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ABSTRACT With rapid developments of artificial intelligence, big data, and data mining, the intelligence-
based cognitive communication system has received increasing research attentions, where the traditional
communication is strengthened through a real time cognition system over the transmission environment.
In this paper, the measurement of cognitive information in cognition systems is investigated. Different from
classical Shannon’s information theory that only considers information as a probabilistic quantity irrespective
of the meaning it conveys, we also take the correctness of cognition into account in the measurement of
cognitive information, where the concept of negative cognitive information is introduced for the first time.
Specifically, the notion of average cognitive mutual information amount is proposed as a measurement to
quantify the cognitive information in average. Then, the concept of cognitive capacity of a given cognition
system is defined in terms of the average cognitive mutual information amount, where the maximization
or minimization is with respect to the cognitive channel between input and output of a cognition system.
Finally, a practical cognitive communication system is presented, where the validity and necessity of the
proposed measurement for cognitive information is confirmed.

INDEX TERMS Cognitive communication system, cognitive information, cognitive capacity.

I. INTRODUCTION
The celebrated work that established the discipline of infor-
mation theory is Claude E. Shannon’s landmark paper
published in 1948 [1]. In particular, Shannons notion of
information was originally developed as means to measure
the channel capacity of a communication system, where
channel capacity is interpreted as a measure of choice, uncer-
tainty, entropy and lack of knowledge [2]. However, during
communication process, Shannon omitted the consideration
of semantic meaning carried by the message for the reason
that ‘‘these semantic aspects of communication are irrelevant
to the engineering problem’’. Therefore, the communication
system proposed by Shannon is essentially limited to the
communication of data rather than information.

Take the binary pattern recognition system shown
in Fig. 1 as an example, since semantic meaning is consid-
ered, the cognition performance of systems (a) and (b) are

different due to the different cognition meanings of 0 → 0
and 0 → 1. However, according to the measurement of
Shannon’s information theory, these two cases are equivalent
with the same channel capacityCa(X;Y ) = Cb(X;Y ) regard-
less of semantic meanings because Shannon only focuses
on the engineering realization of transmission irrespective
of the semantic meaning it contains, rendering it inappli-
cable to semantic cognition systems. In fact, just one year
after Shannon introduced his information theory, Weaver,
as Shannons co-author of their seminal book published
in 1949 [3], formally pointed out the possibility of incorpo-
rating semantic information within the overall framework of
Shannons theory of communications. Since then, there have
been several attempts to define notions of information with
meaning [4]–[11]. However, to the best of our knowledge,
none of them give the explicit solution for the measurement
of the semantic information.
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FIGURE 1. Illustration of two binary cognition systems. Cognitions 0→ 0
and 1→ 1 are depicted by solid curves while cognitions 0→ 1 and 1→ 0
are plot by dashed curves.

Nowadays, with the upcoming era of artificial intelligence,
the demand for information cognition has been far beyond
of that for information transmission [12]–[17]. As a matter
of fact, many practical experiences have already indicated
that the classical Shannon information theory cannot calibrate
these advance properly, and the pursuit of the meaning behind
the data bits rather than bits itself turns out to be the research
direction of the next decades. For example, as shown in Fig. 2,
to pursuit more reliable communication, cognition-based
intelligence has been adopted to traditional communications,
where cognition is performed with respect to the transmission
environment. However, one fact has been recognized that the
key assumption from Shannon that ‘‘semantics is not rele-
vant’’ no longer holds in the field of information cognition,
which implies the theoretic foundation from Shannon may be
not well suited for cognition systems [18]–[21].

In this paper, the measurement of cognitive information
is studied in full details. To the best of our knowledge, this
is the first time the measurement of cognitive information
is investigated. For the consideration of semantic aspect,
the correctness of cognition is taken into account. Based on
it, the concept of average cognitive mutual information is
proposed in Section II to quantify the cognitive information
in average. Compared to the non-negative average mutual
information in communications, it can be either positive
or negative, thus leading to beneficial cognition and harmful
cognition, respectively. Subsequently, from this raises the
definition of cognitive capacity in Section III, which system-
atically evaluates the cognition ability of a cognitive system.
By adjusting the cognition channels, the positive or negative
cognition capacity is achieved. In Section IV, two exam-
ples of cognitive information in cognitive communications
are illustrated. At the end, Section V concludes the paper.
To summarize, we contribute to the basic measurement of
cognitive information in cognitive communication systems
from the following two-fold aspects:

1) Based on the correctness of cognition, propose the
concept of average cognitivemutual information for
the measurement of cognitive information.

2) Based on the correct and wrong cognitive infor-
mation amount, define the cognitive capacity to
evaluate the maximal cognition ability of a cogni-
tive system.

II. MEASUREMENT OF COGNITIVE
INFORMATION AMOUNT
The way of quantifying the information amount by prob-
ability can be originally traced back to the work of
Hartley [22], andwas further generalized by Shannon. Specif-
ically, the information amount of a specific message or event
xi with probability p(xi) is quantified as

I (xi) = − log p(xi). (1)

Then, given I (xi), the information amount of xi due to the
knowledge of yj becomes

I (xi|yj) = − log p(xi|yj), (2)

and the mutual information I (xi; yj) between xi and yj is
written by

I (xi; yj) = I (xi)− I (xi|yj)

= log
p(xi, yj)
p(xi)p(yj)

(3)

Because Shannon only considers information as a proba-
bilistic quantity regardless of its semantic meaning, I (xi; yj)
is actually calculated by the variation of information amount
of xi given yj. Therefore, I (xi; yj) can be either positive
or negative, depending on the ratio between posterior prob-
ability and prior probability, i.e., p(xi|yj)

p(xi)
or p(yj|xi)

p(yj)
. Unless

stated otherwise, the units of mutual information throughput
the context are bits with log base 2. More specifically, when
I (xi; yj) ≥ 0, it means the knowledge of yj is helpful to
confirm xi, otherwise confusion will be introduced by yj to
determine xi.

Motivated by the semantic demand from cognition field,
here we introduce the correctness of cognition into the
measurement of information by semantic meanings. To start
with, we firstly define the correct and wrong cognition as
follows,

correct cognition : xi → yj, for i = j; (4)

wrong cognition : xi → yj, for i 6= j. (5)

Therefore, the cognition systems can also be simplified as the
model of communications, except using correct and wrong
cognition channels instead of communication channels. Here
we only consider the case that the state space of X and Y are
one-to-one correspondence. We admit that the case beyond
one-to-one correspondence does exist, which is outside the
scope of this survey and will be one of our research work
in future.

According to correctness of cognition, the measurement
of information by Shannon is refined by semantic meanings,
which consists of the following two basic steps:

1) Classify the variation of information amount within
cognition systems as correct cognitive information amount
and wrong cognitive information amount,

Ii=j(xi; yj) = [I (xi)− I (xi|yj)]+, (6)

Ii 6=j(xi; yj) = [I (xi)− I (xi|yj)]− (7)
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FIGURE 2. The transition of communication paradigms.

where [·]+=+(·) and [·]−=−(·) denote the signs of correct
cognition and wrong cognition.

2) Unify the correct cognitive information amount and
wrong cognitive information amount with cognitive informa-
tion amount by

[I (xi)− I (xi|yj)]+ = I (xi)− I (xi|yj); (8)

[I (xi)− I (xi|yj)]− = −(I (xi)− I (xi|yj)). (9)

To summarize, the cognitive mutual information Ic(xi; yj)
is defined by semantic meanings as

Ic(xi; yj) =

{
I (xi)− I (xi|yj) for i = j,
−(I (xi)− I (xi|yj)) for i 6= j.

(10)

By doing this, the traditional mutual information provided
by Shannon is converted to the cognitive mutual infor-
mation for the sake of semantic consideration. As shown
in Fig. 3, by Shannon’s measurement, correct and wrong
cognition information amounts are scaled according to their
exact values regardless of the semantic meaning. As a
comparison, cognitive information amount takes the correct-
ness of cognition into account. Specifically, given the self-
information amount I (xi), the more information decrement
from I (xi) to I (xi|yj) by correct cognition with i = j, the more
beneficial of this cognition, and vice versa. To be more
particular, as for cognition with respect to ‘‘0’’, the decrement
of information from I (0) to I (0|0) by correct cognition is

beneficial and the decrement of information between I (0) and
I (0|1) by wrong cognition becomes harmful.

III. MEASUREMENT OF COGNITIVE CAPACITY
Based on the mutual information I (xi, yj), the average mutual
information between two random variables X and Y is further
defined by Shannon as

I (X;Y ) =
∑
xi∈X

∑
yj∈Y

p(xi, yj)I (xi; yj)

=

∑
xi∈X

∑
yj∈Y

p(xi, yj) log
p(xi, yj)
p(xi)p(yj)

≥ 0. (11)

Because average mutual information I (X;Y ) measures
entropy (i.e., uncertainty) reduction of X due to the knowl-
edge of Y , it naturally can be applied to evaluate the common-
ness between X and Y . By simply extending X and Y
to communications as information source and destination
respectively, the channel capacity that describes the transmis-
sion ability of a general communication system is defined by

C = maxp(X )I (X;Y ), (12)

where the maximization is with respect to the design of the
input distribution p(X ). However, during the communication
process, the consideration of semantic meaning is ignored,
making the two cases (a) and (b) in Fig. 1 have exactly the
same channel capacity.
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FIGURE 3. The illustrations of Shannon’s mutual information (a) and cognitive mutual information (b) with respect to ‘‘0’’.

On the other hand, different from Shannon, the correctness
of semantic meaning is urgent to be considered in cognitive
communications. Therefore, based on the cognitive mutual
information shown in (10), the correct and wrong cognitive
information amount are defined respectively as

Ic+(X;Y ) =
∑
i=j

p(xi, yj)Ii=j(xi; yj), (13)

Ic−(X;Y ) =
∑
i 6=j

p(xi, yj)Ii 6=j(xi; yj); (14)

while the average cognitive mutual information is defined
as the summation of average correct and wrong cognitive
information amount in average:

Ic(X;Y ) = Pc+ · Ic+(X;Y )+ Pc− · Ic−(X;Y ), (15)

where Pc+ =
∑

i=j p(xi, yj) and Pc− =
∑

i 6=j p(xi, yj).
Furthermore, from (15), it is easy to verify that the average
cognitive mutual information Ic(X;Y ) is bounded as

−H (X ) ≤ Ic(X;Y ) ≤ H (X ), (16)

where H (X ) = −
∑

i∈X p(xi) log p(xi) is the entropy of X
defined by Shannon. Therefore, a salient feature of cognitive
mutual information is that it could be negative in some cases
of interest.

As shown clearly in Fig. 4, in a binary symmetric
channel, the proposed average cognitive mutual informa-
tion Ic(X;Y ) behaves different from the mutual information
I (X;Y ) given by Shannon. More specifically, the cognition
system tends to be beneficial for Ic(X;Y ) > 0 while harmful
understanding will dominate the cognition if Ic(X;Y ) < 0.
As for the case Ic(X;Y ) = 0, it implies the positive cognition
is as the same as the negative one, resulting in an invalid
cognition. Therefore, it can be used to evaluate how faithful
a cognition system is.

Next, we define the positive cognitive capacity as
the maximum of average cognitive mutual information
to evaluate the positive cognitive ability of a cognition
system:

Ccognitive+ = maxp(yj|xi)Ic(X;Y ), (17)
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FIGURE 4. Illustration of Shannon mutual information and average
cognitive mutual information under a binary symmetric channel with
p(y0|x0) = p(y1|x1) = 1− p(y1|x0) = 1− p(y0|x1) and p(x0) = p(x1) = 1

2 .

where p(yj|xi) denotes the cognitive transition probability
for a specific cognition channel from xi to yj. In theory,
positive cognitive capacity serves as a tight upper on the
rate at which information can be reliably recognized over
a cognition process. Apart from channel capacity shown
in (12), the maximization of the positive cognitive capacity is
with respect to the cognition channels p(yj|xi), and it can be
realized by improving the quality of the cognition channels.
For example, if p(yj|xi) = 1 for all i = j, it corresponds to a
perfect cognition without wrong cognition, i.e., p(yj|xi) = 0
for i 6= j, resulting in

Ccognitive+ = H (X ). (18)

As for optimizing p(yj|xi), the reasonable feature selection is
the key to exploit [23], [24], followed by the steps of data
collection, feature extraction, semantic recognition and so on,
which will be a main direction of our future work. Conse-
quently, with the increment of p(yj|xi) for i = j, the average
cognitive mutual information will gradually approach its
positive capacity.

On the other hand, cognitive information can also be used
in military for security attack. From this perspective, how
to lower the average cognitive mutual information Ic(X;Y )
in hostile cognition systems becomes the key of interest,
which is implemented by disguising the cognition channels
for misinformation or disinformation. Therefore, the negative
cognition capacity is defined as

Ccognitive− = minp(yj|xi)Ic(X;Y ) = −H (X ), (19)

which serves as a lower bound on the rate at which the
information is misrecognized over a cognition process. In the
scenario of military, the notion of negative cognition capacity
plays a crucial role by misleading and destroying the cogni-
tion systems on the other side. More specifically, by delib-
erately deteriorating the recognition channels, the average
cognitive mutual information will achieve this negative
capacity when p(yj|xi) = 1 for i 6= j and p(yj|xi) = 0 for i = j.

IV. COGNITIVE INFORMATION IN COGNITIVE
RADIO NETWORK
A cognitive radio network enables the secondary user to
utilize the spectrum not currently being by the primary
user, known as a spectrum hole, after performing sensing
on the spectrum [25]. In order to improve the accuracy of
spectrum sensing, cooperative spectrum sensing (CSS) is
applied, where sensing results of multiple spectrum sensors
are reported to the secondary user for a better spectrum
utilization. However, the cognition process may be deterio-
rated in a hostile environment, where some sensors are mali-
cious and falsify the sensing results to mislead the secondary
user [26].

FIGURE 5. Illustrations of cooperative spectrum sensing in a hostile
cognitive radio network.

Just as shown in Fig. 5, there are N sensing nodes in the
CSS network, including K honest nodes, i.e., s1, s2, . . . , sK ,
and M malicious nodes with K + M =N , i.e., sK+1,
sK+2, . . . , sN . Specifically, as for the honest sensing node,
let its correct sensing probabilities ph(y0|x0) and ph(y1|x1) are
represented by p. Accordingly, the wrong sensing probabili-
ties ph(y1|x0) and ph(y0|x1) are 1 − p. Meanwhile, as for the
malicious sensing node reversing its sensing results with an
attack probability pa, its correct and wrong sensing probabil-
ities are disturbed, that is

pm(y0|x0) = pm(y1|x1) = p · (1− pa)+ (1− p) · pa, (20)

pm(y0|x1) = pm(y1|x0) = (1− p) · (1− pa)+ p · pa. (21)

Overall, given the sensing results from N sensing nodes,
the secondary user makes data fusion and global decision.
Here, the majority rule is exploited to make decisions, i.e., if
and only if there are no fewer than L sensors reporting the
absence of the primary user, the global decision is y1, and
otherwise, y0. Hence, the transition probabilities of cognition
channels in the CSS network can be derived as

pcss(y0|x0) = pcss(y1|x1) =
N∑
l=L

b∑
j=a

f (j;M , pm(y0|x0))

· f (l − j;K , ph(y0|x0)), (22)

where a = max(0, l − K ), b = min(l,M ), f (v,w, e) =
[w v]T · ev · (1− e)w−v. Further, we have

pcss(y0|x1) = pcss(y0|x1) = 1− pcss(y0|x0). (23)
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Then, from (22) and (23), the average cognitive mutual
information of this CSS network system can be calculated
based on (15). Just as depicted in Fig. 6, the Shannon mutual
information I (X;Y ) and average cognitive mutual informa-
tion Ic(X;Y ) show distinct trends over the attack percentage
which is the ratio of malicious nodes to all nodes, i.e.,M/N .
Specifically, as the attack percentage increases, the perfor-
mance of CSS deteriorate and the average cognitive mutual
information decreases, which is easy to understanding.
In contrast, the Shannon mutual information increases when
the attack percentage is over certain level, which is not consis-
tent with the cognition performance. Furthermore, when the
attack probability pa decreases from 1 to 0.8, the cogni-
tion performance becomes better, and Ic(X;Y ) increases.
However, the Shannon mutual information I (X;Y ) shows
heterogeneous changes, that is, if the attack percentage is
lower than 0.55, I (X;Y ) increases, and otherwise, I (X;Y )
decreases. Hence, compared to the Shannon mutual informa-
tion, the proposed average cognitive mutual information well
formulates the cognition performance.

FIGURE 6. Illustration of Shannon mutual information and average
cognitive mutual information for cooperative spectrum sensing in a
hostile cognitive radio network, where p = 0.8, N = 20, L = 10.

On the other hand, some classic defense strategies are
introduced to eliminate negative effects of data falsification
and the defense performance is evaluated via the average
cognitive mutual information in Fig. 7. Here, three strategies
are considered, i.e.,

• Global filtering: global decisions are used as a refer-
ence to make comparison with nodes’ reports and nodes
with high inconsistency are identified as malicious and
forbidden to participate into data fusion [27].

• Trusted-node assisting: an honest node is prior known
by the SU and its reports are used to compared with
others’. Nodes with high inconsistency are identified
as malicious and forbidden to participate into data
fusion [28].

• Optimal fusion with estimated parameters: every node’s
real performance is evaluated by a reliable reference,

FIGURE 7. Performance of difference defense strategies under various
attack percentage, where the attack probability is 1.

based on which an optimal likelihood ratio test is
made [29].

As global decisions are sensitive to the attack percentage,
the first strategys performance decreases dramatically with
the attack percentage. Specially, when the attack percentage
is over 0.5, honest nodes are identified as malicious and mali-
cious ones are identified as honest. It can be well reflected
by Ic(X;Y ), but the Shannon mutual information doesn’t
correctly reflect the trend. Although the trust node’s perfor-
mance is immune to the attack and the strategy, trusted-
node assisting, can well identify the attributes of nodes,
the number of nodes participating in data fusion decreases
with the attack percentage, and the performance deterio-
rates. Differently, in the third scheme, as the real perfor-
mance of nodes are estimated, the reports of attackers are
reversed via the likelihood ratio test and their cognitive
mutual information turn from negative to positive. Hence,
the global performance is good and the mutual information is
large.

V. CONCLUSION AND FUTURE WORK
Following the footstep of Shannon and Weaver, in this paper,
we try to define the measurement of semantic information
in cognition communication systems. Our results extend the
classical Shannon’s information theory by attempting to char-
acterize the semantic meaning conveyed in the information.
More specifically, the correctness of cognition information
is introduced to measure the amount of cognitive informa-
tion. As shown in Fig. 4, one elegant result is that the
capacity of cognitive information, in terms of average cogni-
tive mutual information, monotonously increases with the
probabilities of correction cognition (i.e., quality of cognitive
channels), which can serve as a fundamental performance
metric for multi-disciplinary applications, such as classi-
fication in pattern recognition and machine learning [12],
environment sensing in internet of things [19], signal
detection in cognitive communications [18], to name just
a few.

Semantic information is a good complement and extension
to Shannonian information, which will be a fruitful research
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direction in the future. Therefore, we firmly believe that our
current work have only touched one tip of an iceberg, and
there are lots of open questions to be addressed. For example,
through the context, the semantic set X = {x1, . . . , xn}
or Y = {y1, . . . , yn} we investigated for random variables
X or Y is separable, namely, xi ∩ xj = ∅ and yi ∩ yj = ∅.
However, in practice, the elements in the semantic set tend
to be partially overlapped due to the ambiguity contained
in the semantic text. Besides, the feature selection also has an
impact on the semantic ambiguity of the cognition, making
the reasonable feature selection a crucial problem in cogni-
tion systems. In addition, Fig. 4 only illustrates an example of
binary cognition, where complicated cognition systems also
can be equipped with the proposed cognitive information.
Therefore, we hope this article will stimulate much more
research interest.
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