to training iterations do
5: For k steps do
6: Sample of n noise samples z = {z1, z2, . . . zn}

from noise pg(z)
7: select n samples from original data

x = {x1, x2, . . . xn}
8: Concatenate x and z. Then, define

y = [1] ∗ n+ [0] ∗ n
9: Update the Discriminator by descending its
stochastic gradient

∇θd
1
2n

2n∑
i=1

[
logD (xi)+ log (1− D(G(zi)))

]
10: Update the Generator by descending its
stochastic gradient

∇θg
1
n

n∑
i=1

log((1− D (G(zi)))

End for
11: End for
12: Generate new data (Td ) from the Generator after the

training is completed.
13: Tr = Append x to Td
14: Tr = Shuffle (Tr )
15: Update the Discriminator by descending its stochastic

gradient

∇θd
1
n

n∑
i=1

[
logD (xi)

]
16: Compute the accuracy of the Discriminator based on

testing set Tts
17: Return accuracy

The generator network is mapped from a representation
space called latent space to space of data. The general formula
g : g(z)→ R|x| where z ∈ R|z| is a sample from latent space,
where the data is x ∈ R|x| then turns these into multilayer feed
forward neural networks with a weight of θg. The proposed
G network calculates this with equation 2. The output of the
generator isg= {x i}

MF
i=1

Where MF stands for the newly generated fake data
from G with random sample data z = {zi}

MF
i=1 as inputs.

G =
h∑

o=1

N∑
i=1

βof ((ωi)+ vo) (2)

Where h is the number of hidden neural nodes, o and i rep-
resent the output and input of the hidden layers respectively,
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f stands for the activation function in the neural networks,
ωi represents the input weights of the i-th hidden neural
nodes. βo is the output weights, and vo represents the thresh-
old values of the i-th hidden neural nodes.
The output of this network range (0, 1) contains the num-

bers of neurons, where the activation function applied in the
last layer of this network is Sigmoid. The first layer of the G,
the noise input, is fully connected, and this layer is reshaped
into a size of (8×5) and then fed into the convolutional
layers. G’s architecture is comprised of a fully connected
layer and two convolutional layers. This network architecture
is illustrated in Figure 3.

FIGURE 3. The Generator Network’s Architecture.

C. DISCRIMINATOR NETWORK
The discriminator D, takes both real (authentic) and fake data,
and aims to differentiate between them. Both the G and D
networks are trained simultaneously and in competition with
each other. Therefore, the discriminator has access to both
the real data and synthetic data drawn from the dataset. From
The D uses error backpropagation results for 150 iterations
as shown in Figure 2 to retraining and updated, and leading
it towards being able to distinguish between real and fake
data.

The inputs of the discriminator are D = {x i}
N
i=1, where

N represents the sample number of the dataset. The dis-
criminator is initialized in Keras (TensorFlow) as shows in
following equation 3:

D(xi) =
h∑

o=1

N∑
i=1

βof (ωTi xi + vo) (3)

where h is the number of hidden neural nodes, o and i rep-
resent the output and input of the hidden layers respectively,
f stands for the activation function in the neural networks,
ωi represents the input weights of the i-th hidden neural
nodes. βo is the output weights, and vo represents the thresh-
old values of the i-th hidden neural nodes.
In the training set, the discriminator takes

g = {xi}
MF
i=1 and D = {xi}

N
i=1 as inputs,

with the outputs zero for fake/attacks data and one for real
data respectively. The discriminator is capable of determining
the probability of new generated fake data falling within the
interval time; if it does, then the D network accepts it as real
data. The G network performs very well in convergence.

The generated fake data (new)g and the real dataset D will
combined and then send full data to destination, base station.
The base station then takes the combined data, defined as
D = {xi}

N+MF
i=1 then feeds into another discriminator to

distinguish between the real and fake data, filtering them
before transmitting them to user.

The discriminator network D contains multiple-layers that
feedforward the neural network with a weight of θd. The
input is a feature vector x. The D network has the ability
to differentiate between real and attack data. The training
data for D network is comprised of real data and malicious
(attack) data generated by the generator. The output shows a
true interpretation of whether the data is normal or abnormal.
Figure 4 shows the visualization of the discriminator net-
work’s architecture. The first layer of D is the input, the real
and fake data from the G network. The last convolutional
layer of D is flattened and then fed into a sigmoid function,
giving an output in the range of 0 to 1. Batch normalization
is used as the input for both the D and G networks, shifting
inputs to zero-mean and unit variance. This method helps deal
with training issues from poor initialization and supports the
gradient flow in deeper models.

FIGURE 4. The Discriminator Network’s Architecture.

VI. EXPERIMENTAL RESULTS AND DISCUSSION
In this architecture, we use the publicly available
NSL-KDD dataset [39], [40]. NSL-KDD is solved redundant
records and duplicate data issues in training set in KDDcup99
dataset [41], [42]. Moreover, this issues affects the perfor-
mance of evaluate system. The proposed approach is used
NSL-KDD dataset for training and testing that is comprised
of normal and attacks data.

The proposed technique consists of following steps. First,
split dataset into training set and testing set, shown in Table 1,
is made up of 125,973 data samples in the training set and
22,544 samples in the testing set. The testing set is also com-
prised of additional attacks that are not in the training dataset.
This dataset has 41 different features to define each threat
as shown in Table 1. Second, perform pre-processing, the
NSL-KDD dataset should be converted to binary, since the
neural networks can only process this type of data. Once
converted, the dataset can feed into the neural network model
as an input layer. Preprocessing this dataset is done by hand,
similar to other techniques such as the flag, service, and
protocol types, and is converted as a number from 1 to 100.
For example, the flag pre-processing technique uses
OTH=76 and REJ=77 [13], [43].
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TABLE 1. Overview of NSL-KDD dataset.

A. EXPERIMENTAL SETTING
The proposed framework is implemented in Python and all
experiments are performed in the Keras library [44]. Keras
is a high-level neural network API and self-contained frame-
work for deep learning. It supports scikit-learn features such
as grid search, cross validation, etc. The framework was
evaluated on the NSL-KDD dataset by using 40 features. The
analytical model was developed using MATLAB.

1) GENERATOR NETWORK SETTING
The G is designed with a fully connected layer with 40 neu-
rons. We then reshape the output of the fully connected layer
into a size of (8×5) before feeding it into two convolutional
layers. The last two layers are fully connected, as shown
in Figure 3. We employ batch normalization [45] in some
layers to normalize the inputs into zero-mean and unit vari-
ance to make the learning faster. We train the G model using
the stochastic gradient descent (SGD) optimization algorithm
with a mini-batch size of 128. The learning rate is set to
0.01 and the momentum at 0.9 for 150 epochs. The hyper-
bolic tangent (tanh) activation function applies for all layers.
We use the L2 norm regularizer to prevent overfitting with a
weight decay of 0.001.

2) DISCRIMINATOR NETWORK SETTING
We train the D network using Adam Optimizer with a learn-
ing rate of 0.001 with momentum. The mini-batch is 128,
β2 = 0.5 and β2 = 0.99, which helps stabilize the training.
Adam optimizer has shown faster convergence than SGD.
We employ dropout with a rate of 0.5 for fully connected
layers to combat overfitting. The Sigmoid output is a scalar
value of the probability of whether data is real or an attack.
For the real data, the scalar output is more than 0.5, and for
attacks, the output is less than 0.5 as shown in Figure 4.

The weights of all of the layers in the G and D networks
are initialized according to the Xavier initialization [46] tech-
nique and biases are set to zero. The input features of each
vector is normalized between -1 and 1.

B. CONVOLUTIONAL NEURAL NETWORKS (CNNs)
There is significant design research on deep Convolutional
Neural Networks (CNNs) layers to achieve improved accu-
racy [47]–[50]. He and Sun [47] performed an experimental
study on depth, or the total number of layers in a network. The
author kept time constraints constant while only increasing
the depth. This practice resulted in an overall performance
reduction, having more layers makes the network more dif-
ficult to optimize and more prone to overfitting. Moreover,
the accuracy becomes either stagnant with increased depth or

much reduced. Literature has shown that while the training
errors tend to decrease, errors increase with low accuracy
after a while [47].

Since deep networks are mostly used for complex data
with multiple classes, we used a simple binary classification
dataset in our proposed architecture: the number of CNN
layers is set to three to obtain a high-performing network.
Experimentally, increasing CNN layers leads to inaccuracy
while also requiring a higher computational time and cost.

A high-performance, optimized architecture is obtained
with three CNN layers to maintain accuracy of results
while also minimizing overhead and overfitting, as shown
in Table 2. Increased CNN layers can affect the accuracy and
provide a high loss function based on data generated from the
generator network (G). The loss function for the generator is
computed by using the feedback from D. We use stochastic
gradient descent (SGD) with a learning rate of 0.01 on over
150 training iterations to minimize loss.

TABLE 2. The accuracy comparison for different layers of
CNN architectures.

Table 2 shows that the accuracy increases with a minimum
number of layers, with the optimum accuracy achieved with
three. The results in Figure 1 illustrate that the quality of data
generated improves by increasing the accuracy and minimiz-
ing the loss function of the G. TheG network is updated based
on the output feedback from the D network until it generates
more accurate data that the D accepts as real.

C. CONFUSION MATRIX
The confusion matrix is applied to evaluate the performance
and effectiveness of the proposed G network and the orig-
inal dataset, NSL-KDD. For this purpose, the Accuracy
Rate (AR), False Positive Rate (FPR), True Positive Rate
(TPR/Recall), and F-measure (F1) are applied and computed
by equations, numbered 4, 5, 6, and 7 respectively. In the
equations, TP, TN, FP, and FN denote number of true pos-
itive, true negative, false positive, and false negative cases
respectively.

AR =
TP+ TN

TP+ TN+ FP+ FN
(4)

FPR =
FP

FP+ TN
(5)

TPR/Recall =
TP

TP+ FN
(6)

F1 =
2(P∗R)
P+ R

(7)

P =
TP

TP+ FP
(8)

Error Rate = 1-AR (9)
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1) FULL FEATURE OF NSL-KDD DATASET
In this section, 40 features of NSL-KDD dataset are used
to evaluate the performance of the proposed approach.
Figure 5 shows the confusion matrix between testing target
output and predicted output for the generated data from the
G network. The G network achieved a better binary distri-
bution while also improving the accuracy and decreasing the
classification error. Additionally, TN and FP are two main
criteria for evaluating the performance of the G network data
compared with the NSL-KDD dataset results.

FIGURE 5. Generated data from the proposed generator network.

The results show that FP is reduced from 14.3% to 10.9%
and the FPR is lower compared to the original dataset
and existing algorithms. The original dataset produced a
lower accuracy (81.1%) with a high FPR (27.1%) and
FP (14.3 %), as shown in Figure 6. Precision (P) is a measure
of accuracy correctness achieved in the positive prediction of
the class, calculated from equation 8. The Recall (R), or TPR,
is a measure of whether or not actual observations will be
predicted correctly and is obtained from equation 6. The
low precision and high recall show that most positive exam-
ples are correctly recognized due to a decrease in FN. The
F-Measure (F1) is the harmonic mean that measures the
quality of classifications. F-Measure computes the average
of P and R, as given in equation 7.

The aim is to provide a high level of adversarial system on
our generator model, one that is much better than the attack
samples through an increase in accuracy and a decrease in
the error rate. FPR occurs when the results are incorrectly
predicted positive when they are indeed negative, an out-
come which is reduced in the proposed model, obtained in
equation 5. The experimental results show that the proposed
generator network gives significantly better accuracy and a
robust representation of data with the ability to reduce the
error rate from 17.4% to 10.9%.

FIGURE 6. Original Dataset (NSL-KDD).

The Error Rate (ER) can be calculated from the accuracy.
The accuracy is the number of correct classifications divided
by the total number of classifications. The ER is obtained
from equation 9. The results obtained from the proposed
G network were evaluated based on the error rate,
FPR and F1, and compared with the NSL-KDD dataset
and Artificial Neural Network (ANN) approach [51].
Table 3 shows the limitations of the dataset and the ANN
technique due to a high error rate in FPR and low accuracy.

TABLE 3. Comparison of proposed method with different methods.

We compared the performance of our approach alongside
existing methods that use the NSL-KDD dataset with 40 fea-
tures. In Table 4, the ML algorithms are simulated to perform

TABLE 4. Comparison of accuracy rate of SWSNM with other ML methods.
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this comparison. As shown in Table 4, the proposed model
achieves significantly better accuracy with a lower error
rate. The performance of ML techniques optimized accuracy
over the NSL-KDD dataset. For example, the accuracy of
support vector machine (SVM) [40] and decision tree [40]
are much lower compared to other ML techniques [40].
Panda et al. [52] introduced Discriminative Multinomial
parameter learning using Naïve Bayes (DMNB) with a super-
vised filter called Random Projection at the second level.
The authors achieved 81.47% accuracy in their system.
Ibrahim et al. [53] implemented self-organizing map (SOM)
with a very low accuracy rate. The ANN [51] reported that
their accuracy was similar to other ML techniques.

2) FEATURES SELECTION
Feature reduction is applied by using principal component
analysis (PCA). The goal of PCA is to select the most
significant feature and reduce the dimensionality of the
data into 20 features while keeping the variation in the
NSL-KDD dataset as much as possible. Figure 7 shows that
the G network generates 86.4% accurate data with the FPR
of 18.5% in comparison to the original dataset with 76.3%
accuracy and FPR of 33.8%, as shown in Figure 8. The results
in Table 5 show that FP is reduced from 14.3% to 8.7% of the
data generated from G network with 40 features, due to the
efficiency of the GAN algorithm.

FIGURE 7. Generated data from G Network with 20 features.

TABLE 5. The comparison results between our g networks with original
dataset (nsl-kdd) with only 20 features.

In Table 6, different ML algorithms are simulated to carry
out comparative analysis with 20 features. It can be observed
that SWSNM produced a much higher accuracy when the

FIGURE 8. Original Dataset (NSL-KDD) with 20 features.

TABLE 6. Comparison of accuracy rate of SWSNM with other ML methods
with 20 features.

selection features are applied. Moreover, in Table 5, the F1 for
SWSNM is higher than NSL-KDD dataset, more specifically
FPR is reduced from 33.8% (for the original dataset) to 18.5%
(for SWSNM).

D. DATA VISUALIZATION
The t-distribution stochastic neighbor embedding (t-SNE) is a
machine learning algorithm used to visualize the structure of
very large data [54]. The visualization produced by this algo-
rithm is significantly better on almost all datasets. We used
t-SNE to visualize the output data of our model’s results and
compared it with the original dataset for both full feature
(40 features) and reduced feature (20 features). The aim is
to take a set of points in high-dimensional space and find the
correct representation of those points in a lower-dimensional
space (2D). The t-SNE builds a probability distribution over
pairs of high-dimensional data in such a way that similar
data have high probability of being selected, while dissimilar
have small probability of being selected. It minimizes the
divergence between the two distributions. Suppose a given
dataset of objects x = (x1, x2..., xN ) in which each point has
a very high dimension and function d =

(
xi, xj

)
computes

a distance between pair of objects then convert it into two-
dimensional data xj = (x1, x2, ...xN ). The similarity of data
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point xj to data point xi is the conditional probability P (j|i),
and D is the number of data points obtained, as represented
in equation 10. The t-SNE aims to learn a d-dimensional map
of yi = (y1, y2, ..yN ) that reflects the similarities of Pij.

Pij =
Pj|i+Pi|j

2D
(10)

qij =
(1+ ||yi−yj||

2)−1∑
k1m (1+ ||yk−ym||2)−1

(11)

The similarity measure qij of two points yi and yj is defined
in equation 11. The t-distribution can withstand outliers and
is faster in evaluating data. The original dataset and the
data generated from our model contained a high number of
dimensions along which the data is distributed.

The original NSL-KDD dataset, shown in
Figures 9a and 10a, reveal poor visualization in comparison
to the data generated through the proposed model, as evident
from Figures 9b and 10b. The experiment shows the G net-
work has produced accurate data and achieved diversity with

FIGURE 9. t-SNE Visualization with Full features. (a) Original Dataset
(NSL-KDD) and (b) Generated Data in proposed SWSNM.

FIGURE 10. t-SNE Visualization with 20 Features. (a) Original Dataset
(NSL-KDD) and (b) Generated Data in proposed SWSNM.

more coverage of the data distribution. The original dataset
has poor diversity and less coverage of the data distribution.

E. REFEEDING THE GENERATED DATA
In this section, the generated data with accuracy of 86.5%
obtained from the generator network is re-fed to generate new
data. The G network is able to generate a better quality data
and takes much less time than the first time training.

Figure 11 shows the confusion matrix results after
150 iterations. It is crucial to consider the FP rate since it rep-
resents the cost of learning. The aim is to have a high TP rate
(high benefits) and a low FP rate (low costs). Figure 11 shows
that the G network is capable of generating accurate data
with 85.1% accuracy and much lower FPR of 20.4%.

FIGURE 11. Re-feeding the Generated Data into Generator Network.

F. EVALUATION
We evaluate the capacity of the proposed wireless sensor
network middleware (WSNM) based on machine learning for
adaptive evolution through a component in middleware called
adoption. Adoption allows the addition of new sensor nodes
during runtime in a secure manner. Mechanisms such as secu-
rity, flexibility, and fault-tolerance must be considered during
middleware implementation [4]. Numerous standard algo-
rithms are applied to detect node failure [55], [56]. Jiang [57]
proposed a distributed fault detection approach capable of
checking node failure through an exchange of data between
neighboring nodes within the network. However, this scheme
is not suitable for diagnosis or the detection of accuracy with
small number of neighboring nodes [57].

Sensor nodes are prone to failure due to energy constraints
and environmental factors that frequently affect the network
topology. In our contribution, we consider the message fresh-
ness mechanism, which ensures that the existing data is new
and guarantees that no adversary uses old data (messages).
Moreover, new sensors are easily deployed by considering
the forward and backward secrecy mechanism [7]. Forward
secrecy restricts nodes from failing or leaving the network
with future data. Backward secrecy does not allow any node
to join the network to read any previous transmitted data [7].
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Most existing security algorithms are impractical for
WSNs due to the resource constraints in nodes. We applied
a unique, unsupervised learning technique on the middle-
ware to secure the entire network. The proposed middle-
ware supports and adapts to node failure and node mobility
without affecting the performance of the overall network.
We designed a scalable middleware where the network has
the capability to grow in size while continuing to meet net-
work’s security requirements. Middleware based on machine
learning techniques can not only minimize the probability
of node failure, but also eliminate the need for a network
redesign. The intelligent discriminator (D) is capable of
detecting attacks and diagnosing failed nodes and abnormal
data. In case of incorrect readings from nodes, the informa-
tion is sent to D. The Dwill consider this reading as faulty and
remove the node from the network because it can negatively
affect the performance and accuracy of the network.

The proposed architecture has the capability of re-feeding
the output data into the generator depending on the accuracy
of the results. This is done through a comparison check of the
final result with the desired data. Empirically, we investigated
the proposed architecture by testing the discriminator net-
work (D) on data that came from the generator and contained
errors. As a result, we found that the D is capable of rejecting
any erroneous data. TheMINST dataset [58] is applied to rep-
resent the simulation scenarios of the proposed architecture.
For example, if the output data from the generator is fake and
less than the set accuracy threshold (AT) of 80%, the discrimi-
nator network automatically sends it back to the generator for
further iterations, as shown in Figure 12. Similarly, if data at
each iteration is deterministic but the final data results in error
and is not real, the network rejects the final data containing
errors and feeds the most recent accurate data to the generator
until the obtained result is error-free.

FIGURE 12. Generate Accurate Data Scenario and Detecting Errors for
each Iteration.

VII. SIMULATION RESULTS
The proposed network composed of sensor nodes and base
station (BS) is distributed randomly with the same power,
resources, and computational capabilities. These nodes col-
lect information about an event and embed their data with
fake data from the G network before transmitting it to BS.

The BS has a higher capacity in terms of power and resources
than other sensor nodes within the network.

The main objective of the simulation is to monitor the
network and secure data communication from internal and
external attacks. Extensive experimental evaluation on this
approach ensures that the discriminator network is robustly
capable of protecting the network from any attackers or mali-
cious nodes. It improves the security of the network without
compromising on the network delay.

A. PERFOMANCE MATRICS
This section evaluates the performance of our proposed
GAN-based wireless sensor middleware called SWSNM and
compare is with the Eagilla approach [21] on different scenar-
ios such as energy consumption, throughput, and end-to-end
delay.

The NS2 simulator is used with similar parameters for both
approaches. The size of the network is 1500×1500 m2 net-
work topology. The network involves 150 sensor nodes with
a transmission range of 40 meters. The initial energy of the
nodes is set to 6 joules. The maximum energy consumption
of the sensor nodes for receiving (Rx) and transmitting (Tx)
the data is set to 14 mW and 13.0 mW, respectively. Sensing
and idle nodes have 10.2 mW and 0.42 mW, respectively. The
maximum simulation time is 45 minutes.

The network consists of 12 mobile nodes and 138 static
nodes. We assume that the nodes that drop all packets passing
through them are malicious nodes. When it receives an indi-
cation of dropped packets, the algorithm assigns a malicious
flag to those nodes. The location of each of themalicious node
within the network is calculated and those nodes are replaced
with static (normal) nodes.

B. ENERGY CONSUMPTION
A comparison of SWSNM approach with and with-
out malicious nodes with Eagilla approach are shown
in Figures 13, 14, and 15. Figure 13 shows the average amount
of energy consumed by the nodes within the network. It is
clearly seen that when the malicious nodes are replaced with
new static nodes, the energy consumption of the network is
reduced.

In the proposed approach, the energy consumed during
data transmission as well as during sleep and idle modes
are taken into account. The energy consumption is obtained
from equation 12. We assume that the energy consumed by
node j has bits of packets to transmit/receive while the node
is active. Further, both sleep and idle modes are counted and
n represents the total number of nodes in the network.∑n

j=1

Total energy consumed at nodej
n

(12)

Figure 13 shows the average energy consumption for
SWSNM (with and without malicious nodes) and the
Eagilla [21] approach. It is seen that removal of the mali-
cious nodes reduces the energy consumption of the network.
The energy consumption curve for Eagilla [21] is rather
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FIGURE 13. Energy consumption vs. number of sensor nodes.

FIGURE 14. Throughput for SWSNM and Eagilla [21] approaches.

FIGURE 15. End-to-End Delay with simulation time.

interesting. While the energy consumption is much less for
small number of nodes (a little over 30 nodes), significant
increase in the energy consumption is seen at network size
ranging between 30 and 60 nodes. This shows that in terms
of the energy consumption, the Eagilla approach [21] is only
feasible for small number of nodes.

C. THROUGHPUT
Throughput is defined as the amount of data that is transmit-
ted from source nodes to the destination or base station within
a certain time, obtained in equation 13. Figure 13 shows

TABLE 7. Comparison of proposed SWSNM With and without malicious
nodes.

TABLE 8. Comparison of proposed SWSNM and Eagilla [21] techniques.

a comparison of network throughput for each of the three
cases. As seen from Figure 14, the throughput of the network
without malicious nodes is significantly higher than the net-
work with malicious nodes. The SWSNM outperforms the
Eagilla [21] by a significant margin.

Throughput =
Number of bytes received at BS

Total bytes transmitted at source nodes
(13)

D. DELAY
The end-to-end delay, obtained in equation 14, is another
important parameter to evaluate the performance of the pro-
posed approach. In equation 14, it is noteworthy that the
EED is obtained by summing the delays of all the nodes and
averaged over total number of nodes. The delay of each node
is calculated through equation 15 and normalized by the total
number of packets by the given node j. Figure 15 shows that
the end-to-end delay increases until a certain time (∼32 min-
utes) and stays fairly constant after that. It is noteworthy that
while the trends are similar, the SWSNM shows significantly
lower end-to-end delay when compared to that with the exis-
tence of malicious nodes (SWSNM w/10 MN). The end-to-
end delay of the Eagilla [21] approach is comparable to the
proposed SWSNM.

EED =

∑n
j=1 Dj
n

(14)

Dj =

∑pkt
p=1 D

p
rec − D

p
snd

Number of packets by nodej
(15)

The Direc represents arrival time at the destination for
packet p, Dpsnd is transmission time at the source node.
SWSNM comparison of three factors; energy consump-

tion, throughput, and the end-to-end delay, is shown
in Tables 7 and 8 for SWSNM with malicious nodes (MN)
and Eagilla [21], respectively. For the ease of comparison,
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one location or time is selected for each of the variables.
Table 7 shows that 14.9% more energy is consumed when
the network included malicious nodes compared to that with
no malicious nodes. Similarly, more than 10% throughput
was increased when all malicious nodes were replaced with
a 24.5% lower end-to-end delay. It can be inferred that if the
probability of malicious nodes is higher in the network (for
example 20%), percentage differences in the calculated vari-
ables are expected to be much larger. SWSNM comparison
with the Eagilla [21] approach, shown in Table 8, reveals
significant percentage differences for energy consumption
(27.7%) and throughput (49%) while the end-to-end delay is
comparable (4.87%) for both approaches.

VIII. CONCLUSION
Wireless sensor networks (WSNs) are an essential medium
for the transmission of data for numerous applications.
In order to address power consumption, communication, and
security challenges, middleware bridges the gap between
applications and WSNs. Most existing middleware does
not completely address the issues that significantly impact
WSNs’ performance. Thus, our paper proposes unsuper-
vised learning for the development of WSNs middleware to
provide end-to-end secure system. The proposed algorithm
(SWSNM) consists of a generator (G) and a discrimina-
tor (D). The generator is capable of creating fake data to con-
fuse the attacker and resolving imbalanced data by generating
more data to balance the proportion of classes, the normal
and attack data. We render the D to be a powerful network
that can easily distinguish between two datasets, even if the
fake data is very close to real samples. Extensive testing
on the NSL-KDD dataset with different supervised learning
techniques and comparisons with our generator network data
shows that our generator model provides a better accuracy
of 86.5% with a low FPR of 21% and 84% with a lower FPR
of 13% by using full (40 features) and reduced (20 features)
respectively. Additionally, we employed the t-SNE algo-
rithm for both full features and reduced features to compare
the output of our generator to the original dataset. Results
show that the proposed generator performs very well with
data visualization while the original, conventional dataset
NSL-KDD performed worse in both algorithms.

NS2 simulation results demonstrate that the proposed
SWSNM provides stronger security mechanism by detecting
and replacing malicious nodes which leads to lesser energy
consumption, higher throughput, and lesser end-to-end delay.
Ongoing work will include estimations of error rates and
the lifetime of the network along with comparison of the
proposed technique with other contending approaches.

REFERENCES
[1] K. A. Bispo, N. S. Rosa, and P. R. F. Cunha, ‘‘SITRUS: Semantic

infrastructure for wireless sensor networks,’’ Sensors, vol. 15, no. 11,
pp. 27436–27469, 2015.

[2] G. Xu, W. Shen, and X. Wang, ‘‘Applications of wireless sensor networks
in marine environment monitoring: A survey,’’ Sensors, vol. 14, no. 9,
pp. 16932–16954, 2014.

[3] S. Hadim and N. Mohamed, ‘‘Middleware for wireless sensor networks:
A survey,’’ in Proc. 1st Int. Conf. Commun. Syst. Softw. Middleware,
New Delhi, India, Jan. 2006, pp. 1–7.

[4] R. Alshinina and K. Elleithy, ‘‘Performance and challenges of service-
oriented architecture for wireless sensor networks,’’ Sensors, vol. 17, no. 3,
p. 536, 2017.

[5] J. Al-Jaroodi and A. Al-Dhaheri, ‘‘Security issues of service-oriented
middleware,’’ Int. J. Comput. Sci. Netw. Secur., vol. 11, no. 1, pp. 153–160,
2011.

[6] A. Shchzad, H. Q. Ngo, S. Y. Lee, and Y.-K. Lee, ‘‘A comprehensive mid-
dleware architecture for context-aware ubiquitous computing systems,’’ in
Proc. 4th Annu. ACIS Int. Conf. Comput. Inf. Sci. (ICIS), Jeju, South Korea,
Jul. 2005, pp. 251–256.

[7] Y. Wang, G. Attebury, and B. Ramamurthy, ‘‘A survey of security issues
in wireless sensor networks,’’ IEEE Commun. Surveys Tuts., vol. 8, no. 2,
pp. 2–23, 2nd Quart., 2006.

[8] Y. W. Law, J. Doumen, and P. Hartel, ‘‘Benchmarking block ciphers for
wireless sensor networks,’’ in Proc. IEEE Int. Conf. Mobile Ad-Hoc Sensor
Syst., Fort Lauderdale, FL, USA, Oct. 2004, pp. 447–456.

[9] J. Newsome, E. Shi, D. Song, and A. Perrig, ‘‘The sybil attack in sensor
networks: Analysis & defenses,’’ presented at the 3rd Int. Symp. Inf.
Process. Sensor Netw., Berkeley, CA, USA, 2004.

[10] A. A. Pirzada and C. McDonald, ‘‘Secure routing with the AODV pro-
tocol,’’ in Proc. Asia–Pacific Conf. Commun., Perth, WA, Australia,
Oct. 2005, pp. 57–61.

[11] S. Bhargava and D. P. Agrawal, ‘‘Security enhancements in AODV proto-
col for wireless ad hoc networks,’’ in Proc. IEEE VTS 54th Veh. Technol.
Conf. (VTCFall), Atlantic City, NJ, USA, vol. 4, Oct. 2001, pp. 2143–2147.

[12] S. Capkun and J.-P. Hubaux, ‘‘Secure positioning of wireless devices with
application to sensor networks,’’ in Proc. 24th Annu. Joint Conf. IEEE
Comput. Commun. Soc. (INFOCOM), Miami, FL, USA, vol. 3, Mar. 2005,
pp. 1917–1928.

[13] P. Aggarwal and S. K. Sharma, ‘‘Analysis of KDDdataset attributes—Class
wise for intrusion detection,’’ Procedia Comput. Sci., vol. 57, pp. 842–851,
Mar. 2015.

[14] J. A. Jeyanna, E. Indumathi, and D. S. Punithavathani, ‘‘A network intru-
sion detection system using clustering and outlier detection,’’ Int. J. Innov.
Res. Comput. Commun. Eng. (IJIRCCE), vol. 3, no. 2, pp. 975–982, 2015.

[15] E. Shi and A. Perrig, ‘‘Designing secure sensor networks,’’ IEEE Wireless
Commun., vol. 11, no. 6, pp. 38–43, Dec. 2004.

[16] X. Chen, K. Makki, K. Yen, and N. Pissinou, ‘‘Sensor network security:
A survey,’’ IEEE Commun. Surveys Tuts., vol. 11, no. 2, pp. 52–73,
2nd Quart., 2009.

[17] S. Roy, N. Maitra, J. Nath, S. Agarwal, and A. Nath, ‘‘Ultra encryption
standard modified (UES) version-I: Symmetric key cryptosystem with
multiple encryption and randomized vernam key using generalized modi-
fied vernam cipher method, permutation method, and columnar transposi-
tion method,’’ in Proc. IEEE Sponsored Nat. Conf. Recent Adv. Commun.,
Control Comput. Technol. (RACCCT), 2012, pp. 29–30.

[18] A. Swaminathan, B. S. Krishnan and M. Ramaswamy, ‘‘A novel security
enhancement strategy for improving the concert of CDMA based mobile
ad-hoc network,’’ in Proc. Int. J. Mod. Electron. Commun. Eng. (IJMECE),
Jan. 2017, pp. 1–8.

[19] A. Kaur and S. S. Kang, ‘‘Attacks in wireless sensor network—A review,’’
Int. J. Comput. Sci. Eng., vol. 4, no. 5, pp. 157–162, May 2016.

[20] R. D. Shinganjude and D. P. Theng, ‘‘Inspecting the ways of source
anonymity in wireless sensor network,’’ in Proc. 4th Int. Conf. Commun.
Syst. Netw. Technol. (CSNT), 2014, pp. 705–707.

[21] K. Lingaraj, R. V. Biradar, and V. C. Patil, ‘‘Eagilla: An enhanced mobile
agent middleware for wireless sensor networks,’’ Alexandria Eng. J., to be
published, doi: 10.1016/j.aej.2017.03.003.

[22] L. Capra, ‘‘MaLM: Machine learning middleware to tackle ontology het-
erogeneity,’’ in Proc. 5th Annu. IEEE Int. Conf. Pervasive Comput. Com-
mun.Workshops (PerComWorkshops),White Plains, NY, USA,Mar. 2007,
pp. 449–454.

[23] T. Avram, S. Oh, and S. Hariri, ‘‘Analyzing attacks in wireless ad hoc net-
work with self-organizing maps,’’ in Proc. 5th Annu. Conf. Commun. Netw.
Services Res. (CNSR), Frederlcton, NB, Canada, May 2007, pp. 166–175.

[24] M. A. Alsheikh, S. Lin, D. Niyato, and H. P. Tan, ‘‘Machine learning in
wireless sensor networks: Algorithms, strategies, and applications,’’ IEEE
Commun. Surveys Tuts., vol. 16, no. 4, pp. 1996–2018, 4th Quart., 2014.

[25] M. Ribeiro, K. Grolinger, and M. A. M. Capretz, ‘‘MLaaS: Machine
learning as a service,’’ in Proc. IEEE 14th Int. Conf. Mach. Learn. Appl.
(ICMLA), Miami, FL, USA, Dec. 2015, pp. 896–902.

VOLUME 6, 2018 29897

http://dx.doi.org/10.1016/j.aej.2017.03.003


R. A. Alshinina, K. M. Elleithy: Highly Accurate Deep Learning-Based Approach for Developing WSN Middleware

[26] R. Husain and D. R. Vohra, ‘‘A survey on machine learning in wireless
sensor networks,’’ Int. Edu. And Res. J., vol. 3, no. 1, pp. 17–18, 2017.

[27] N. Ahad, J. Qadir, and N. Ahsan, ‘‘Neural networks in wireless networks:
Techniques, applications and guidelines,’’ J. Netw. Comput. Appl., vol. 68,
pp. 1–27, Jun. 2016.

[28] Y. Zhang, N. Meratnia, and P. Havinga, ‘‘Outlier detection techniques
for wireless sensor networks: A survey,’’ IEEE Commun. Surveys Tuts.,
vol. 12, no. 2, pp. 159–170, 2nd Quart., 2010.

[29] U. Mehboob, J. Qadir, S. Ali, and A. Vasilakos, ‘‘Genetic algorithms in
wireless networking: Techniques, applications, and issues,’’ Soft Comput.,
vol. 20, no. 6, pp. 2467–2501, 2016.

[30] J.-P. Vasseur, G. Mermoud, and S. Dasgupta, ‘‘Predictive learning
machine-based approach to detect traffic outside of service level agree-
ments,’’ Google Patents 9 338 065, May 10, 2016.

[31] D. Janakiram, V. A. Reddy, and A. V. U. P. Kumar, ‘‘Outlier detection in
wireless sensor networks using Bayesian belief networks,’’ in Proc. 1st
Int. Conf. Commun. Syst. Softw. Middleware, New Delhi, India, Jan. 2006,
pp. 1–6.

[32] J. W. Branch, B. Szymanski, C. Giannella, W. Ran, and H. Kargupta, ‘‘In-
network outlier detection in wireless sensor networks,’’ in Proc. 26th IEEE
Int. Conf. Distrib. Comput. Syst. (ICDCS), Lisboa, Portugal, 2006, p. 51.

[33] S. Kaplantzis, A. Shilton, N. Mani, and Y. A. Sekercioglu, ‘‘Detecting
selective forwarding attacks in wireless sensor networks using support
vector machines,’’ in Proc. 3rd Int. Conf. Intell. Sensors, Sensor Netw. Inf.,
Melbourne, QLD, Australia, Dec. 2007, pp. 335–340.

[34] S. Rajasegarar, C. Leckie, M. Palaniswami, and J. C. Bezdek, ‘‘Quar-
ter sphere based distributed anomaly detection in wireless sensor net-
works,’’ in Proc. IEEE Int. Conf. Commun., Glasgow, U.K., Jun. 2007,
pp. 3864–3869.

[35] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, ‘‘When is ‘near-
est neighbor’ meaningful?’’ in Proc. 7th Int. Conf. Database Theory
(ICDT), Jerusalem, Israel, C. Beeri and P. Buneman, Eds. Berlin, Germany:
Springer, 1999, pp. 217–235.

[36] I. Goodfellow et al., ‘‘Generative adversarial nets,’’ in Proc. Adv. Neural
Inf. Process. Syst., 2014, pp. 2672–2680.

[37] T. Salimans et al., ‘‘Improved techniques for training GANs,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 2234–2242.

[38] J. T. Springenberg. (2015). ‘‘Unsupervised and semi-supervised learning
with categorical generative adversarial networks.’’ [Online]. Available:
https://arxiv.org/abs/1511.06390

[39] University of New Brunswick. NSL-KDD. [Online]. Available: http://nsl.
cs.unb.ca/nsl-kdd/

[40] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, ‘‘A detailed analysis
of the KDD CUP 99 data set,’’ in Proc. IEEE Symp. Comput. Intell. Secur.
Defense Appl., Ottawa, ON, Canada, Jul. 2009, pp. 1–6.

[41] S. Hettich and S. Bay, ‘‘The UCI KDD archive,’’ Dept. Inf. Comput. Sci.,
Univ. California, Irvine, Irvine, CA, USA, Tech. Rep., 1999, vol. 152.
[Online]. Available: http://kdd.ics.uci.edu

[42] University of California, Irvine. (1999). KDD Cup 1999. [Online]. Avail-
able: http://Kdd.Ics.Uci.Edu/Databases/Kddcup99.html

[43] L. Ray, ‘‘Determining the number of hidden neurons in a multi layer feed
forward neural network,’’ J. Inf. Secur. Res., vol. 4, no. 2, pp. 63–70, 2013.

[44] F. Chollet. (2015). keras. [Online]. Available:
https://github.com/fchollet/keras

[45] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ in Proc. Int. Conf. Mach.
Learn., 2015, pp. 448–456.

[46] X. Glorot and Y. Bengio, ‘‘Understanding the difficulty of training deep
feedforward neural networks,’’ in Proc. 13th Int. Conf. Artif. Intell. Statist.,
2010, pp. 249–256.

[47] K. He and J. Sun, ‘‘Convolutional neural networks at constrained time
cost,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015,
pp. 5353–5360.

[48] R. K. Srivastava, K. Greff, and J. Schmidhuber, ‘‘Training very deep
networks,’’ in Proc. Adv. Neural Inf. Process. Syst., 2015, pp. 2377–2385.

[49] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Las Vegas, NV, USA, Jun. 2016, pp. 770–778.

[50] S. Albelwi andA.Mahmood, ‘‘A framework for designing the architectures
of deep convolutional neural networks,’’ Entropy, vol. 19, no. 6, p. 242,
2017.

[51] B. Ingre and A. Yadav, ‘‘Performance analysis of NSL-KDD dataset using
ANN,’’ in Proc. Int. Conf. Signal Process. Commun. Eng. Syst., Guntur,
India, Jun. 2015, pp. 92–96.

[52] M. Panda, A. Abraham, and M. R. Patra, ‘‘Discriminative multinomial
Naïve Bayes for network intrusion detection,’’ in Proc. 6th Int. Conf. Inf.
Assurance Secur., Atlanta, GA, USA, Aug. 2010, pp. 5–10.

[53] L. M. Ibrahim, D. T. Basheer, and M. S. Mahmod, ‘‘A comparison study
for intrusion database (KDD99, NSL-KDD) based on self organization
map (SOM) artificial neural network,’’ J. Eng. Sci. Technol., vol. 8, no. 1,
pp. 107–119, 2013.

[54] L. van derMaaten andG.Hinton, ‘‘Visualizing data using t-SNE,’’ J.Mach.
Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008.

[55] S. S. Singh and Y. B. Jinila, ‘‘Sensor node failure detection using check
point recovery algorithm,’’ in Proc. Int. Conf. Recent Trends Inf. Technol.
(ICRTIT), Chennai, India, Apr. 2016, pp. 1–4.

[56] G. Sumalatha, N. Zareena, and C. G. Raju. (2014). ‘‘A review on failure
node recovery algorithms in wireless sensor actor networks.’’ [Online].
Available: https://arxiv.org/abs/1407.0009

[57] P. Jiang, ‘‘A new method for node fault detection in wireless sensor
networks,’’ Sensors, vol. 9, no. 2, pp. 1282–1294, 2009.

[58] Y. LeCun. (1998). The MNIST Database of Handwritten Digits. [Online].
Available: http://yann.lecun.com/exdb/mnist/

REMAH A. ALSHININA received the bache-
lor’s degree from King Abdulaziz University,
Saudi Arabia, in 2006, and the master’s degree
in information technology from Southern New
Hampshire University in 2012. She is currently
pursuing the Ph.D. degree in computer science
and engineering with the University of Bridge-
port. She has presented and published papers
in national/international conferences and jour-
nals. Her research interests are WSNs, machine
learning, and network security.

KHALED M. ELLEITHY received the B.Sc. degree
in computer science and automatic control and the
M.S. degree in computer networks from Alexan-
dria University in 1983 and 1986, respectively, and
the M.S. and Ph.D. degrees in computer science
from the Center for Advanced Computer Studies,
University of Louisiana at Lafayette, in 1988 and
1990, respectively. He is currently the Associate
Vice President for graduate studies and research
with the University of Bridgeport. He is also a

Professor of computer science and engineering. He supervised hundreds
of senior projects, M.S. theses, and Ph.D. dissertations. He developed and
introduced many new undergraduate/graduate courses. He also developed
new teaching/research laboratories in his area of expertise. He has authored
over 350 research papers in national/international journals and conferences
in his areas of expertise. He is an editor or co-editor for 12 books pub-
lished by Springer. His research interests include wireless sensor networks,
mobile communications, network security, quantum computing, and formal
approaches for design and verification. He has been a member of the ACM
since 1990, a member of the ACM Special Interest Group on Computer
Architecture since 1990, a member of the Honor Society of the Phi Kappa
Phi University of South Western Louisiana Chapter since 1989, a member
of the IEEE Circuits and Systems Society since 1988, a member of the
IEEE Computer Society since 1988, and a Lifetime Member of the Egyptian
Engineering Syndicate since 1983. He is a member of the technical program
committees of many international conferences as recognition of his research
qualifications. He is a member of several technical and honorary societies.
He is a Senior Member of the IEEE Computer Society. He was a recipient
of the Distinguished Professor of the Year at the University of Bridgeport
for academic year 2006–2007. His students received over twenty prestigious
national/international awards from the IEEE, the ACM, and the ASEE. He
was the Chair Person of the International Conference on Industrial Electron-
ics, Technology, and Automation. He was the Co-Chair and the Co-Founder
of the Annual International Joint Conferences on Computer, Information,
and Systems Sciences, and Engineering virtual conferences 2005–2014. He
served as a guest editor for several international journals.

29898 VOLUME 6, 2018


	INTRODUCTION
	RELATED WORK
	WSNs MIDDLEWARE
	MACHINE LEARNING FOR WSNs

	MOTIVATIONS AND RESEARCH PROBLEM
	GENERATIVE ADVERSARIAL NETWORKS (GANs)
	THE PROPOSED WSN MIDDLEWARE
	DATASET
	GENERATOR NETWORK
	DISCRIMINATOR NETWORK

	EXPERIMENTAL RESULTS AND DISCUSSION
	EXPERIMENTAL SETTING
	GENERATOR NETWORK SETTING
	DISCRIMINATOR NETWORK SETTING

	CONVOLUTIONAL NEURAL NETWORKS (CNNs)
	CONFUSION MATRIX
	FULL FEATURE OF NSL-KDD DATASET
	FEATURES SELECTION

	DATA VISUALIZATION
	REFEEDING THE GENERATED DATA
	EVALUATION

	SIMULATION RESULTS
	PERFOMANCE MATRICS
	ENERGY CONSUMPTION
	THROUGHPUT
	DELAY

	CONCLUSION
	REFERENCES
	Biographies
	REMAH A. ALSHININA
	KHALED M. ELLEITHY


