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ABSTRACT Three-dimensional Digital Image Correlation (3D-DIC) is a non-contact optical-numerical
technique for evaluating the dynamic mechanical behavior at the surface of structures and materials,
including biological tissues. 3D-DIC can be used to extract shape and full-field displacements and strains
with high resolution, at various length scales. While various commercial and academic 3D-DIC software
exist, the field lacks 3D-DIC packages which offer straightforward calibration and data-merging solutions for
multi-view analysis, which is particularly desirable in biomedical applications. To address these limitations,
we present MultiDIC, an open-source MATLAB toolbox, featuring the first 3D-DIC software specifically
dedicated to multi-view setups.MultiDIC integrates robust two-dimensional subset-based DIC software with
specially tailored calibration procedures, to reconstruct the dynamic behavior of surfaces from multiple
stereo-pairs. MultiDIC contains novel algorithms to automatically merge meshes from multiple stereo-
pairs, and to compute and visualize 3D shape and full-field motion, deformation, and strain. User interfaces
provide capabilities to perform 3D-DIC analyses without interacting with MATLAB syntax, while stand-
alone functions also allow proficient MATLAB users to write custom scripts for specific experimental
requirements. This paper discusses the challenges underlying multi-view 3D-DIC, details the proposed
solutions, and describes the algorithms implemented in MultiDIC. The performance of MultiDIC is tested
using a low-cost experimental system featuring a 360◦ 12-camera setup. The software and system are
evaluated using measurement of a cylindrical object with known geometry subjected to rigid body motion
and measurement of the lower limb of a human subject. The findings confirm that shape, motion, and full-
field deformations and strains can be accurately measured, and demonstrate the feasibility of MultiDIC in
multi-view in-vivo biomedical applications.

INDEX TERMS Biomedical image analysis, full-field 3-D deformation, material mechanical properties,
open source software, skin shape and strain, soft tissue biomechanics, stereo-DIC, strain map.

I. INTRODUCTION
Digital Image Correlation (DIC) is a full-field non-contact
optical-numerical technique to measure shape, motion, and
deformation, on almost any kind of material, even in extreme
experimental settings, as long as the region of interest (ROI)
on the sample’s surface is provided with a natural or syn-
thetic speckle pattern [1], [2]. This allows the DIC algorithm
to match dense sets of corresponding points in differ-
ent images of the ROI, based on the local pixel inten-
sity distribution. Specifically, local two-dimensional DIC
(2D-DIC) [2] defines a pixel subset around a point of interest
in a reference image and evaluates the parameters describ-

ing its motion and deformation in a given target image. In
three-dimensional DIC (3D-DIC), two cameras view an ROI
from different angles (i.e. a stereo-camera pair), and capture
a sequence of images representing a reference configura-
tion (typically an undeformed configuration) and a required
number of current configurations (typically deformed con-
figurations). Next, 2D-DIC is used to correlate a given set
of points in the two stereo-views of the reference configu-
ration (spatial correlation) and track these points through-
out the sequence of stereo-images representing the current
configurations (temporal correlation). The correlated sets
of image points are then used to reconstruct and track the
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3D position of the material points of the ROI over time, via
stereo-triangulation [1], [3].

DICwas originally developed for experimental mechanics,
where it has become a standard technique for characterizing
material properties and the response of structures to loads [4].
The non-contact, full-field, and large deformation capa-
bilities of DIC make it particularly suited for shape and
deformation measurements for a wide range of biomedical
applications [5]–[11]. DIC methods have been used in com-
bination with advanced inverse characterization methods to
identify the mechanical properties of natural and synthetic
biological materials and body parts [5]–[8].

Substantial work has been done in recent decades
to improve the performance of computational algori-
thms [12]–[17], to define good practices for performing
experiments and calibration [18], to assess the measure-
ment errors [19], [20], and to extend the capabilities
of 3D-DIC [15], [21]. Furthermore, various commercial and
academic software packages now exist. However, there is
currently a lack of available 3D-DIC software specifically tai-
lored for multi-view analysis, a feature which is highly desir-
able for biomedical applications. It is challenging to study the
shape, motion, and deformation of tissues and organs in-vivo,
due to the often complex geometries, the large deformations
that can occur, and the risk of undesired motions. To over-
come these challenges, simultaneous multi-view imaging is
often utilized [11], [22]. Moreover, in a clinical environment,
a fast and flexible image acquisition and calibration process
is highly desirable [23].

Several multi-view DIC systems have been proposed in
the literature (e.g. [22], [24]–[29]), where multiple cameras
with partially overlapping fields of view (FOVs) allow for the
imaging of large portions of an object surface. The multitude
of cameras can be arranged in a 2D array when large quasi-
planar objects need to be measured. Alternatively, for non-
planar objects, the set of cameras are placed around the
object, e.g. in a surrounding fashion, to obtain the 3D shape
of the entire object (as illustrated in Fig. 1). In this work,
we refer to the latter configuration, which is suitable for many
biomedical applications.

Furthermore, in scientific research reproducibility,
verifiability, and validation are key [30]. Only open-source
software tools offer full insight into the computational frame-
work these aspects demand. Moreover, open-source software
enable customizability, which is important since each sci-
entific application offers its own unique computational and
experimental challenges. There is hence a pressing need for
open-source software implementing algorithms specifically
tailored for multi-view 3D-DIC, which allow for customiza-
tion and easy adaptation to different experimental settings.

A. THEORETICAL BACKGROUND
Two key issues entailed in the implementation of multi-
view setups are system calibration (required for stereo trian-
gulation) and data merging (required for combining results
from multiple stereo-pairs). For each camera of a typical

FIGURE 1. Multi-view stereo system schematic. A circular array of
cameras (in transparent color) surrounding the object, with highlighted
two contiguous stereo-pairs (in solid color), sharing a common field of
view on the object’s surface. The ROI for each pair is depicted on the
object’s surfaces with dots, and the overlapping ROI for the two pairs is
depicted with solid color.

stereo-pair, calibration aims to find the intrinsic parameters
(defining the geometric and optical characteristics of the cam-
era) and the extrinsic parameters (defining the position and
orientation of the camera with respect to a reference coordi-
nate system). Together, the intrinsic and extrinsic parameters
serve to describe the transformation that maps each 3D mate-
rial point P (X ,Y ,Z ) in the global coordinate system into its
image point on the camera sensor I (xP, yP), according to the
pinhole optical model [3], [31]. Specifically, the coordinates
(X ,Y ,Z ) are first rigidly transformed into the coordinates
(XC ,YC ,ZC ) in the camera coordinate system byXCYC

ZC

 =
R11 R12 R13
R21 R22 R23
R31 R32 R33

XY
Z

+
 TXTY
TZ

 , (1)

where Rij (i, j = 1, 2, 3) and Tx ,Ty,Tz are the components
of the rotation matrix and the translation vector, respectively.
Next, the (ideal) normalized image point coordinates are
calculated as

x = XC
/
ZC ; y = YC

/
ZC . (2)

Then, the intrinsic camera parameters, i.e. the focal lengths
in pixels

[
fx , fy

]
, the principal point (optical center) coordi-

nates
[
Cx ,Cy

]
, and the skew coefficient s = fytanα, where

α is the angle between the horizontal and vertical axes of the
sensor (α = s = 0 if the axes are perpendicular), are used to
calculate the image point coordinates I (xP, yP), in the sensor
coordinate system, by xpyp

1

 =
 fx s Cx

0 fy Cy
0 0 1

 xy
1

 . (3)
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Next, combining Eq. (1)-(3) and further assuming that
s = 0 yields to

xp = fx
R11X + R12Y + R13Z + Tx
R31X + R32Y + R33Z + Tz

+ Cx

yp = fy
R21X + R22Y + R23Z + Ty
R31X + R32Y + R33Z + Tz

+ Cy, (4)

which can be rearranged into the form

xp =
L1X + L2Y + L3Z + L4
L9X + L10Y + L11Z + 1

yp =
L5X + L6Y + L7Z + L8
L9X + L10Y + L11Z + 1

. (5)

Eq. (5) represents the basis of the Direct Linear Transfor-
mation (DLT) method [31] which allows for implicit camera
calibration. The DLTmethod derives the (unphysical) param-
eter set Lj (j = 1, 2, . . . , 11) by solving a linear system of
equations, based on a single image containing a non-planar
set of calibration points whose position s (X ,Y ,Z ) are known
with high accuracy. DLT, however, relies on an idealized
distortion-free camera model which might yield inaccurate
results, especially when high-distortion or low-quality lenses
are used.

The most common stereo calibration technique used in 3D-
DIC methods is the Bundle Adjustment (BA) method [1]. BA
is an explicit calibration method that allows for the estimation
of both the intrinsic and extrinsic camera parameters by using
repetitive observations of sparse scene points in different
viewing directions [32]. BA allows for lens distortion cor-
rection based on a non-linear distortion model. Specifically,
the idealized image point coordinates (x, y) in Eq. (3), are
replaced by the distorted normalized coordinates (xd , yd )
defined by[

xd
yd

]
=

(
1+ k1r2 + k2r4 + k3r6

) [ x
y

]
+

[
2p1xy+ p2

(
r2 + 2x2

)
p1
(
r2 + 2y2

)
+ 2p2xy

]
, (6)

where r2 = x2 + y2, [k1, k2, k3] are the radial distortion
parameters, [p1, p2] are the tangential distortion parameters,
and the skew parameter in (3) can be non-zero.

Successful BA typically requires a large number of
images (approximately 50 [33]) of a planar calibration target
acquired in different orientations and positions in the field
of view (FOV) of both cameras. Although BA is highly
accurate, and is typically the first choice for calibrating a
two-camera system, the associated practice of calibrating one
camera with respect to a given ‘master’ camera can limit
its applicability to multi-view stereo systems. To calibrate
a large number of camera-pairs, each camera-pair has to be
calibrated separately. Then, the images of a given set of mark-
ers [27], or of a speckled surface [34], which can be viewed
by each contiguous pair of cameras, are used to: 1) find the
geometric transform between the pairs, and 2) combine the
data into a mutual coordinate system [34]. This process must
be repeated for each additional camera-pair [34]. Clearly, this

approach is very time-consuming, especially in case a large
number of cameras is required or when the camera poses
change during a data collection session, potentially causing
error accumulation. Furthermore, this method does not enable
combining data from camera-pairs for which the FOV do not
overlap.

In contrast, the DLT method can use a single image acqui-
sition of a 3D (non-planar) calibration target placed in the
scene, captured by all the cameras of the multi-view sys-
tem. This arrangement allows one to calibrate each camera
with respect to a common reference system associated to the
3D target, thus enabling an automatic data merging, even
in cases where the FOV of different camera-pairs do not
overlap. The main limitation of this approach is that the
calibration target usually covers only a portion of the work-
ing volume and this may affect the accuracy of the calibra-
tion results, even when distortion correction procedures are
adopted [35]–[37].

B. OVERVIEW OF THE CURRENT WORK
A specific aim of this work was to overcome the above-
mentioned limitations of existingmulti-viewmethods. To this
end, we present MultiDIC, a free open-source software
library for analyzing multi-view stereo images and obtaining
3D shapes and full-field displacements, deformations, and
strains. Specific consideration is given to develop a procedure
for multi-view stereo calibration and data merging, which
enables camera poses to be changed as needed, without
requiring a long re-calibration process.

MultiDIC utilizes the high-quality open-source 2D-DIC
software Ncorr [38], which was previously verified and vali-
dated by processing standard sets of synthetic and experimen-
tal images [18]. In the present study, a combined approach
for calibration was developed, whereby both BA and DLT
are used in different steps, to harness the advantages of each
method. Particularly, BA is used for obtaining the distortion
and skew parameters, which can be used to correct the effect
of distortion on the image points extracted from both the
stereo calibration images and the speckled object images.
BA is only required once per camera, as long as the cam-
era’s internal settings remain unaltered. DLT is then used
on the undistorted image points for retrieving the internal
(distortion-free) and external (camera pose) parameters of
the cameras, combined into the DLT parameters. The DLT
parameters refer to a common global coordinate system asso-
ciated with the 3D calibration object, which is seen simul-
taneously from all the cameras. Since only a single image
per camera is required, DLT can also be used to check the
stability of the system whenever experiments are prolonged
in time, and to quickly re-calibrate the system in case cam-
eras are intentionally or accidentally moved. Moreover, this
rationale allows one to eventually keep the original images
and skip the distortion correction step in cases where images
are obtained with high quality optics and sensors [25], or if
the distortions are known to be negligible with respect to the
required precision for the specific application.
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FIGURE 2. MultiDIC algorithm workflow. Step 0 is optional, and is only required if distortion correction is necessary. Steps 1–3 comprise the
core components of the 3D-DIC process. Moreover, step 3.2 is optional, and is only required if merging of surfaces into one continuous mesh
is desired.

When a large number of views is required, as is often
the case in biomedical applications, imaging systems can
become prohibitively expensive. In this study, we present
an inexpensive system using low-cost camera modules, with
which we test the capabilities of the toolbox. This paper
describes the workflow of MultiDIC, the algorithms imple-
mented in it, the experimental setup, and the data analysis
procedures. Then, results of several tests that both validate
it and showcase its capabilities are reported and discussed.
Finally, measurement on the lower limb of a human subject
demonstrates the typical shape and deformation information
obtainable for in-vivo studies.

II. MATERIALS AND METHODS
A. OVERVIEW OF SOFTWARE ARCHITECTURE
AND ALGORITHMS
MultiDIC is an open-source (Apache 2.0 licensed) library
written in MATLAB (R2017b, The Mathworks Inc., USA),
a programming language widely used among engineers
and scientists. Users may visit the GitHub repository
(http://www.github.com/MultiDIC) to obtain the most recent
version (this paper refers to release version v1.0, which is also
archived at http://doi.org/10.5281/zenodo.1256041), to join
development, and to post issues. The toolbox is accompanied
by a comprehensive instruction manual and sample data.

MultiDIC was designed as a flexible library of functions
and scripts that users can freely adjust to fit their experimental
requirements. The implementation as a toolbox enables users
to perform 3D-DIC analyses and to visualize the results
using user interfaces (UIs) which do not require interaction
with MATLAB syntax. As such, these UIs provide access
to the most common functionality as well as usability for

non-code experts. For customization, proficient MATLAB
users can also use the stand-alone functions and data-
structures to write custom scripts and analyze large data-
sets semi-automatically. Moreover, users are encouraged to
extend the toolbox’s functionality by implementing addi-
tional algorithms.

MultiDIC integrates the 2D-DIC open-source soft-
ware Ncorr [38] with the BA algorithm included in the
MATLAB computer vision toolbox [39], and the DLT algo-
rithm implemented in MATLAB by the authors, to perform
the reconstruction of 3D surfaces from multiple stereo-image
pairs. Moreover, it contains algorithms for merging surfaces,
and for computing full-field 3D displacements, deformations,
strains, and rigid-body motion (RBM). In addition, extensive
plotting and visualization functions are offered, which inte-
grate tools from the open-source GIBBON toolbox [40].

Fig. 2 outlines the workflow of the entire 3D-DIC proce-
dure. In the optional step 0, the distortion and skew param-
eters are calculated using BA on multiple images of a flat
checkerboard pattern. These parameters can be used to cor-
rect for the effect of distortion on the points detected on
both the calibration object images and the speckled object
images. Step 1 comprises the calculation of the DLT cali-
bration parameters of each camera, using images of a 3D
calibration object seen simultaneously from all the views.
Step 2 involves matching corresponding points on sets of
stereo images of the speckled object using 2D-DIC. In step 3,
the calibration parameters from step 1 are used to perform a
stereo-triangulation which transforms the 2D points matched
in step 2 for each stereo-pair into 3D triangular meshes.
Furthermore, this step may optionally involve the merging
together of multiple obtained surfaces. Lastly, step 4 includes
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algorithms for computation and visualization of the full-field
displacement, deformation, strain, and RBM. The methods
implemented in each of these steps are detailed in the next
sub-sections.

B. DISTORTION CORRECTION
The purpose of this step is to find the parameters for cor-
recting the lens distortions and skew affecting the acquired
images. This step has to be executed only once per camera
and needs not be repeated if a camera pose is changed,
as long as the camera’s intrinsic parameters remain unaltered.
The MATLAB Camera Calibration Toolbox [39] was uti-
lized, which is based on previous works [35], [41]–[43] for
evaluating the camera intrinsic parameters, including distor-
tion parameters, using the BA method. Specifically, multiple
images of a planar checkerboard pattern are acquired by
each camera. Then, the algorithm utilizes BA to minimize
the overall re-projection errors of the corner points of the
checkerboard pattern. The implemented model allows for
the computation of up to six parameters: three for radial
distortion, two for tangential distortion, and one for skew,
as detailed in Eq. (3) and (6). These parameters are later used
before the 3D reconstruction in step 3, to correct the points
detected on both the stereo calibration images and the speckle
images.

C. STEREO CALIBRATION
In this step, the mapping between 2D image points and
3D world points is established, using Eq. (5). Since each
control point provides two equations, aminimumof six points
is required to obtain the set of 11 DLT parameters. Neverthe-
less, a greater number of points is preferred, as the effect of
experimental errors is reduced by solving an overdetermined
system through least-squares minimization.

In practice, this step requires a 3D (non-planar) calibration
object having control points whose 3D positions are known
with sufficient accuracy. The use of a 3D object with axial-
symmetry (a cylinder in the current study) represents the opti-
mal solution for a 360◦ multi-view system, since images of
the calibration object can be acquired from all cameras simul-
taneously. The calibration images are then analyzed using
MultiDIC to detect the image points (xP, yP) corresponding
to the calibration object’s control points, and to sort and
match them with their known 3D positions (X ,Y ,Z ). Next,
the DLT parameters Lj (j = 1, 2, . . . , 11) and the associated
reconstruction errors are calculated and plotted.

D. 2D-DIC OF STEREO IMAGE PAIRS
In this step, which has to be conducted for each camera-
pair, corresponding image points are detected using 2D-DIC,
on sets of images of a speckled object acquired from two
angled views, as illustrated in Fig. 3. First, a reference image
is selected, typically the image acquired in the undeformed
configuration from either one of the views. Second, a ROI is
selected, which corresponds to an area of the object which is
visible from both views. Third, a point grid is obtained inside

the ROI according to selected subset size and spacing, and
the corresponding points are detected on all the remaining
images using Ncorr [38]. Ncorr is an open-source subset-
based 2D-DIC software, described in detail in [38] together
with validation results of its metrological performances tested
with images from the 2D-DIC-Challenge [18]. Briefly, Ncorr
implements a first order shape function to describe the pixel
subset transformation [2], the least-square correlation cri-
terion CLS as a correlation cost function [38], the Inverse
Compositional Gauss-Newton method as a nonlinear opti-
mizer [44], and the Reliability-guided method [45] to prop-
agate the analysis over the ROI, starting from user-defined
seed points.

Moreover, a triangular mesh is defined on the point
grid and saved for the 3D reconstruction step. Specifically,
MultiDIC’s step 2 serves as awrapper for Ncorr, which allows
users to select camera-pairs for analysis and draw the ROI.
These data are automatically transferred into Ncorr for further
analysis, and the corresponding image points, together with
the associated correlation coefficients [38] are returned for
defining the triangular mesh, for plotting the results, and for
saving the variables necessary for 3D reconstruction.

Fig. 3 illustrates how Ncorr was able to obtain high corre-
lation accuracy (low values of CLS ) over most of the selected
ROI with exception of the right border, where the affine func-
tion could not accurately describe the subset transformation
in this portion of the surface [46]. In this work, a sufficiently
large number of cameras (i.e. narrow ROI for each camera
pair) were chosen to ensure high accuracy correlation, even
on complex shapes.

E. 3D RECONSTRUCTION
In this step, the sets of DLT parameters LCkj and

LClj (j = 1, 2, . . . , 11) associated with the cameras Ck and Cl
(k and l represent the indices of the cameras in a specific
stereo-pair), are used to transform each pair of corresponding
image points, from their image coordinates

(
xCkp , y

Ck
p

)
and(

xClp , y
Cl
p

)
, into the 3D coordinates (X ,Y ,Z ), by rearranging

Eq. (5) into the form

U = AP, (7)

where

U =


xCkp − L

Ck
4

yCkp − L
Ck
8

xCl
p − L

Cl
4

yCl
p − L

Cl
8

 ; P =

XY
Z

 ;

A =


LCk1 − L

Ck
9 xCkp LCk2 − L

Ck
10 x

Ck
p LCk3 − L

Ck
11 x

Ck
p

LCk5 − L
Ck
9 yCkp LCk6 − L

Ck
10 y

Ck
p LCk7 − L

Ck
11 y

Ck
p

LCl
1 − L

Cl
9 x

Cl
p LCl

2 − L
Cl
10x

Cl
p LCl

3 − L
Cl
11x

Cl
p

LCl
5 − L

Cl
9 y

Cl
p LCl

6 − L
Cl
10y

Cl
p LCl

7 − L
Cl
11y

Cl
p

.
(8)
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FIGURE 3. Point matching of stereo images using 2D-DIC. Portions of a speckled cylindrical object imaged by
cameras positioned with an angular displacement of 30◦ between them are shown. The corresponding image
points detected using DIC inside the ROI are shown on the reference (left) and current (right) images, with
colors depicting the values of the correlation coefficient.

Then, the least-squares solution for P is obtained by

P =
[
ATA

]−1
ATU . (9)

Consequently, a 3D point cloud is obtained from each
stereo-pair. Since the coordinates of the control points on
the calibration are expressed in the global coordinate system
for all camera-pairs, all point clouds are automatically recon-
structed in the global coordinate system, without the need to
perform any additional coordinate transformation procedure.

Moreover, each set of N reconstructed points coordinates
[Xn,Yn,Zn] (n = 1, 2 . . .N ) on the calibration object, and the
associated true coordinates

[
X (t)
n ,Y

(t)
n ,Z

(t)
n

]
can be used to

calculate the reconstruction errors [1Xn,1Y n,1Zn] as

1Xn = Xn − X (t)n ; 1Yn=Yn − Y (t)n ; 1Zn = Zn − Z (t)n .

(10)

Then, the mean error εM and the root mean square (RMS)
error εR are defined as

εM =
1
N

√√√√√( N∑
n=1

1Xn

)2

+

(
N∑
n=1

1Y n

)2

+

(
N∑
n=1

1Zn

)2

;

εR =

√√√√ 1
N

N∑
n=1

(1Xn)2 + (1Yn)2 + (1Zn)2. (11)

F. SURFACE MERGING
The tessellation defined in step 2 is used here to form sets
of 3D triangular meshes. The meshes obtained from each
camera pair are independent, not connected to each other, and
may locally overlap. In order to construct a single continuous
and merged surface, the overlap between meshes needs to
be resolved and adjacent meshes should be stitched together.
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FIGURE 4. Surface merging example. (a) The green and blue 3D meshes were reconstructed from two adjacent camera-pairs. (b) The overlap regions are
identified, and faces are removed from the boundaries until the overlap is resolved and a minimum gap exist between the surfaces. The gap which needs
to be filled with new triangles is marked with a magenta line. (c) The gap is filled with new triangular faces by locally applying Delaunay triangulation,
using only vertices existing in the original data.

An example schematic for resolving the overlap and for
merging two adjacent surfaces is shown in Fig. 4.

To resolve the overlap, an algorithm was developed,
whereby redundant faces are iteratively removed from the
boundaries of overlapping regions until a user-defined mini-
mum gap exists between themeshes. The following heuristics
are employed to select which faces to remove:
1. The correlation coefficientCLS , representing the matching

quality of each vertex (removing vertices with poorer
correlation first).

2. The distance between the meshes in the overlap region
(removing faces having larger distance to the other mesh
first).

3. The difference in the local orientation between the meshes
in the overlap region (removing faces having larger angu-
lar displacement from the other mesh first).

4. A combination of 1, 2, and 3, with optional weights.
Once the overlap is resolved, as depicted in Fig. 4(b), the

meshes are merged by introducing new faces along the gap,
connecting original vertices from both meshes, as depicted
in Fig. 4(c). The algorithm uses only vertices which exist
in the original data. Introduction of new vertices which do
not originate from an actual measurement is not desirable,
since these vertices cannot be tracked in the deformed con-
figurations and cannot provide reliable displacement and
strain measurements. Moreover, keeping all the points and
re-meshing the overlapping regions is not preferred because
it results in a denser and often lower quality mesh, and might
result in a jagged surface in regions where the two surfaces
could not accurately merge. Stitching of the gap is performed
by locally applying Delaunay triangulation between the ver-
tices on the boundaries of the meshes, which maximizes
the minimum angle of the triangles and ensures that quality

triangles are formed. Figure 4 demonstrates how overlapping
triangular meshes are successfully merged using the original
vertices only, despite having different element sizes.

G. POST-PROCESSING
In this step, the 3D coordinates of the triangular mesh’s
vertices in the reference and current configurations are
used to derive the full-field displacement, deformation, and
strain. For each triangular element and for each config-
uration, the deformation gradient tensor F is calculated
using a variation of the triangular Cosserat point element
method [47], [48]. Assuming a homogenous deformation
field within each element, this method obtains the finite
(nonlinear) deformation field with the same spatial resolution
as the DIC measurement, and independently from adjacent
data points and numerical derivatives.

The reference configuration of a given triangular element
is denoted by the position vectors {P1,P2,P3} of its three
vertices, and the values of these position vectors in a current
configuration are denoted by

{
p1, p2, p3

}
. Moreover, the ref-

erence and current configurations are characterized by the
director vectors {D1,D2,D3} and {d1, d2, d3}, respectively,
defined as

D1 = P2 − P1;D2 = P3 − P1;D3 =
D1 × D2

|D1 × D2|

d1 = p2 − p1; d2 = p3 − p1; d3 =
d1 × d2
|d1 × d2|

D1 × D2 · D3 = 2A, (12)

such that D3 and d3 are unit vectors normal to the plane
of the triangle in its reference and current configura-
tions, respectively, and A is the triangle’s reference area.
Then, the reference reciprocal vectors

{
D1,D2,D3} are
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defined by

D1
=

D2 × D3

2A
; D2

=
D3 × D1

2A
;

D3
=

D1 × D2

2A
= D3, (13)

such thatDi ·Dj = δij , where δ
i
j is the Kronecker delta symbol.

Consequently, the deformation gradient tensorF is defined by

F =
3∑
i=1

d i ⊗ Di, (14)

where ⊗ is the tensor (outer) product. F transforms any
material line in the triangular element from the reference to
the current configuration, including the director vectors and
the principal directions, such that it satisfies

d i = FDi
ni = FN i. (15)

Next, the right and left Cauchy-Green deformation tensors
(C andB, respectively), and the associated Green-Lagrangian
and Eulerian-Almansi finite strain tensors (E and e, respec-
tively), are defined by

C = FTF; B = FFT

E =
1
2
(C − I) ; e =

1
2

(
I − B−1

)
, (16)

where I is the unity second order tensor. Moreover, the spec-
tral decompositions of these tensors are given by

C = λ21 (N1 ⊗ N1)+ λ
2
2 (N2 ⊗ N2)+ λ

2
3 (N3 ⊗ N3)

B = λ21 (n1 ⊗ n1)+ λ22 (n2 ⊗ n2)+ λ23 (n3 ⊗ n3)

E = E1 (N1 ⊗ N1)+ E2 (N2 ⊗ N2)+ E3 (N3 ⊗ N3)

e = e1 (n1 ⊗ n1)+ e2 (n2 ⊗ n2)+ e3 (n3 ⊗ n3) , (17)

where λi are the principal stretches, N i and ni are the prin-
cipal directions in the reference and current configurations,
and Ei and ei are the principal Green-Lagrangian and Euler-
Almansi strains, respectively. Since each triangular element
is planar, one of the principal stretches must equal to one
(e.g. λ3 = 1), and one of the principal strains must equal
to zero (e.g. E3 = e3 = 0). Furthermore, their associated
directions are normal to the triangle’s surface (N3 = D3 and
n3 = d3). It is noted that although strains are more commonly
presented, stretches are often preferred in the case of large
deformation, since their definition is unique, while numer-
ous strain definitions exist besides the ones described above
(e.g. Seth-Hill class strains [49], [50] andBažant strains [51]).

Furthermore, the dilatation J , which corresponds to the
relative surface area change of the triangle, is given by

J = det (F) = λ1λ2. (18)

When the deformation includes large motion, it is often
desirable to subtract the average RBM such that the defor-
mation can be visualized without large movement of the
object. Therefore, the average RBM is estimated for each

configuration using the least-squares minimization approach
(rigid superimposition) [52], [53].

MultiDIC offers functions for the dynamic visualization
of the displacements, stretches and strains (magnitude and
direction), surface area change, as well as additionalmeasures
such as the correlation coefficient and the color texture from
the original images.

H. EXPERIMENTAL SETUP
A360◦ stereo camera rig was designed and fabricated, to hold
up to 30 cameras (Raspberry Pi CameraModule V2, featuring
a Sony IMX219 8-megapixel 3.674 × 2.760 mm2 CMOS
sensor, connected to Raspberry Pi Zero-w) in a 700 mm
diameter circle, as shown in Fig. 5. The objects to be imaged
were placed in the center of the circle where it could be uni-
formly illuminated by circular arrays of flexible LED strips.
All cameras were connected through an Ethernet hub and
synchronously controlled using a PC. For the experiments
described in this paper, twelve cameras were placed coaxially,
resulting in twelve stereo-pairs with an angular displacement
of 30◦, such that the distance between each pair of contigu-
ous cameras was about 181 mm. This stereo-angle is small
enough to provide both a sufficient overlapping portion and
an acceptable level of distortion between image-pairs, and
at the same time large enough to allow for accurate out-
of-plane displacement measurements [19], [20]. The system
was very low-cost (<$1,000 total, including 12 cameras,
cables, LEDs, Ethernet hub, power supplies, and building
materials for the rig). A 3D calibration object was prepared
by accurately lathing a 250 mm long, 114 mm diameter alu-
minum cylinder, to achieve a uniform diameter throughout the
cylinder’s length. This cylinder was then wrapped in a white
adhesive paper with a printed grid pattern of black square dots
(4 mm by 4 mm squares, 12 mm spacing), as shown
in Fig. 5(a).

I. METROLOGICAL PERFORMANCE ASSESSMENT
To evaluate the errors associated with stereo calibration inde-
pendently of the DIC process, an experiment was performed,
whereby the 3D positions of the centroids of the black dots
on the calibration object were analyzed before and after
a 5 mm displacement was applied with a motorized linear
stage (Zaber Technologies A-LSQ075B-E01, max 0.5 µm
microstep error), as shown at the bottom of the cylinder
in Fig. 5(a), and the in Fig. 5(d). The reconstructed 3D points
were then superimposed into their reference positions by
estimating the optimal RBM between them. The Euclidian
distances between corresponding points represent the stereo
calibration errors.

The next set of verification experiments involved a
3D speckled test object which was prepared by applying an
adhesive paper with a speckle pattern (black 1.4 mm circles
printed in a random pattern on white paper) to the aluminum
cylinder (see Fig. 3). The cylinder’s surface was imaged using
the camera rig and analyzed using MultiDIC. The perfor-
mance of the complete 3D-DIC algorithm and experimental
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FIGURE 5. Experimental setup. (a) The 360◦ rig holding 12 Raspberry Pi camera units, one of which is shown enlarged
in (b). Each pair of adjacent cameras [C1, C2], [C2, C3] . . . [C12, C1], constitute a stereo-pair (P1, P2 . . .P12). The
calibration object is placed at the center of the rig and illuminated using flexible LED strips, which are shown enlarged
in (c). A motorized translation stage (d) was placed under the calibration object for the validation experiments.

system was evaluated by analyzing the accuracy of the recon-
structed shape, the merging error between adjacent camera-
pairs, the displacement error, and the strain error, as detailed
below.

The accuracy of the shape measurement was evaluated
by comparing the fitted diameter of the reconstructed cylin-
der to the diameter measured using a large-capacity caliper
(±0.01 mm accuracy). Next, the merging errors between sur-
faces reconstructed by different camera-pairs were evaluated
by reconstructing a portion of the surface visible by three
adjacent cameras (such as the overlapping region illustrated
in Fig. 1). The center camera (C2) was defined as the ref-
erence camera for the two pairs: [C2,C1] and [C2,C3], such
that the same reference point grid was used for both pairs. The
3D point clouds reconstructed by the two camera-pairs should
theoretically be identical. Therefore, any distance between
them represents a merging error.

Next, the speckled cylinder was translated using the motor-
ized linear stage, in 10 steps of 0.1 mm increment, and

the displacements errors were calculated by comparing the
displacements measured using 3D-DIC and those measured
using the stage. Moreover, the 3D strains, which should the-
oretically equal to zero, were analyzed to evaluate the overall
accuracy of the strain measurement.

Finally, to demonstrate the capability of the proposed
methods to measure in-vivo shapes and deformations, the sur-
face of the lower limb of a human subject (healthy 34 y.o.
female) was measured. A custom speckling stamp was made
by laser-engraving a rubber sheet with the same speckle
pattern described above. A uniform layer of white temporary
tattoo ink (ProAiir, ShowOffs Body Art LLC., USA) was
applied to the skin surface to enhance contrast and to create a
homogenous background. Next, a speckle pattern was applied
with black temporary tattoo ink (ProAiir, ShowOffs Body
Art LLC., USA) using the stamp. The lower leg of the sub-
ject was imaged while the subject performed unconstrained
ankle plantarflexion (from the most dorsiflexed position to
the most plantarflexed position). The experimental procedure
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FIGURE 6. Stereo calibration error analysis. Two sets of calibration object images (before and after 5 mm displacement) were analyzed.
(a) The 3D positions of the control points on the calibration object, as reconstructed in the first set (black hollow circles), and their
positions measured in the second (displaced) set superimposed into the first set (plotted with colors depicting the absolute distance
between them). (b) The error statistics for all the control points, obtained with and without distortion correction, in the x, y, and
z directions, and the error magnitude (Mgn). The boxplots report the median (red line), 25th and 75th quartiles (blue box), and outliers
(red crosses). The green dashed line represents zero error, and the magenta dashed line represents the RMS error.

was approved by the Committee on the Use of Humans
as Experimental Subjects of the Massachusetts Institute of
Technology (COUHES protocol: 1101004280).

All the DIC analyses were performed using 20 pixels
subset radius and 10 pixels step size at a ∼10 pixel/mm
ratio. All the results represent raw data. No kind of filter-
ing or smoothing procedures were applied.

III. RESULTS
A. CAMERA INTRINSIC PARAMETERS AND
3D RECONSTRUCTION ERRORS
Table 1 reports the mean ± standard deviation (STD) of
the intrinsic parameters calculated using the BA method
for the twelve cameras. For each camera, 50 images of a
flat checkerboard pattern with 15 × 20 black and white
10× 10 mm2 squares were acquired. The number of signifi-
cant digits for each parameter is based on its estimation error,
as computed by the BA algorithm. The distortion parameters
calculated using the original images were used for correcting
the distortion on the detected image points. The corrected
points were then used again for estimating the parameters.
Therefore, the distortion parameters in the right column of
Table 1 represent the values of the residual distortion.

TABLE 1. Statistics of the estimated intrinsic parameters.

The values of the 3D reconstruction errors εM and εR,
obtained for all camera-pairs using DLT with and without
distortion correction, are reported in Table 2.

B. STEREO CALIBRATION TEST
Fig. 6 reports the stereo calibration errors, represented by
the Euclidian distances between corresponding points of the
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FIGURE 7. 3D-DIC results of a rigid speckled cylinder. (a) Merging error depicted as the Euclidian distance between the points reconstructed by two
adjacent camera-pairs (such as the overlapping region in Fig. 1); (b) Results from a set of 10 imposed translations (d0) with a 0.1 mm increment.
The measured displacements (top), displacement errors (center) and Green-Lagrangian strain magnitude (bottom) are plotted as error bars which
represent ± one STD over all data points; (c) The Green-Lagrangian strain magnitude distribution plotted on half of the cylinder, for the 0.5 mm
displacement step.

TABLE 2. Reconstruction errors for all camera-pairs.

calibration object measured in two configurations and rigidly
superimposed. Fig. 6(a) illustrates the error magnitudes of
individual points, and Fig. 6(b) summarizes the statistics of
the 3D components of the errors obtained with and without
distortion correction. The mean errors were very small both

with andwithout distortion correction (∼ 10−14 mm) , but the
RMS of the error magnitudes was smaller when the distortion
correction was employed (0.017 mm) than when it was not
employed (0.026 mm).

C. 3D-DIC TESTS OF A RIGID SPECKLED OBJECT
The errors reported in this section are associated with the
entire 3D-DIC procedure. The correctness of the shape mea-
surement was evaluated by comparing the fitted diameter
of the reconstructed cylinder to the 114.00 mm diameter
(including the adhesive paper) measured using the caliper.
The mean ± STD of the diameter measured using 3D-DIC
was 113.93± 0.27 and 113.91± 0.56 mm, with and without
distortion correction, respectively.

The merging errors between surfaces reconstructed by two
different camera-pairs are shown in Fig. 7(a). The recon-
structed points are plotted with colors depicting the mag-
nitude of the Euclidean distance between the two sets. The
mean ± STD of the errors were 0.06 ± 0.03 mm and
0.08 ± 0.06 mm, with and without distortion correction,
respectively. As expected, the distortion correction improved
the merging accuracy mostly in the ROI’s upper and lower
ends, corresponding to the marginal areas of the images.

The displacements and displacement errors are summa-
rized in Fig. 7(b) (top and center) as a function of the
imposed displacement. Fig. 7(c) shows the strain magni-
tude distribution over half of the cylinder, for the 0.5 mm
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FIGURE 8. In-vivo body segment test – Correlation maps. Sub-figures (a)-(d) show images from adjacent cameras in the reference (a, b) and
deformed (c, d) configurations. The ROI is plotted with colors depicting the correlation coefficient, and zoomed-in portions are enlarged in insets.

displacement step, while the statistics for all displacement
steps are summarized in Fig. 7(b) (bottom).

D. 3D-DIC IN-VIVO TEST OF A DEFORMABLE
BODY SEGMENT
Illustrative results from the 3D-DIC in-vivomeasurement are
shown in Fig. 8. The full surface of the calf region of the
lower leg was imaged five times while the subject performed
ankle plantarflexion. Results of the first and the last configu-
rations are illustrated in Figs. 8 and 9. Fig. 8 illustrates the
2D-DIC results for one stereo-pair. Fig. 8(a) shows the
reference image, on which the point grid was defined.

The images in Fig. 8(b-d) represent deformed states of (a).
Note that the image distortion with respect to (a) is due
to perspective in (b), due to deformation in (c), and due
to perspective and deformation in (d). Fig. 9 plots the full
surface reconstructed by 12 cameras in the reference (a) and
deformed (b and c) configurations, which corresponds to
the same configurations shown in Fig. 8. The colors on the
surface depict the local values of the first and second princi-
pal stretches, and the black lines represent their directions,
with lengths proportional to the stretch magnitude. Since
(a) shows the reference configuration, the stretch values equal
to one by definition, and no stretch direction are shown.
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FIGURE 9. In-vivo body segment test – Deformations. The full 360◦ surface reconstructed from 12 cameras is shown in its reference
(a) and deformed (b, c) configurations. The face colors depict the principal stretch values λ1 (b) and λ2 (c), and the black lines represent
the principal directions N1 (b) and N2 (c). Lighting was added to better visualize the surface contours.

The deformation fields are visibly smooth, despite the
facts that it was computed independently on each triangu-
lar face and that no smoothing or filtering was applied to
the raw data, contrarily to common DIC strain calculation
schemes [1], [54]. Animated figures plotting the dynamic
values of the displacement magnitude, the Lagrangian strain
magnitude, the principal stretches, the surface area change,
and the effect of RBM subtraction, are provided in the online
Graphical Abstract video.

IV. DISCUSSION
This paper describes the principal algorithms implemented
in MultiDIC, a newly developed 3D-DIC MATLAB tool-
box for multi-camera systems. The methods and system
were designed to overcome some of the limitations involved
with the calibration and data merging techniques commonly
used in 3D-DIC. One primary advantage of MultiDIC is
that it allows for a simple calibration process even when
using a large number of cameras, without losing the ability
to compensate for lens distortions. Consequently, the new
method offers the flexibility of modifying the camera poses
during experiments without requiring substantial additional
re-calibration time.

The metrological capabilities of MultiDIC were vali-
dated by several experimental tests using a low-cost multi-
camera setup. The errors associated with the proposed
stereo calibration method were examined independently of
the DIC procedure, by analyzing the 3D positions of the
calibration object’s control points in two configurations.
The errors when using distortion correction procedure were
0.000 ± 0.017 mm (STD and RMS 35% lower than with-
out distortion correction). These errors are relatively low

considering the large size of the calibration object, and the
cameras’ large FOV and very low price.

Next, the metrological errors associated to the entire multi-
view 3D-DIC procedure were evaluated by measuring the
shape, displacement and strain error with a speckled cylindri-
cal object. The shape measurements revealed errors smaller
than 0.01 mm (<0.1%) in obtaining the cylinder’s diameter.
The merging errors and displacement errors were also found
to be in the order of 0.01 mm, which is comparable to the
stereo calibration errors. Furthermore, the strains measured
as a result of RBM were in the range of 10−3, which is
sufficiently accurate in our case, and is acceptable in most
biomechanical applications, in which large deformations are
involved. Moreover, this strain error is relatively low con-
sidering that, contrarily to commonly adopted DIC strain
calculation schemes, no kinds of filtering and smoothingwere
applied to the raw data.

The MultiDIC toolbox and camera rig were utilized for in-
vivo measurements to further illustrate capabilities of the
system in clinical settings. It was shown that the dynamic
behavior of the entire surface of the shank segment of a
human subject can be reconstructed, that a smooth strain field
can be obtained from the raw data, and that large deforma-
tions can be tracked. The results in Fig. 9 and in the online
Graphical Abstract illustrate how the subject’s lower limb
shape changes due to the contraction of the calf muscles
and the plantarflexion of the ankle joint. This test served as
a proof of principle, and was not intended to provide any
physiological or biomechanical finding.

The main limitation in this study is that the metrologi-
cal performance tests were performed using very low-cost
camera modules. Therefore, the accuracies reported here are
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adequate only for certain applications. However, the entire
procedure is expected to outperform when high quality cam-
eras and lenses are used. The use of low-cost hardware was
motivated by the large number of cameras required, and was
encouraged by previous studies which demonstrated the fea-
sibility of using consumer-grade cameras [16], [55]. Future
research could determine the performance of MultiDIC using
high quality optics. Another limitation is that only one multi-
view setup and calibration object was used in this study.
However, the toolbox can be easily adapted to any multi-view
setup, as long as a calibration object with a proper geometry
is used.

It is noted that additional algorithms for 3D-DIC exist
(e.g. [12]–[17], [56]), some of them offer significant
advances. Moreover, an increasing number of DIC-related
open-source tools is seen lately (e.g. [17], [38], [57]–[59]).
In order to make these techniques more accessible and the
results more reproducible, researchers are encouraged to
extend the functionality of the toolbox by implementing addi-
tional algorithms as contributors [30], [60].

Future research by the authors will incorporate the tools
established here in biomechanical studies, whereby the
measured dynamic shapes of the residual limbs of lower-
limb amputees will be used to inform the computational
mechanical design of subject-specific optimized prosthetic
sockets [61]. Moreover, the subject-specific soft-tissue
mechanical properties will be evaluated, by analyzing
simultaneous force/torque measurements and surface defor-
mation measurements of the entire residual limb during
in-vivo indentations. Then, the hyper-elastic and visco-elastic
properties will be characterized using inverse finite element
analysis [62], [63].

V. CONCLUSION
This paper presents a newly developed open-source
MATLAB toolbox for 3D-DIC, which implements algo-
rithms specifically tailored for multi-camera applications,
which are often desirable in biomechanics. Several verifica-
tion tests have confirmed that accurate measurements can be
achieved using MultiDIC and low-cost hardware. The devel-
opment of a user-friendly, high-quality and freely available
software, will greatly increase the availability of 3D-DIC to
the scientific community. The capabilities to efficiently mea-
sure in-vivo skin shape and deformation were demonstrated,
and future research will utilize these methods in various
biomechanical studies.
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