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ABSTRACT In the era of smart cities, there are a plethora of applications where the localization of indoor
environments is important, from monitoring and tracking in smart buildings to proximity marketing and
advertising in shopping malls. The success of these applications is based on the development of a cost-
efficient and robust real-time system capable of accurately localizing objects. In most outdoor localization
systems, global positioning system (GPS) is used due to its ease of implementation and accuracy up to five
meters. However, due to the limited space that comes with performing localization of indoor environments
and the large number of obstacles found indoors, GPS is not a suitable option. Hence, accurately and
efficiently locating objects is a major challenge in indoor environments. Recent advancements in the
Internet of Things (IoT) along with novel wireless technologies can alleviate the problem. Small-size
and cost-efficient IoT devices which use wireless protocols can provide an attractive solution. In this
paper, we compare four wireless technologies for indoor localization: Wi-Fi (IEEE 802.11n-2009 at the
2.4 GHz band), Bluetooth low energy, Zigbee, and long-range wide-area network. These technologies are
compared in terms of localization accuracy and power consumption when IoT devices are used. The received
signal strength indicator (RSSI) values from each modality were used and trilateration was performed for
localization. The RSSI data set is available online. The experimental results can be used as an indicator in
the selection of a wireless technology for an indoor localization system following application requirements.

INDEX TERMS Indoor localization accuracy, power consumption, Internet of Things, RSSI, WiFi, Blue-
tooth low energy, Zigbee, LoRaWAN.

I. INTRODUCTION
By integrating technological advancements into buildings,
a significant amount of information can be delivered to
those who inhabit them in order to improve their experience.
Through the development of the Internet of Things (IoT), new
low cost and energy efficient devices such as wearables and
Bluetooth Low Energy (BLE) beacons have been developed.
These devices are capable of communicating with the IoT
to allow for smart buildings to poses a greater amount of
control that could never have been achieved before [1], [2].
In IoT applications, it is imperative that sensor data should
not only be obtained, the location of the sensor node inside of
the building also needs to be known in order for the informa-
tion produced to be useful [3]–[5]. If a centralized server is
unaware of the device’s positions, the information produced
by those device becomes irrelevant and their limited resources
are wasted. In order to increase efficiency and improve the

experience of those who reside in smart buildings, it is
imperative that all devices are able to efficiently determine
their location in real-time with minimal knowledge of their
surroundings. To determine a position, indoor localization is
often performed.

Indoor localization is a system that is used to locate
objects or devices inside an environment where Global Posi-
tioning System (GPS) cannot be used. GPS is often used in
outdoor localization systems as it is the simplest method.
However, it consumes a large amount of energy and can be
expensive to implement for every node in a large network [6].
Due to a dependency on Line-of-Sight (LoS) between GPS
satellites and receivers, GPS cannot be used indoors. Addi-
tionally, GPS only provides a maximum accuracy up to
five meters [7]. This may be suitable outdoors, where there
is plenty of space, but indoors this is not feasible due to
limitations in the size of the environment. Therefore, when
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performing localization indoors, an accuracy of less than one
meter is required for a proper localization system. Hence,
other methods need to be used in order to determine a device’s
location [8]–[10].

Designing an indoor localization system has many uses in
a variety of areas [11], [12]. Using indoor localization not
only provides the added benefit of safety and security, but is
also able to improve efficiency in the working environment.
One example is in hospitals, where indoor localization can be
used for tracking patients [13]. Doctorswould be able to know
exactly where a patient is located inside the building without
needing to provide constant supervision. Another example
is in emergency situations, where first responders could use
indoor localization to help quickly guide them to anyone who
is in distress without needing to know the exact layout of the
building [14].

Due to the small size of a majority of IoT devices, their
hardware is often quite limited. They contain low stor-
age, minimal processing power, and very basic communica-
tion capabilities. Therefore, any localization algorithms that
are used need to accommodate to the capabilities of these
devices. In order for an indoor localization system to be
successful, multiple targets will need to be tracked at once,
while continuously updating when any targets are added,
moved, or removed from the system.

Unfortunately, indoor localization suffers from a larger
number of complications that are not present when perform-
ing localization outdoors. For instance, there are many more
obstacles indoors, including furniture, walls, and people,
which can reflect the signals produced, increasing multipath
effects [7], [8], [15]. There are also a large number of wireless
electronic devices utilizing WiFi and BLE that are accessing
the medium and transmitting information, which could pro-
duce noise that would affect the performance of the system.

When performing indoor localization, a number of differ-
ent wireless technologies have been proposed and tested in
literature. The most common technologies are: WiFi, Blue-
tooth, Radio Frequency Identification (RFID), Ultra-Wide
Band (UWB) and cellular [8]. However, each of them have
their own advantages and disadvantages when used for local-
ization. Due to the high availability of access points that are
now found in buildings,WiFi has become the simplest option,
as any additional hardware that is needed is minimal. Unfor-
tunately, WiFi access points are often placed to maximize
signal coverage, not for localization. WiFi also consumes a
large amount of power, which if used for tracking would
quickly deplete a device’s battery, which is not ideal for most
localization systems [16]. With the recent emergence of BLE
and beacons, it has becomemore feasible to place inexpensive
beacons around an environment than it is to rearrange existing
hardware and use that for localization [17], [18]. On the other
hand, the main disadvantage of using beacons is that most
require batteries to function. Once the battery is depleted,
the beaconwill no longer function and either the beacon or the
battery it contains will need to be replaced. As different as
all the wireless technologies seem to be, they also contain

a commonality in that they all are able to follow the same
positioning algorithms if required.

So far, a standard model for indoor localization has not
been developed due to obstacles, floor layouts, and reflec-
tions of signals that can occur [8]. Some of the most com-
mon models that are used in localization systems are: Angle
of Arrival (AoA), Time of Arrival (ToA), Time Difference
of Arrival (TDoA), and Received Signal Strength Indicator
(RSSI). AoA systems use an array of antennae to determine
the angle, from which the signal propagated [8], [19], [20].
Triangulation is then used along with the geometric princi-
ple of angles of triangles to determine the position of the
receiver. AoA techniques often require complex hardware
and must be calibrated in order for an accurate position to
be obtained. ToA is one of the most accurate techniques
available. Through the use of synchronized clocks, the signal
propagation time between the transmitter and receiver can be
determined [19], [20]. ToA uses time stamps embedded in
transmitted packets along with the received time to determine
how far the packet had to travel to reach the destination.
However, when using a ToA set up, devices in the network
need synchronized clocks, which requires additional hard-
ware, thus increasing the cost of the system. TDoA is similar
to ToA in that it requires devices to have synchronized clocks,
but it uses the signal propagation time to multiple receivers to
find the absolute signal propagation time [20]. The distance
can then be calculated by the differences in arrival time of
the packet to the different receivers. RSSI is one of the most
popular and simplest methods for localization [21]–[23].
The main reason for its popularity is that finding the RSSI
requires no additional hardware and can be found on any
device utilizing almost any type of wireless communication
technology. RSSI works by measuring the signal strength of
packets on the receiver. It is often used for finding the distance
between the transmitter and the receiver, since the signal
strength decreases as the signal propagates outward from the
transmitter. Since propagating signals are greatly susceptible
to noise in the environment, RSSI often leads to inaccurate
values that can cause errors in the positioning system.

In this paper, through extensive experimentation, a compar-
ison between the accuracy and power consumption of WiFi,
BLE, Zigbee, and LoRaWAN is performed. The wireless
technologies were chosen based on factors such as popularity,
public availability, and use in the IoT. Zigbee is a popular low-
power technology, often used in IoT applications. BLE and
WiFi are both heavily present in society. Most devices are
able to connect with at least one or both of these, allowing a
network of devices to be created. LoRaWAN is a novel tech-
nology that is not as prevalent as the previous technologies
mentioned. Transmitting at 915MHz and sacrificing high data
rates, LoRaWAN nodes can reach distances of 15000 meters,
which can greatly limit the number of nodes required in order
to cover an environment. All tests were performed using a
trilateration technique where the RSSI values were utilized in
determining the approximate distances between the transmit-
ting nodes and the receiver. Two different environments were
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used for experimentation in order to compare results accross
multiple scenarios.

According to experimental results:
• RSSI-based indoor localization techniques are affected
by the environment. However, some wireless technolo-
gies are more prone to environmental changes than oth-
ers.

• BLE is a promising, low power, and cost efficient solu-
tion for IoT localization in small crowded areas, due
to its high localization accuracy in the two examined
environments.

• WiFi is a reliable technology that can also be used for
localization due to its high availability. However, WiFi
consumes the most power out of all the examined tech-
nologies.

• LoRaWAN has a great transmission range and low
energy requirements that are useful for IoT localization
in large areas, but it was the worst in terms of perfor-
mance for indoor localization.

• Zigbee has a similar low energy requirement to
LoRaWAN, while its performance is much higher in the
two examined environments.

The RSSI dataset that was built from the experiments is
available online [24].

The rest of this paper is organized as follows: the related
work is reviewed in Section II, followed by a brief description
of the wireless technologies in Section III. The localization
system is presented in Section IV. The experimental method-
ology and setup are discussed in Section V along with the
results in Section VI. Section VII concludes this work.

II. RELATED WORK
In recent years, many approaches have been developed in
an attempt to create an efficient indoor localization systems.
An ideal system would be functional in numerous environ-
ments and be able to track a large number of targets with
minimal error. To determine the optimal wireless technology
for indoor localization, a number of comparisons between
existing technologies have been performed in literature.

In [25], a comparison between BLE and WiFi is demon-
strated while running on an Android smartphone. Experi-
ments were performed utilizing trilateration in both outdoor
and indoor environments. Testing also included using LoS
and non-LoS conditions andwere comparedwith propagation
characteristics to determine which technology would be pre-
ferred in a localization system. To find the distance between
nodes, RSSI measurements were used along with a lognormal
attenuationmodel. The results demonstrated that BLE ismore
accurate than WiFi when used for localization. It was found
that the BLE propagationmodel was able to better relate RSSI
values to distances compared to WiFi, thus creating a system
with better accuracy. While the power consumption of the
different technologies was noted, no actual power data was
found on the devices utilized.

The work introduced in [26] also uses an RSSI based
trilateration approach to compare the wireless technologies

ISM868 and Zigbee. Similar to the experiments performed
in [25], tests were done in both outdoor and indoor environ-
ments using the path loss model to convert measured RSSI
values to a distance. Results concluded that while both tech-
nologies produced poor results when used for localization,
Zigbee did perform the best of the two. However, a portion
of the error could be attributed to the hardware components
that were selected in the comparison. To test using ISM868,
a fall detector was used as the transmitting device. Since the
fall detector is a hardware device that would never be used
for localization purposes, it is reasonable that it would have a
poor performance.

RFID is also a wireless technology that has been experi-
mented with to determine its accuracy for localization pur-
poses. In [27], a comparison is performed between passive
RFID and BLE for locating objects in outdoor environments.
Common to the other papers, RSSI is used along with the
path loss model to perform trilateration in locating an object.
Experimental results demonstrated that BLE has a much
greater accuracy than RFID, as it can better identify the
object that is being located with a higher accuracy. While
having a high accuracy, the proposed system only used two
devices instead of the usual three that are normally required
for properly determining a position in a 2D space.

In this paper, we expand on these works and addition-
ally compare the wireless communication technologies WiFi
(2.4GHz band), BLE, Zigbee, and LoRaWAN. In addition,
prototypes are used that are capable of testing each of the
different technologies. Comparisons between the different
technologies include the accuracy and the power consump-
tion of the devices used.

III. WIRELESS TECHNOLOGIES
When selecting a wireless technology, factors such as the
transmission range, radio coverage, bitrate, as well as the
battery life, and the power requirements should always be
considered for a given application. In this section, the four
previously mentioned IoT wireless communication technolo-
gies that can be used for indoor localization are discussed.

A. IEEE 802.11N - WIFI
First released in 1997 using the IEEE 802.11 standard, WiFi
has become one of the most commonly used wireless tech-
nologies [28]. WiFi is mainly used in Wireless Local Area
Networks (WLAN) through the use of the 2.4GHz or 5GHz
frequency bands. In order to connect to a WLAN, a wireless
access point is required.

IoT devices make use of WiFi due to its wide availabil-
ity in many areas. WiFi also has high security and privacy
standards. However, WiFi networks are deployed for com-
munication, so while connectivity and data rate are a high
priority, localization is not their main concern. At the same
time, the wide availability of WiFi can pose some challenges
in the near future. As the number of the devices that have
access to the medium increases, it becomes overcrowded and
interference problems may arise.
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B. BLUETOOTH LOW ENERGY - BLE
Introduced by Bluetooth Special Interest Group in 2010,
Bluetooth Low Energy (BLE) was designed for applications
that do not require large amounts of data transfer while
reducing the power consumption and cost of the devices [29].
In comparison with traditional WiFi, BLE has much lower
energy requirements, hence, its bitrate is also lower.

BLE is ideal for short range periodic transmission of small
amounts of data. The low power consumption of BLE has
led to a number of new devices in the IoT. The number of
applications utilizing BLE has also greatly increased over the
past several years. New devices have been developed, with
applications in fields such as healthcare, sports, fitness, and
security, to home entertainment. One type of device that has
been created is known as a beacon [30]. Beacons are small,
inexpensive devices which periodically transmit packets of
information to all nearby BLE enabled devices.

C. ZIGBEE - IEEE 802.15.4
Zigbee is a communication protocol known for its simplicity,
low-power usage, and secure networking capabilities [31].
Zigbee is based on the IEEE 802.15.4 standard, which
defines the operating point for wireless personal area net-
works (WPANs) with low-data rate antennas. Devices using
IEEE 802.15.4 are able to control the flow of information and
prevent any loss of data by using carrier-sensemultiple access
with collision avoidance (CSMA/CA). Devices using Zigbee
are designed with features such as link quality and energy
detection, which allow for measurements such as the RSSI to
be easily determined.

Zigbee has a greater range than BLE as it can transmit
farther by using a mesh network of relay nodes to reach a
destination. Zigbee is commonly used for WSN localization
due to its low power requirements. However, extra hardware
is required which makes it less popular among current IoT
users.

D. LORAWAN
Originally developed by the LoRa Alliance, the Long Range
Area-Wide Network (LoRaWAN) protocol transmits at a low
frequency of 915MHz [32]. The benefits of using a frequency
lower than 2.4GHz is that the larger wavelength allows for
signals to pass through walls and obstacles without any
issues. This in-turn also allows for signals to reach much
further distances. Since the 915MHz frequency utilized by
LoRaWAN is relatively vacant, it does not interfere with any
other transmitting devices therefore, nodes communicating
using it are not as susceptible to noise.

LoRaWAN is more secure than other wireless technologies
for IoT since it can transmit encrypted data at a different
frequency. Its wide transmission range makes it ideal for a
variety of smart city programs. The disadvantage of using
such a low frequency is a reduction in the data rate that
can be transmitted between devices. However, for indoor
localization the data rate is not an issue as the nodes are

TABLE 1. Wireless technologies characteristics.

not transmitting large amounts of information. Due to the
915MHz band being unlicensed, it is free for anyone to use
for their personal networking needs. Cost is often an issue
when using LoRaWAN as large antennas and extra hardware
are required to access the medium. With LoS, LoRaWAN
is effective for long range outdoor localization, but in short
range indoor localization can pose some challenges.

E. COMPARISON OF WIRELESS TECHNOLOGIES
The characteristics of the four technologies related to indoor
localization are shown in Table 1. When it comes to selecting
a wireless communication technology, the transmission range
is an important factor that needs to be taken into account.
By selecting devices that provide a higher transmission range,
a fewer number of devices would be required to cover an
area. The ranges listed in Table 1 are those given on the
data sheets for each of the modules when LoS is available
between devices and they are set to maximum transmit power.
If obstructions are placed between the devices, the range
would decrease. In terms of transmission range, LoRaWAN
has the greatest potential, while the other three technologies
have similar capabilities.

The bitrate is another factor that can also affect localiza-
tion. The higher the amount of data that can be exchanged
between devices, a more accurate localization can take place.
Although WiFi has the largest bitrate, the other three tech-
nologies provide a rate sufficient enough for basic data
exchange to occur and for localization to take place.

The power requirement is among one of themost important
factors when selecting a wireless technology, especially for
IoT devices. The power consumed by a device is affected by
the transmission power and interval which in-turn affect the
lifespan of the device. Based on the maximum transmission
range, it is clear that LoRaWANhas the lowest power require-
ments overall. This is followed by BLE, which was designed
for low power usage in IoT devices. Zigbee, which was
initially designed forWSN, also has low power requirements,
while WiFi has the worst performance consuming a large
amount of power.

Another factor that should be considered when it comes
to IoT is the device size and the cost of the neces-
sary hardware. WiFi and BLE tend to have small sizes
and a lower cost [33], [34]. While devices using Zigbee
are usually larger and require special antennas [35], [36].
LoRaWAN also requires specific hardware to access the fre-
quency band hence, it tends to be more expensive. However,
the final cost can vary based on application requirements and
specifications.
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IV. LOCALIZATION SYSTEM
A wireless indoor localization system should take advantage
of signal characteristics and use techniques to provide accu-
rate location information. In this section, the signal features,
the indoor positioning technique and the performance metrics
used to evaluate the system are discussed.

A. RECEIVED SIGNAL STRENGTH INDICATOR
Received Signal Strength Indication (RSSI) is one of the most
commonly used characteristics for indoor localization. It is
based onmeasuring the power present in a signal sent from an
access point to a client device or vice-versa. As radio waves
attenuate according to the inverse-square law, the distance
can be approximated based on the relationship between the
transmitted and received signal strengths, as long as no other
errors contribute to incorrect measurements. The combina-
tion of this information with a propagation model can help to
determine the distance between the two devices.

It can be assumed that as the number of available access
points increases, a greater amount of information can be
collected. Hence, the accuracy could be increased if relevant
information is obtained. This, however, also works as a trade-
off. An increase in the number of access points would increase
the interference between different signals. A key challenge in
wireless localization systems is that the range measurements
are often associated with errors. RSSI techniques are among
the cheapest and easiest methods to implement, but they
do not provide the best accuracy. Filtering is necessary to
improve system accuracy using RSSI-based localization.

B. TRILATERATION
Trilateration is a model-based technique that is able to deter-
mine the 2D position of an object on the basis of the dis-
tance from three reference points along with the location of
those points. To calculate using trilateration, three transmit-
ting nodes placed in known locations along with a receiver
are required. The transmitting nodes are set to continuously
broadcast packets. Doing this allows the receiver to obtain
any transmissions that take place over the medium and record
the RSSI values of the packets. The RSSI values can then
be converted to a length, which can provide the estimated
distance between the nodes. To relate the determined RSSI
values to a distance, the path loss model [37] was used, which
can be seen here:

RSSI = −10nlog10(d)+ C (1)

In this equation, n is the path loss exponent that varies
depending on the environment, d is the distance between the
transmitting and receiving devices, and C is a fixed constant
that accounts for system losses. The path loss model was
selected due to its ability to quickly determine a distance
based on the RSSI values. Using the path loss model also
allowed for environmental factors to be taken into account.
Since RSSI values can fluctuate based on interference in the
surrounding area, the path loss model can try to reduce some
of the error that occurs, as the path loss exponent needs to

FIGURE 1. General setup for trilateration.

be calculated for every environment before it can be used.
However, due to the power level of the signal emitted from
the transmitter not being precisely known, in many cases the
path loss equation cannot be inverted and other methods are
required to determine a distance [38], [39].

To determine a node’s position using trilateration, a num-
ber of assumptions need to be made, one of which is that
the location of all the transmitting nodes is known. To make
calculations easier, the coordinate frame of the nodes was
configured around a single node. This node was set up to be
stationary at the origin and the other nodes were normalized
with reference to that node.

The general layout of a trilateration experiment can be seen
in Fig. 1. In the setup, node A was set to be stationary at the
origin (0,0). Node B was placed along the positive horizontal
axis with respect to nodeA, giving a coordinate of (p,0). Node
C can then be placed with respect to nodes A and B in the
positive horizontal and vertical axis, producing a coordinate
of (q,r). Node D is the receiver, placed at the known coor-
dinates (x,y). The calculated distances to the receiver from
nodes A, B, and C are referred to as e, f, and g respectively,
which can be determined using the path loss model in Eq. (1).
Once the positions of the transmitters and the distances to the
receiver are determined, a new set of equations can be created.
Using the general formula of a circle, three equations (2), (3),
and (4), were determined corresponding to nodes A, B and C
respectively. By solving this set of equations and finding the
overlapping point, the position of the receiver can be found.

e2 = x2 + y2 (2)

f 2 = (x − p)2 + y2 (3)

g2 = (x − q)2 + (y− r)2 (4)

In these three equations, there are two unknowns that can
be determined-x and y-which correspond to the estimated
location of the receiver, and which should satisfy all three
equations. By using simple reduction techniques, a solution
can be determined. By subtracting Eq. (2) from (3), the vari-
able y can be eliminated. The remaining parameters are those
of the single unknown variable x, the distance between nodes
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A and B, and the distances between the transmitting nodes
A and B with the receiver node D. After some rearranging,
the final result can be seen here:

x =
e2 − f 2 + p2

2p
(5)

In order to produce a single solution for the y position of
the receiver node, another subtraction can be performed, this
time using Eqs. (2) and (4). After solving and rearranging,
the solution for y can be seen in Eq. (6). This equation is
entirely in terms of known parameters which can be substi-
tuted in to solve for a value.

y =
e2 − g2 + q2 + r2

2r
−
q
r
x (6)

C. ACCURACY AND POWER CONSUMPTION
To determine which wireless communication technology pro-
duces the most accurate results, the error between the actual
and the estimated position can be found using the Mean
Squared Error (MSE). The MSE is a calculation of the differ-
ence between two points to find the error. The formula used
can be seen here:

Error =
√
(xcalc − xreal)2 + (ycalc − yreal)2 (7)

In this equation, xcalc and ycalc is the calculated position,
and xreal and yreal is the actual position of the receiver. Once
the errors for all the tests performed are determined, an aver-
age can be taken that can then be compared to the other
wireless communication technologies to determine which
produced the most accurate results.

In addition to accuracy, the power consumption of the
wireless technologies was also determined. To measure the
power consumption of the different wireless communication
technologies, one of the transmitting nodes was connected to
aMonsoon PowerMonitor. TheMonsoon is capable of taking
5000 samples per second which provides a large set of data
defining the power usage of the device at all times. To do
this, theMonsoon could supply a voltage, measure the current
draw, and display the average power consumed. To measure
the power consumed only by the wireless technologies, two
powermeasurements were taken. The first when the node was
transmitting, the second when the node was idle. By subtract-
ing the two, the power consumed only by the transmitting
operation of the device could be found.

V. EXPERIMENTAL TESTBED
This section describes the experimental environment along
with the hardware components that were used and the path
loss model. To evaluate the different wireless technologies,
four indoor localization systems were built, one for each
wireless technology.

A. ENVIRONMENT
Each indoor localization system was tested in two rooms
with varying conditions to determine how different real-world
environments would affect the results.

FIGURE 2. Experimental environment 1.

FIGURE 3. Experimental environment 2.

The first environment used for experimentation was an
10.8m x 7.3m research lab, shown in Fig. 2. This lab was
selected due to the large size, the number of computers,
and the large quantity of WiFi and BLE devices that could
possibly cause any interference, making it a very noisy envi-
ronment for experimenting.

The second environment used was a 5.6m x 5.9m meeting
room, shown in Fig. 3. The meeting roomwas an ideal testing
area as it demonstrated conditions contrasting those in the
research lab. Themeeting roomwas amuch smaller space that
contained only tables and chairs. No devices were present in
the environment that could cause significant interference in
the area, creating a low-noise environment for testing.

B. EXPERIMENTAL METHODOLOGY
A set of tests was conducted to determine how accurate
the localization would be when performed over a range of
distances between the receiver and transmitters for all the
indoor systems.

All experiments were conducted in the evening to ensure
that a minimal amount of extra transmitting device would
be in the area, attempting to communicate using the same
medium.Due to the fact that RSSI values are prone to interfer-
ence, using a controlled environment would allow all the tests
performed to produce more consistent readings. To ensure
that an appropriate RSSI was used in the calculations rather
than one due to a spike in interference, for each of the
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FIGURE 4. Setup used for experiments.

testing points approximately 100 readings from each of the
transmitters were taken and averaged.

Overall, nine tests were performed in each of the environ-
ments. A variety of distances were used along with multiple
receiver locations to determine the accuracy of the wireless
technologies. A general overview of the experimental setup
created can be seen in Fig. 4.

To set up the experiments, a right angle triangle was created
between the nodes. Where the distance, d, between nodes A
and B, and B and C, was set to be equal. For our experiments,
the three distances that were selected for testing were at 1, 3,
and 5meters. The receiver was set to one of three positions: in
the center between nodes A and B (D1), in the center between
nodes A and C (D2), and in the centroid of the triangle (D3).
In both environments, nodes were placed on tables when

performing experiments. This was done to limit the number
of reflections of transmitted signals off the ground, reducing
the multi-path signal effects that occur while transmitting.
Placing nodes on tables also allows tests to be performed at a
height similar to someone who is carrying a receiving device
in their pocket, or wearing one on their wrist.

C. HARDWARE COMPONENTS
The different hardware components used during the experi-
ments are shown in Fig. 5.

For the WiFi experiments, four Raspberry Pi 3 Model
Bs [40] were used. The devices contained an onboard 2.4GHz
WiFi chip antenna. Hence, a simple WLAN could be cre-
ated using said antennas by programming them to transmit
and receive signals. Three nodes were configured to be the
transmitters and one node was set to be the receiver. The
receiver node was set up as a router, where it would broadcast
a signal that the other nodes could use to connect to the
WLAN and provide communication capabilities between the
devices. Each of the transmitting nodes continuously polled
their WiFi antenna, scanning for any available signals along

FIGURE 5. Equipment used in setting up the experiments. From left to
right: Zigbee (Arduino Uno with Series 2 XBee), BLE (Gimbal Series
10 Beacon), WiFi (Raspberry Pi 3 Model B), LoRaWAN (Arduino Uno with
Dragino LoRa Shield).

with their measured RSSI values. The RSSI values would
then be transmitted to the receiver along with the identity of
the node that was sending the data. All received data would
then be displayed on the terminal of the device. To record
the measured RSSI values, a computer was connected to the
network of the receiving node.

For the BLE experiment, three Gimbal Series 10 Bea-
cons [34], developed by Qualcomm, were used as transmit-
ting devices. For the purposes of this experiment, the Gim-
bal Beacons were configured using the iBeacon protocol
developed by Apple [41]. The iBeacon packet structure has
three fields: the Universally Unique Identifier (UUID), Major
value, and Minor value. The UUID is a 16-byte field used
to identify a set of beacons, such as the owner, applica-
tion, or manufacturer. TheMajor andMinor values are 2-byte
fields assigned to iBeacons in order to identify them with
greater accuracy. The receiving device used to read the bea-
cons was a Raspberry Pi 3 Model B that was capable of
picking-up any beacon signals that were in the area alongwith
their RSSI values and storing the information.

For the Zigbee experiment, four Arduino Unos and four
Series 2 2mWWire Antenna XBees [42] were utilized. Three
nodes were set up to act as transmitters and the remaining
as the receiver. The XBees were configured to run on the
Zigbee Mesh Protocol and operate on the 2.4GHz frequency.
Due to the limited processing power of theXBees themselves,
and the need for an external power supply, a microcontroller
was necessary to control the flow of information and provide
power. An Arduino Uno was chosen due to its simple integra-
tion with the XBee and low power requirements.

For the LoRaWAN experiment, four Arduinos, each
equipped with a Dragino LoRa Shield [43], were used.
Three were configured as transmitting devices and one as
the receiver. To differentiate the individual transmitters at the
receiver, each of the transmitting nodes was configured with
their own unique address. The receiving node was configured
to continuously read the medium for any messages. If any
messages were received, the RSSI was measured, and written
to the Arduino serial along with the corresponding node
transmitted the message.
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FIGURE 6. Curve fitting for the path loss in environment 1. (a) WiFi. (b) BLE. (c) Zigbee. (d) LoRaWAN.

To perform an equal set of tests between all the exper-
iments, a similar transmit power and interval was required
to be used on all the components. In selecting a transmit
power, the Series 2 XBees and Gimbal Series 10 Beacons
each had a set of configurable power levels that could be
selected. Based on the values listed for both components,
there was only one common level that could be selected
between the two, −10dBm. The Raspberry Pi 3s and LoRa
Shields could be programmed with a transmit power and
configured with the selected value, hence −10dBm was
selected.

In selecting a proper transmit interval, the Gimbal Series
10 Beacons contained a list of times that could be chosen. The
Raspberry Pis and Arduinos are microcontrollers and could
be programmed with a value. Since any real-time indoor
localization systemwould need to respond quickly to individ-
ual movements in an area, a transmit interval of 0.5 seconds
was chosen. Broadcasting was done to ensure that if addi-
tional receivers were added to the system, each would receive
the same signal.

Due to the Arduinos and Raspberry Pis requiring an exter-
nal power supply to operate, USB cables were connected
to wall outlets to provide power. The Gimbal Beacons used
internal coin cell batteries and did not suffer from the same
requirements.

D. PATH LOSS MODEL
Before any experiment could be performed, the path loss
models in the environments for each of the different wire-
less communication technologies needed to be determined.
For each of the systems designed, a single transmitter and
receiver were placed over a range of fixed positions and the
corresponding RSSI values were recorded.

In order to create these models, the RSSI over a range of
distances from the transmitter needed to be measured in the
environment to determine how the signal strength decreases.
It was determined that points over a range of distances would
create the best fit, therefore, distances were selected between
0 to 5 meters. In total eighteen points were taken. Nine points
were taken between 0 and 1 meter, once every 0.1 meters.
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FIGURE 7. Curve fitting for the path loss in environment 2. (a) WiFi. (b) BLE. (c) Zigbee. (d) LoRaWAN.

TABLE 2. Parameters used in converting RSSI to distance using the path
loss model in environment 1.

While the remaining nine points were taken between 1 and
5 meters, once every 0.5 meters. After all the points were
measured, the distance vs. RSSI was plotted and Matlab’s
curve fitting function was used to estimate a model based on
Eq. (1).

The curve fitting for the path loss in Environment 1 and
Environment 2 are shown in Fig. 6 and Fig. 7 respectively.
The values for the path loss exponent, n, constant, C, and the
coefficient of determination, R2, are shown in Tables 2 and 3
for Environments 1 and 2 respectively.

It is clear that the two environments experienced noise and
interference. Based on the R2 values determined, Environ-

TABLE 3. Parameters used in converting RSSI to distance using the path
loss model in environment 2.

ment 2 seemed to experience much more variation in RSSI
readings as the models created do not match as nicely as those
in Environment 1. Hence, it is expected that the accuracy in
Environment 2 be lower than in Environment 1.

E. EXPERIMENTAL PROCESS
In total, nine tests were performed in each of the two envi-
ronments at varying distances and locations in order to deter-
mine how positioning the nodes would affect the localization
accuracy. In each of the tests, the location of all the nodes was
recorded along with the measured RSSI values.
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TABLE 4. Error between estimated and actual positions in environment 1 (meters).

TABLE 5. Error between estimated and actual positions in environment 2 (meters).

Once the RSSI values were measured for all the tests
for each of the wireless communication technologies, a dis-
tance could then be calculated that approximated the posi-
tion of the receiver relative to each of the transmitting
nodes. Using Eq. (1) and the corresponding parameters found
in Tables 2 and 3, an appropriate distance can be determined
for each of the wireless communication methods for each of
the testing environments.

To evaluate the accuracy between all the systems, using
Eq. (7), the MSE between the estimated and actual node
position was found. The results of this calculation can be seen
in Tables 4 and 5 for Environments 1 and 2, respectively.
Finally, for all the experiments performed, an average was
taken to find the overall error per environment along with the
overall error from all the experiments performed. The results
can be seen in Fig. 9 with the numeric values and the aver-
age error for each wireless technologies for the environment
tested in along with the overall error, in Table 6.

VI. RESULTS AND DISCUSSION
In this section, the experimental results are presented, fol-
lowed by a discussion. All the experimental data collected
are also available in [24].

A. LOCATION ESTIMATION RESULTS
The error between estimated and actual position for Envi-
ronment 1 and Environment 2, is shown in Table 4 and

TABLE 6. Average error in positions (meters).

Table 5, respectively. Experimental results showed that WiFi
is the most accurate system overall. Deviating off of the
actual receiver position by 0.664 meters on average, shown
in Table 6.

In Environment 1, WiFi produced an error of 0.843 meters,
while in Environment 2 it was 0.486 meters. The next highest
overall (based on the tests performed) was BLE, with an
overall error of 0.753 meters. In Environment 1, WiFi pro-
duced the second highest accuracy being beat by BLE which
produced an error of 0.661 meters. In Environment 2, WiFi
demonstrated to be the best technology, with BLE following
with an error of 0.844 meters.

Following closely behind BLE, in third, was Zigbee which
resulted in an overall error of 0.896 meters. Zigbee was
found to have the worst accuracy in Environment 1, devi-
ating off by 0.882 meters, while it achieved the third high-
est accuracy in Environment 2 deviating by 0.911 meters.
Lastly, performing the worst overall was LoRaWAN, with
an overall error of 1.190 meters. LoRaWAN was found to
have the second worse performance in Environment 1 with an
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FIGURE 8. Average error of wireless technologies in both environments.

error of 0.846 meters, while being the worst in Environment
2, producing an error of 1.109 meters.

Overall, three out of the four systems performed better in
Environment 1, resulting due to the large space that allowed
for signals to travel farther distances and not be as concen-
trated in the room. WiFi was found to function better in
the second environment due to the lower amount of WiFi
signals that would cause interference. Within Environment
1 and a distance of 1 meters, the test point D3, in the centre
of all the devices, had the worst performance. However, when
the distance was increased to 3 and 5meters, the test pointD1,
at the edge of the triangle, had the worst performance. This
was found to be due to the high interference at this position
between the two transmitting devices.

In terms of accuracy, the most accurate results were pro-
duced at the smallest distance of 1 meter. In Environment
1 BLE had the best results, while in Environment 2 WiFi had
the best results. However, as the distance increased, the error
did as well. On the other hand, in both environments WiFi
was the most accurate when large distances were used such as
5meters.While it performed relatively well at small distances
as well. LoRaWAN performed adequately in Environment 1,
but its performance dropped significantly in Environment 2,
which was a smaller room with a lower amount of interfer-
ence, but a large amount of reflection.

B. POWER CONSUMPTION
In order to measure the power consumption for the different
wireless technologies, two tests were performed.

• In the first test, the transmitting device was connected to
a power monitor which transmitted normally as per the
experiments performed.

• The second test had the same transmitting device, but
was configured to be idle by disabling the device to no
longer transmit any information.

Once the two values were found, they were subtracted to
find just the power that is consumed by the antenna of the
wireless technology that is being tested.

When measuring the power consumption of the trans-
mitters, the power usage proved to be consistent over the

FIGURE 9. Average power consumption of wireless technologies.

course of the experiments. It was found that the amount of
power consumed was the result of the set transmit power and
interval. The distance between the transmitter and receiver
played no part in the amount of power consumed. As a result
the average power consumption could easily be found and
recorded. The results of the measured power values can be
seen in Fig. 9. When measuring the power consumption,
the transmit power for all the devices tested was set to be
−10dBm and the transmit interval was set to 0.5 seconds.
If a higher transmission power is utilized, or a faster transmit
interval is set, the power consumption of the device would
increase.

Based on the values found, WiFi consumes the largest
amount of power utilizing 216.71mW. LoRaWAN consumed
the second largest amount of power using 19.53mW on aver-
age. Zigbee was third, which on average consumed 17.68mW
of power. BLE used the least amount of power, consuming
only 0.367mW.

C. DISCUSSION
The experimental results revealed useful insights. In terms of
accuracy, WiFi produced estimates that were closest to the
actual receiver position, deviating by 0.664 meters. However,
WiFi was also found to use the largest amount of power
which would not be suitable for use in a system that requires
batteries to function.

One the other hand, BLE had the second highest accuracy
of 0.753 meters. The BLE beacons were also the system that
also consumed the least amount of power, but it had the lowest
transmission range of all the devices tested. In addition, due
to the low current draw of BLE, rechargeable batteries could
be used in order to power the device, which could help in
reducing the total cost of the system. The major disadvantage
with using BLE for localization, is that it would not be
suitable for covering a large area due to its poor transmission
range therefore, additional devices would be required.

LoRaWAN had a slightly larger error of 1.190 meters
and had a much higher power consumption, because of this,
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rechargeable batteries cannot be used. However, LoRaWAN
has a very high transmission range which would greatly limit
the number of nodes that could be required in an environment,
which would reduce the total cost.

Interestingly, for three out of the four wireless communi-
cation technologies tested, results in the second testing envi-
ronment produced much larger errors than when compared
to the results produced in the first testing environment. Since
the second environment had zero transmitting devices in the
room, it was expected that the overall error would be lower
when testing in it. A major difference between the two testing
environments was in the number of windows present. Envi-
ronment 1 had four small windows while Environment 2 had
one big window that was covering most of the outer wall.
Since glass does not reflect transmitted signals effectively,
in Environment 2, most of the signals would be reflected
and sent outward out of the room. While in Environment
1 the signals did not have such an opportunity and were
concentrated in the room.

However, even thought results in Environment 2 were
larger, tests performed in both environments followed similar
trends with respect to the errors determined. It was found
that the errors are much lower when the transmitters were
placed 1 meter apart than when 5 meters apart. The greater
accuracy at lower distances could be attributed to the path loss
model that was used to convert the RSSI values to distances.
Since the signal strength decreases the greatest in the first
meter from the transmitter, a more accurate distance can be
found in this small area. When comparing test points it was
found that D2 was the most accurate for all of the wireless
technologies no matter the distance between the transmitters.
SinceD2 is located in the center of all the transmitters, similar
signal strengths occurred at that point, which were converted
to similar distances. The worst point for testing was found
to be D1, which was located along the edge of the triangle
created between the transmitters. Often it would be expected
that the signal strength from two transmitters to be similar
and the third be smaller, but this would not occur and would
seem to follow different patterns caused by the reflections of
signals off other obstacles.

According to the experimental results, for an indoor local-
ization system, BLE is a promising candidate. The other three
technologies had much higher power consumptions and are
used for transmitting information between devices. BLE was
designed for small networks in the IoT. Hence, energy con-
sumption was a priority which allowed for a longer network
run time. This is the main advantage of BLE technology that
is also useful when it comes to indoor localization systems.

VII. CONCLUSION
In this work, we compared WiFi, BLE, Zigbee, and
LoRaWAN for use in an indoor localization system. By using
three transmitting nodes broadcasting information, along
with a single receiver, trilateration could be performed to
determine an approximate receiver location. Through exper-
imentation, WiFi proved to be the most accurate, deviating

off the actual receiver position by 0.664 meters on aver-
age. WiFi was followed by BLE, which produced an error
of 0.753meters. BLEwas also found to use the lowest amount
of power, consuming 0.367 mW on average. For transmission
range, LoRaWAN, the technology that was designed to trans-
mit at a lower frequency of 915MHz, had the furthest trans-
mission range when running at its maximum transmission
power. The experimental results can be used as an indicator
for the selection of a proper indoor localization system in
smart buildings. All the data collected through experimenta-
tion are publicly available online [24].
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