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ABSTRACT This paper presents a frequency-selective rasorber whose transmission window locates at the
higher frequency of absorption band. The accomplished rasorber is composed of dipole-like and slot arrays,
and has realized the transmissive/absorptive performance. In every unit cell, each pair of dipole-like elements
connected by vias is printed on the two sides of the substrate, and the coupling between long and short dipoles
is suppressed by this structure. A guiding circuit is studied based on the analysis of the current path, and the
insertion loss of transmission window is significantly reduced by the surface current at the pass-band that is
hindered to pass through lossy elements. The presented rasorber acts as an absorber at the low frequencies,
while providing a high transmittance window at 5.6 GHz. This design is elaborately optimized to achieve
low reflection and angle-insensitive performance. Finally, the presented structure is validated by numerical
simulations and experimental measurements. This rasorber could be used for secrecy communications among
stealth facilities while providing stable broad-band absorptive properties.

INDEX TERMS Absorption, frequency-selective rasorber, high transmittance, low reflection.

I. INTRODUCTION
A stealth system plays a crucial role in the competition
of military industry. In the past, outstanding frequency
selective and spatial filtering characteristics of frequency
selective surfaces (FSS) have attracted a lot of interest of
researchers [1]–[2], and have been utilized to avoid the poten-
tial threat from a hostile radar [3]–[5]. The detection power
is reflected to other directions and would not influence the
communication performance. As the development of detec-
tive radar system, the power reflected to other directions
could be detected by a multistatic radar system. By inserting
lossy elements and adding a reflection layer, an FSS can be
structured as a frequency-selective absorber (FSA) [6]–[9].
An FSA features high absorptivity, so that less power is
reflected within its operation band. However, the commu-
nication ability is limited by the covering FSA, and for
that reason, frequency-selective rasorbers (FSR) with good

absorptive/transmissive performance have extensively been
studied in recent years [10].

The difficulty is that the high insertion loss caused by
a lossy FSA cannot be eliminated simply by removing the
backed reflection layer, since the power is consumed by
the lossy elements. The low-pass characteristic of strip-type
FSS has been used to constitute a rasorber in some recent
designs [11]–[15]. By combiningwith the band-pass slot-type
FSS, a transmission window is realized in low frequencies
and the operation characteristic at the frequencies above the
pass-band is similar to that of an absorber. Furthermore,
several rasorbers whose pass-band locates at the frequencies
above the absorption band have been proposed [16]–[17].
Other structures in [18]–[19] have allowed the incident power
of higher frequency to pass by using distributed inductive
and capacitive (LC) elements. A band-pass rasorber has been
realized by using series lumped reactance elements in [20].
The incident wave out of the pass-band is absorbed, while
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the reflection over the whole operation band is reduced.
Rasorbers composed of 3-D unit cell have been suggested
in [21] and [22], the transmission band is expanded in these
designs, while the wide-band absorptive performance cannot
be provided at the same time. Few works realized a trans-
mission window which locates at the frequencies above the
stop-band in all of the designs above. For designs featuring a
transmissionwindow at high frequencies, the absorption band
at low frequencies is relatively narrow, or strong reflection is
introduced between the pass-band and stop-band.

The aim of this work is to design a new rasorber with a
high transmittance window whose frequencies locate above
the absorption band. The reflection within the operation
band should be reduced while absorbing wide-band inci-
dent power. Based on our recent work [23], the precondi-
tion of absorptive/transmissive performance is studied using
the ABCD and |S| matrices. A guiding circuit is presented
in order to realize the desired performance. Generally, for
most rasorbers, the transmission window is generated by LC
elements. Different from the previous designs, a new lossy
array is presented and designed to form the rasorber. This
array is constituted by two pairs of dipole-like elements. For
that reason, the complexity and cost of fabrication could be
reduced, while introducing few uncertainty factors caused
by lumped reactance elements. Meanwhile, the transmission
window with low insertion loss is realized with 0◦-45◦ inci-
dence. Furthermore, the presented structure is validated by
simulated and experimental results.

II. EQUIVALENT CIRCUIT ANALYSIS
The profile view of a rasorber structure is illustrated in Fig. 1.
Generally, the rasorber is composed of lossy and lossless lay-
ers, which are connected by a spacer with thickness t . A rasor-
ber should function as an absorber at the stop-band, and be
transparent at the transmission band. The low reflection over
the operation band is realized to achieve stealth performance.
Two periodical FSSs can be equivalent to branch circuits,
and cascade with a transmission line which is the equivalent
circuit of the spacer. The impedance of the lossy layer and
lossless layer is expressed by Za and Zb, respectively. Z0 and
Z1 denote the characteristic impedance of the open space and
the spacer, respectively. According to the above discussion,
the ABCD matrix of the network can be written as [20]:[
A B
C D

]
=

[
1 0

1/Za 1

] [
cosβt jZ1 sinβt

j(1/Z1) sinβt cosβt

] [
1 0

1/Zb 1

]

=

 j
Z1
Zb

sinβt + cosβt jZ1 sinβt

j
Z2
1 + ZaZb
Z1ZaZb

sinβt+
Za+Zb
ZaZb

cosβt j
Z1
Zb

sinβt+cosβt


(1)

where β = 2π/λ0, and λ0 is the wavelength of open space.
Generally, the value of Z1 is selected same as Z0 for a

FIGURE 1. Side-view of a rasorber structure.

simplified calculation purpose. The expressions of |S21| and
|S11| could be obtained through the ABCD matrix and are
expressed as follows [24]:

|S21| =

∣∣∣∣ 2
A+ B/Z0 + CZ0 + D

∣∣∣∣
=

∣∣∣∣∣ 2

j(Z0(Za+Zb+Z0)ZaZb
+ 2) sinβt + (Z0(Za+Zb)ZaZb

+2) cosβt

∣∣∣∣∣
(2)

|S11| =

∣∣∣∣A+ B/Z0 − CZ0 − DA+ B/Z0 + CZ0 + D

∣∣∣∣
=

∣∣∣∣∣ j(Z0(Za−Zb−Z0)ZaZb
) sinβt − (Z0(Za+Zb)ZaZb

) cosβt

j(Z0(Za+Zb+Z0)ZaZb
+ 2) sinβt + (Z0(Za+Zb)ZaZb

+2) cosβt

∣∣∣∣∣
(3)

At the transmission band, |S21| = 1. Based on (2), it can be
seen that the values of Za and Zb should be infinite. When
the circuit operates at the stop-band, |S21| and |S11| should
be zero. According to (2), Za × Zb is equal to zero. It is
obvious that Za is a complex number with ohmic loss and
could not be zero. Zb = 0 is taken as the solution at the
stop-band and is substituted into (3), the following equation is
obtained

|S11|
∣∣Zb=0 =∣∣∣∣ jZ0(Za−Z0) sinβt−Z0Za cosβtjZ0(Za+Z0) sinβt+Z0Za cosβt

∣∣∣∣
Za=Z0,βt=π/4
−−−−−−−−−→|S11|

∣∣Zb = 0 (4)

Therefore, to satisfy the absorption condition, the lossless
layer should function as a short circuit at the absorption
band. A spacer with 1/4 wavelength of absorption frequency
thickness should be adopted, and the real part of Za should be
close to Z0.

The presented rasorber should satisfy the constraint con-
ditions discussed above. Moreover, for the reported designs
whose transmission window located at the higher frequency
of absorption band, the lumped resistors are used as lossy
elements to fulfill the absorptive behavior. The transmission
coefficient could be influenced due to the surface current

31368 VOLUME 6, 2018



Z. Wang et al.: High-Transmittance Frequency-Selective Rasorber Based on Dipole Arrays

FIGURE 2. Guiding circuit model of the presented rasorber.

flowing through the lumped resistors. Therefore, the primary
goal of this work is to realize infinite impedance of the
lossy layer at the pass-band and reduce the current across
the lumped resistors. To realize this goal, a guiding circuit
model is studied and shown in Fig. 2. The presented circuit
consists of two parts, named as I and II, and connected by a
transmission line with the length of t . The parallel resonance
can provide an infinite impedance for FSS structures. In part
I, two pairs of identical parallel circuits (L1, C1 and L2, C2;
L1×C1 > L2×C2) placed at the different sides of the resistor
to guarantee the resistor is shielded at the pass-band. When
the parallel circuits of part I work at the parallel resonance
frequency (f1), the current (i) is blocked in L1, C1 and L2, C2;
therefore, the current through the branch nodes (four red dots
in part I) is greatly reduced. Hence, the current through the
resistor is significantly reduced at f1, and a small insertion
loss is introduced within the transmission band. Part II is
a parallel branch circuit (L3 and C3) which functions as a
band-pass filter characterized by a wide reflection band. The
impedance of part II is zero and infinite at the stop-band and
pass-band, respectively. Part I provides an ohmic loss (R) to
achieve an absorptive performance with the lossless layer at
the stop-band, and generates a transmission window at the
same time. The part II should be resonant at f1 in order to
enable the incident power to pass throughwith small insertion
loss. This circuit is transparent at f1since part I and II are open
circuits and the characteristic impedance Z1 is same as Z0.
On the contrary, when the series circuits (L1, C1 or L2, C2)

operate at the series resonance frequency (f2 or f3; f2 < f3),
L1, C1 or L2, C2 can be equivalent to a shorted circuit. Since
the part II presents a reflection feature except around f1,
the circuit operates as an absorber if an appropriate resistance
value is selected. However, it is very difficult to use one resis-
tance value to enable the circuit to match the characteristic
impedance of free space at two resonance frequencies. Based
on the goal of this work, the absorption band around f3 is
abandoned to realize an absorption band which locates below
the pass-band. The resonance frequencies f1, f2 and f3 satisfy

FIGURE 3. Transmissive and absorptive performance of the guiding
circuit.

the following relations:

[−j 1−(2π f1)
2L1C1

2π f1C1
] · [−j 1−(2π f1)

2L2C2
2π f1C2

]

[−j 1−(2π f1)
2L1C1

2π f1C1
]+ [−j 1−(2π f1)

2L2C2
2π f1C2

]

=−j

[
1− (2π f1)2L1C1

]
·
[
1− (2π f1)2L2C2

]
(2π f1)

[
C1+C2−(2π f1)2L1C1C2−(2π f1)2L2C1C2

]=0
(5)

j
2π f1L3

1− (2π f1)2L3C3
= 0 (6)

j
1− (2π f2)2L1C1

2π f2C1
= 0 (7)

j
1− (2π f3)2L2C2

2π f3C2
= 0 (8)

The estimated values of LC elements are obtained by employ-
ing the method proposed in [11] and [25]–[28]. It is worth
pointing out that the simplest strip and slot FSSs are used to
estimate the values of the series circuits (L1,C1 or L2,C2) and
parallel circuit (L3, C3). To obtain the desired rasorber per-
formance, we have optimized the estimated circuit element
values by using the Tune Parameters Function of Advanced
Design System (ADS). Finally, the circuit design has been
conducted with following optimized values: C1 = 0.220 pF,
L1 = 8.34 nH, C2 = 0.106 pF, L2 = 2.82 nH,C3 = 0.642
pF, L3 = 1.269 nH, R = 500 �, Z0 = Z1 = 377, and
h = 17.3 mm. The simulated reflection and transmission
coefficients of the presented circuit are shown in Fig. 3.
It is seen that the desired performance of the rasorber is
realized by this circuit. The transmission window locates at
5.6 GHz with a small insertion loss of 0.006 dB. Meanwhile,
a stop-band is obtained from 2.5 GHz to 4.5 GHz with the
reflection lower than −10 dB from 2.5 GHz to 5.8 GHz.
At the frequencies above 5.8 GHz, the reflection increases
gradually since the value of the resistor is optimized to obtain
good absorptive performance around 3.5 GHz.
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FIGURE 4. Unit cells of the presented rasorber. (a) Perspective view of the
presented rasorber. (b) Top view of the lossy crossed dipole FSS unit cell.
(c) Top view of the lossless slot FSS unit cell.

III. IMPLEMENTATION OF THE RASORBER
The presented equivalent circuit can be obtained by periodical
FSSs. The slot-type FSSs are used here to fulfill the band-
pass circuit in part II, and the strip-type FSSs can provide
series resonances. The transmission line between part I and II
are realized by the air spacer. The geometry of a unit cell of
the presented rasorber is illustrated in Fig. 4. The unit cell is
periodic along x- and y-axes, where -z-axis is the direction of
incidence. This structure is illuminated by the TM-polarized
wave, whose electric-field directed along the x-axis. For the
presented design, the thickness of substrates which support
both lossy and lossless FSSs is 0.508 mm, and this parameter
is chosen by taking both two side copper layers into account.
The relative permittivity of the substrate is 2.2, and the dis-
tance between two FSS layers is 16 mm. Since two series LC
circuits are connected to one side of the resistor, a rotated
dipole-like element is selected to overcome the restriction of
the physical structure.

The coupling between the connected neighboring long and
short dipoles is very strong, so that two pairs of dipoles are
placed on the different sides of the lossy layer, and vias are
used to conduct the current between both sides. A resistor
with 150 � is inserted into the gap of dipoles at the front
side to connect two pairs of dipoles, meanwhile the gap of the
back side is opened. Conversely, the lossless layer is realized
by the one-side slot FSS. The equivalent inductance and

FIGURE 5. Simulated reflection and transmission results of the lossy layer
with 0 � and 150� resistors.

capacitance values of the strip-type FSS can be determined
from its physical dimensions and the distance between neigh-
boring strip-type FSS, respectively. It is well known that the
inductance shows a positive variation tendency with the total
length of the dipole, and the capacitance is negatively related
to the distance between two neighboring dipoles. Therefore,
the long and short dipoles provide resonances at low and
high frequencies, respectively. The physical dimensions of
unit cells are chosen as follows: a = 10 mm, b = 16 mm,
c = 1mm, d = 30 mm, e = 1mm, f = 23 mm, g = 0.6mm,
k = 1 mm, m = 1.6 mm, n = 0.3mm and θ = 120◦

IV. SIMULATED AND EXPERIMENTAL RESULT ANALYSIS
The performance of the designed rasorber is analyzed with
a commercial electromagnetic simulation software: CST
Microwave Studio. The transmission and reflection results of
the lossy layer are plotted in Fig. 5. The lossy FSS serves as a
band-stop filter with a resistor of 0� insertedwhich resonates
at 3.6 GHz and 6 GHz. By inserting a resistor of 150 �,
the quality factor in the stop-bands drops sharply due to the
ohmic loss. Nevertheless, the transmission coefficient around
the pass-band is almost not influenced, and it provides a
potential possibility to realize a transmission window at that
frequency. For the lossless FSS layer, it should be optimized
to resonate between 5.4 GHz to 5.8 GHz to generate a pass-
band.

The joint simulation results of lossy and lossless FSSs
are shown in Fig. 6, and the performance under the oblique
incidence is explored. As expected, a transmission band is
realized at 5.6 GHz with 0.2 dB insertion loss under normal
incidence. From 2.8 GHz to 5.7 GHz the reflection is under
−10 dB with a fractional bandwidth of 68%, and a low radar
cross section (RCS) performance is realized. The absorption
band is over 2.8 GHz to 5 GHz, meanwhile there is no
harmonic resonance introduced during the operation band.
For oblique incidence, the absorptive performance is almost
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FIGURE 6. Simulated results of the presented rasorber under the oblique
incidence.

FIGURE 7. The surface current distribution on crossed dipoles with
resistors at 3.6 GHz, 5.6 GHz and 7 GHz.

not affected up to 30◦ and starts to deteriorate after 40◦. It is
because that the length of the transmission line that is the
equivalent circuit of the spacer is sensitive to the oblique
incidence, and the input impedance of rasorber is changed
under the oblique incidence. However, the reflection between
the absorption band and transmission band is below -10 dB
under 0◦-45◦ incidence. Furthermore, the maximum insertion
loss is less than 1 dB under 45◦ incidence, which could
be deemed as a good behavior under the oblique incidence.
The transmission peak is slightly shifted towards lower fre-
quencies as the incidence angle increases, since the electrical
length is increased under the oblique incidence.

Next, the surface current and electric-field distributions
of the rasorber are investigated to verify the presented con-
cept. The surface current of dipoles excited by the impinging
electric-field is shown in Fig. 7. The lumped resistors of the
left dipoles are hidden for observing the current between the

FIGURE 8. The electric-field distribution on the plane of the propagation
direction of the incident wave at 3.6 GHz, 5.6 GHz and 7 GHz.

dipoles more clearly. The long dipoles resonate at 3.6 GHz
and then there is strong current excited on two long dipoles.
The current density flowing across the resistor is so high
that most of the incident power is consumed by resistors. At
5.6 GHz, the current through the cascaded resistor is very low
even though both long and short dipoles are resonant. The
current is blocked in four dipoles, and thus a transmission
window with small insertion loss is realized. It is worthwhile
to mention that the strong current distribution on two short
dipoles at 7 GHz still agrees well with the discussions above.

The side view of electric-field distribution along the prop-
agation direction of the incident wave is given in Fig. 8.
We observed that at 3.6 GHz, the rasorber operates as a high-
impedance surface absorber, there is almost no power leaking
from the lossless FSS. The incident power is blocked on the
lossy FSS layer and absorbed by the inserted lumped resistors
of the lossy FSS. The power can penetrate the designed
structure at 5.6 GHz, meanwhile the electric-field intensity
in front of and beyond the rasorber are similar to each other.
The strong resonance is introduced by the lossless layer rather
than the lossy layer. It indicates that little power is consumed
by the presented structure and a high transmittance window
is achieved. At 7 GHz, the reflection becomes much stronger
than that at 3.6 GHz and 5.6 GHz, and a little power is
leaked by the structure at the same time. In other words, these
phenomena match the analysis above, and the method can
effectively provide a guideline to design a rasorber with a high
transmittance window.

To validate the designed rasorber, an experimental proto-
type was fabricated with dimensions of 210 mm × 210 mm,
and measured in an anechoic chamber. The pictures of the
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FIGURE 9. Photos of the fabricated rasorber. (a) Photo of the test setup.
(b) Top view of the lossy FSS layer. (c) Top view of the lossless FSS layer.
(d) Photo of the fabricated rasorber with the standoffs and nuts.

fabricated prototype are shown in Fig. 9. The FSS structures
are realized by printed circuit boards (PCB) technique, and
both two layers are printed on the F4B substrate whose thick-
ness and relative permittivity are 0.508 mm and 2.2, respec-
tively. The plastic standoffs with a length of 15mmare used to
fix the lossy and lossless FSS layers. Meanwhile, the 0.5 mm
thick plastic nuts are inserted between the lossy and lossless
FSS layers to realize the air spacer with a thickness of 16 mm.
The standoffs and nuts are located at the four corners of the
rasorber to reduce the influence on the performance of the
rasorber. The thickness of the F4B substrate is negligible
compared to the thickness of the air spacer. The simulated
and circuit calculation results show that the thin substrate has
little effect on the performance of this design. The compar-
ison between measured and simulated results is illustrated
in Fig.10, showing that a transmission window is generated
around 5.6 GHz and the reflection is controlled at a good
level of lower than -10 dB during operation band. Several
factors may result in discrepancies between the simulated and
experimental results. Although the noise in the experimental

FIGURE 10. The comparison between simulation and measurement
results.

TABLE 1. Performance comparison

system, fabrication errors and the influence of the welds have
slightly shifted the resonance frequencies and introduced rip-
ples into the results, the operation characteristics are verified.

To clearly demonstrate the performance of our design,
a comparison is listed in terms of the maximum transmission
and its frequency fT , the -10 dB absorption bandwidth, and
the strong reflection within operation band in Table I. It is
worth to underline that some literatures use other criteria to
describe the absorption bandwidth in [10], [11], and [21].
Through the relative relationship between the absorption
band and fT , it is seen that the absorption bands ofmany rasor-
ber designs are located above the transmission frequencies.
Meanwhile, strong reflection within the operation band is
introduced in most designs, and the reflection reduction per-
formance is influenced. The transmission band of our design
locates at the frequencies above the absorption band with
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a comparatively small insertion loss. Moreover, the strong
reflection between the absorption band and transmission band
is reduced effectively, and a wide absorption band is realized.

V. CONCLUSION
A rasorber with a transmission window located at the upper
frequencies of the absorption band has been presented in this
paper. The dipole elements are used to realize the transmissive
behavior, and the complex and costly structures are avoided.
Meanwhile, the decoupling structure has been designed to
achieve a relatively stable transmissive/absorptive perfor-
mance. The current flowing across the two sides of the
lumped resistor has been reduced by using crossed dipole
elements. Therefore, the incident power is allowed to pen-
etrate the presented rasorber with a low insertion loss. The
wide absorption bandwidth has been realized with the pre-
sented rasorber, and the reflection between the absorption and
transmission band is reduced to fulfill the wideband reflection
reduction performance. The insertion loss is less than 1 dB
under the oblique incidence up to 45◦. Finally, the design has
been fabricated, measured and validated.
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