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ABSTRACT Vital nodes play a pivotal part of network structure and dynamics, where finding the minimal
size of a set of vital nodes belongs to an NP-hard problem and cannot be solved by a polynomial algorithm.
Recent studies of vital nodes identification mostly rely on the structural information, such as collective
influence and degree. However, the performance of local-based methods varies for different structure,
while the complexities of global-based methods are generally high for most situations. Here, we map
the problem into an optimization issue based on global information of network structure and propose a
belief propagation and node reinsertion (BPR) method with almost linear time complexity, where finding
the minimum feeding back vertex set is a key. Compared with several state-of-the-art heuristic methods,
the BPR method has advantages of high accuracy and practicability of vital nodes identification and low
computational complexity. Under two attack schemes: static and dynamical, extensive experiments of
Erdds—Rényi and scale-free models and real-world networks of the power grid and traffic network convinc-
ingly demonstrate that the BPR method remarkably outperforms other methods in vital nodes identification.
This helps to reassess the operational risk of a network and improve robustness ranging from network design

schemes, protection strategies to failure mitigation.

INDEX TERMS Complex network, attack vulnerability, node reinsertion, belief propagation.

I. INTRODUCTION

Attack vulnerability in the complex network has recently
attracted considerable attention, where many efforts have
been devoted to focus on dynamics such as cascading fail-
ure, virus spreading, and information exchanging [1]-[5].
Originated from the physically connected computer network,
attack vulnerability can be characterized as the decrease of
network performance when nodes or edges are removed.
As vulnerabilities of many infrastructures stem from the
existence of vital nodes which can be vulnerable parts of a
network under malicious attack, gaining an insight into the
effect of removal of such vital nodes is critical. Although
there are not many vital nodes in a network, their impacts
can spread through the whole network. Evidence has demon-
strated that even a locally intentional attack on a small number
of nodes (edges) can lead to a serious global system collapse.
For example, 2003 major blackout in north America caused a
large swath of districts to be paralyzed and resulted in more
than $4 billion financial losses, originated from outages of
several critical transition lines [6]. Hence, it is critical to

identify vital nodes in a network, which can help to improve
the ability of a network to defend against attacks. The faster
the network will crash into numerous components with fewer
numbers of nodes, the better the algorithm.

In the past decades, questions regarding vital nodes iden-
tification are primarily asked about (i) What are vital nodes?
(i1) How to identify these nodes? (iii) What is the impact of
the removal of vital nodes? Numerous notable examples of
network studies, ranging from reliability engineering, disas-
ter risk science, social science, physics, and biology, make
efforts to identify vital nodes that most crucially affect net-
work topology and functionality [7]-[13]. Researchers have
devoted efforts towards investigating how network robustness
changes when vital nodes are removed from the network
according to distinct centrality measures [14], [15]. Based
on heuristic methods, recent studies of vital nodes identifi-
cation can be classified into three categories for their dif-
ferent methodologies. Some researchers use neighbor-based
local information of a network such as the Collective Influ-
ence (CI) [3], the Highest Degree (HD) [16], K-Core [17]
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and new K-core [18], and LocalRank methods [19]. While
the time and space complexity of these local-based methods
are low, the performances of them vary in different situations.
The second type of study pays attention to path-based global
information of a network, where Gradient maximum likeli-
hood algorithm [20], Betweenness centrality [21], Closeness
centrality [22] and Kats centrality [23] are some recently
typical methods that mainly consider paths of network flow.
This type of method usually has a better result, whereas the
complexities of this type are usually high and not suitable for
calculation of a network with large scale. The third type of
method quantifies the importance of nodes through eigenvec-
tor of a network considering mutual enhance effect between
nodes. This type of method is typically iterative algorithms
that are different from the former two class of methods,
including eigenvector centrality [16], PageRank [24], Lead-
Rank algorithm [25], and Hub centrality [26].

These methods are widely used in vital nodes identifi-
cation. However, they characterize limited parts of what it
implies for a node to be critical in a network and each has
its own shortcoming and limitation [27]. This may lead to
underestimating the importance of some nodes. Moreover,
it is a known fact that targeting vital nodes in a network is
a nondeterministic polynomial hard (NP-hard) problem and
cannot be solved by a polynomial algorithm. Therefore, it is
rather difficult to calculate the accurate analytic solution.
Here, we regard it as a combinatorial optimization problem
and deal with the issue by a method based on global informa-
tion of network structure: Firstly, we aim to find the minimum
feeding back vertex set, which can be regarded as a problem
of optimal attack based on message-passing theory [28], [29];
Secondly, optimize the attack order of vital nodes obtained
from step one by using two different node reinsertion meth-
ods proposed in this paper. Compared with other methods,
the simulation results show that the BPR algorithm achieves
better performance in both speed and accuracy.

The rest of the paper is organized as follows. We first give a
brief review of details of some recently proposed benchmark
centrality measures. Then, the BPR algorithm is described in
detail in Section III. In Section IV, vulnerability metric and
network information are also given, while numerical results
are mainly given in Section V. In order to compare BPR
and other typical measures, we first put forward a method
correlation analysis. In what follows, the performance of BPR
measure and other benchmark measures are analyzed under
both static and dynamical strategies, where we collected data
of six networks including model and real networks. More-
over, we further investigate the computational efficiency of
different methods. At the end of this paper, some conclusions
are presented in Section I'V.

Il. BRIEF REVIEW ON TRADITIONAL METHODS

Here, we assume the structure of a network is unweighted and
undirected without multiple edges and self-loops. A network
can be represented as G = (V,E), where N = |V]| is the
number of nodes and M = |E| is the number of edges
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in a network. If a vertex set v € V is removed from a
network, the whole graph may be separated into a number
of independent components, referring to an attack event for
the network.

A. COLLECTIVE INFLUENCE

Recently, a novel efficient Collective Influence (CI) centrality
is published in Nature by mapping influence maximization
problem into an optimal percolation problem [3]. Based on
the local structural information, CI is calculated by

Cliy=k—-1 > (k-1 (1)

j€dBall(i,l)

where k; and k; are the degree of node i and node j, and
J € 0Ball(i, I) represents that node j belongs to the neighbor-
hood of node i from a distance /.

B. BETWEENNESS

In general, there is more than one shortest path between
arbitrarily chosen two nodes in a network. Betweenness cen-
trality is a measure that counts how many shortest paths
that go through a node [21]. Nodes with a high betweenness
centrality will be more influential than other nodes with low

betweenness.
Bet()= Y
i#£s,i£t,sF#t

1L/l 2)

where i, s, and ¢ are arbitrarily chosen nodes in a network.
I represents the number of paths between node s and 7,
whereas [}, is the number of paths going through node i.

C. THE HIGHEST DEGREE

The Highest Degree centrality is one of the most straightfor-
ward methods based on the degree of a node. The highest
degree centrality can be defined as

HD(i) = ki/ (n — 1) 3

where k; is degree of node i and HD(i) is a normalized
degree centrality.

D. K-CORE

K-core centrality emphasizes the importance of the location
of a node, which is a better indicator than the degree cen-
trality for evaluating the spread influence of a node [17]. For
example, at the first step, all the nodes with degree k < 1
should be removed from the network until the degrees of all
the remaining nodes satisfy k > 1 and the removal nodes
belong to shell one. Then, we iteratively remove all the nodes
with degree k < 2, the rest can be done in the same manner.

E. PAGERANK

PageRank centrality supposes the importance of a node is
determined by both quantity and quality of the nodes pointed
to it, which does not only consider an important node pointing
to another node but takes a diluted effect of a prestigious node
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on others into account [24]. It can be defined as

PRG) = a Y Ayxj/k" + B 4)
J
where @ and § are positive constants, A;; is an adjacent
matrix, x; is the neighborhood of node i, and kjo“’ is the
outdegree of node j.

Ill. BELIEF PROPAGATION AND NODE

REINSERTION (BPR) METHOD
Here, BPR algorithm is proposed to obtain a faster way to

break down a network, which mainly consists of two steps:
belief propagation and node reinsertion. In this BPR algo-
rithm, key nodes are calculated by belief propagation, while
the attack sequence is optimized by node reinsertion process.
Moreover, two types of different node reinsertion methods are
also put forward.

A. BELIEF PROPAGATION (BP)

As most of the local-based algorithms do not take the global
structure of a network into consideration, the performance
of methods will be limited. Based on distributed message-
passing theory [28], the belief propagation method is used
to identify vital nodes with almost a linear time complexity
O(N In N). Compared with other global methods that identify
vital nodes by the number of the shortest paths that go through
a node, BPR method transforms the problem into a combi-
nation optimization issue of finding the minimum feedback
vertex set (FVS) for a better accuracy. FVS is a node set that
intersects with every loop of the network and if removed, all
loops break and leave behind a forest in the network. It is
known that in sparse networks the small connected compo-
nents are mostly trees. In this way, the removal of the root
node of the remaining forest may induce an abrupt collapse
of the whole network very efficiently. Hence, vital nodes
can be regarded as root nodes and the minimum feedback
vertex set [30]. FVS problem is also an NP-hard problem
and can be approximately solved based on mean-field theory
in statistical physics. Here we introduce how to apply belief
propagation method to FVS problem.

The microscopic configuration of a network can be denoted
as{A1,As, ...... , An}, where A; represents the state variable of
anode i and can only take a value of A; = 0,A; = ior A; =
J(G € 9i). If node i is unoccupied or removed, the state A; = 0.
If A; = i, it indicates that node i is occupied and itself is a
parent node for its neighborhood, whereas A; = j, it means
the parent of node i is node j and node i is also occupied.

According to replica-symmetric mean field theory
[28], [30], the belief propagation can be represented as self-
consistent equations

0 1
disj = - ©)
7 Zi—j
Qi'—ﬂ' =M 1_[ (ql(c)—n' + qllg—n')/ziﬁj ©)
kedi\j
Gij=e"" (1_%0_)1.) [T @Gitanpfzimg e oiy

medi\j,!

N
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where q?i) j is the marginal state probability of node i when
its neighbor node j € di is removed, and both x, w are
the weighting parameters in the equation. Hence, the BP
Egs (5), (6), and (7) provide all the three state probabil-
ities of a node. Note that z;,; is a normalization factor
denoted as

Zisj = 1+e™] l_[ (@i + )

kedi\j
+ 3 (1-d) T @eitain ®
kedi\j medi\j,1

Eqgs (5)-(8) form the common self-consistent belief propa-
gation method. We can iteratively calculate these equations
for a network until the results converge to a fixed value. The
node with the highest q?ﬁ j probability will be removed from
the graph along with its entire attached links. The algorithm
stops after no loops exist in the graph, where there are only
trees or forest in the network topology. Then, an appropriate
node, i.e. the root node in the graph, is supposed to be
deleted in the largest tree until the graph completely breaks
down.

(b)

FIGURE 1. Schematic diagram of BPR model. (a) Illustration of BP method
on a network (b) Node reinsertion diagram.

An example of BP method is shown in Fig. 1a. It is found
that node 7, node 14, and node 13 have a relatively higher
degree and will be firstly removed by the highest degree
centrality. After removing these three nodes, the largest con-
nected component still contains 7 nodes. As the main goal
of the BP method is to remove loops in a network, which
will generally result in a smaller size of the component.
In Figla, node 4 in loop;, node 7 in loop, and node 12 in
loops are considered to be firstly removed by the BP method.
Accordingly, the number of nodes in the largest component
will decrease to 3 by contrast.

To describe the belief propagation algorithm in detail,
we give a pseudo-code in Table 1. We first input a graph
with adjacency list, and then initialize two weight parameters.
The next is the core part of the algorithm, which is called
BP iteration. According to Eqs (5)-(8), we can calculate the
empty probability gg of each node based on current inputting
messages. By sorting the empty probability go from large
to small, we add these nodes to the removing list until the
size of the biggest component in graph decreases lower than
the threshold. Here, the threshold is a certain small value
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TABLE 1. Pseudo-code of belief propagation.

Algorithm1: Belief Propagation

1: INPUT: adjacency list graph G

2: OUTPUT: attack list /r;

4: set graph G=(V,E);

5: set weightl x=11, weight2 w=1;

6: set comp_thresh=0.01;

7: set bigcomp_size=the largest component size of G;
8: while bigcomp_size > comp_thresh do

9 for each active node i do

10: temp_a=1;

11: temp_b =0,

12: temp_c = exp(-x*w);

13: for each neighbor j of node i do

14: if state[j]=="ON" then

15: q 0=j.q 0; % probability of node j to be removed
16: q r=j.q r; Y% probability of node; to be a root
17: q0 r=q_0+q root;

18: temp_b=temp_a* (1-q_0)+temp_b*q0 r;

19: temp_a *=q0_r;

20: max = max(temp_a, temp_b);

21: if max<temp_c then

22: max = temp_c;

23: end if

24: temp_a /= max;

25: temp_b /= max;

26: temp c /= max;

27: end if

28: end

29: normlization = temp_a + temp_b + temp_c;

30: q_0=temp_c / normlization;

31: i.q_0=q 0;

32: q0_list[il=q_0;

33: end

34: sort g0 _list from large to small;

35: add g0 _list[0] to Ir % add node with max probability to be removed
36: set state[q0_list[0]] = "OFF"

37: update bigcomp_size;

38: end

(e.g. thresh=0.01 or even small), which is used to determine
the relative size of the giant component whether decreases to
a given size to stop the algorithm. At this point, BP process
terminates when no loops are present and output the resulting
attack set of the original graph.

B. NODE REINSERTION (R)

Usually, attack order and the set of vital nodes are both
determined by the centrality of nodes in a network. Never-
theless, it ignores the situation in which a minor perturbation
to several nodes with relatively low centrality at the same
time can also result in large-scale damages. In other words,
it is important to recalculate and optimize the attack order
even though we have already obtained the vital node set.
Node reinsertion adds back a finite fraction of nodes at each
step to keep the maximally fragmented network, which is
a post-process and refinement of vital nodes identification
at an early stage. As described in Fig.1b, two distinct types
of reinsertion methods are proposed, where both have their
unique advantages for different network topologies. In this
algorithm, the complexities of searching, inserting and delet-
ing are all O(N InN) for both R1 and R2.
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1) THE SMALLEST NUMBER NODE REINSERTION (R1)

For the smallest number node reinsertion, the reinserted
nodes are required to join the components with the smallest
increasing number of components, called R1.

In other words, we recursively reinsert a node that is in the
candidate node set obtained by BP iteration such that each
reinserted node connects the least components in the network.
Until all the removed nodes are reinserted into the network,
the inverse sequence of reinsertion is the final optimal attack
order. Fig.1b shows an example on how to reinsert a node
into the network. If there are two candidates nodes V; and V
to be reinserted into the network, node V, that connects
only two components will be first chosen to keep maximally
fragmented network.

2) THE SMALLEST SIZE NODE REINSERTION (R2)

The second type of reinsertion requires the reinserted node to
join the components of the smallest sizes, called R2. Other
processes of R2 are the same as those of R1. For example,
in Fig 1b, if the size of components satisfies n; + ny + n3 <
m1 +my, candidate node V is firstly selected to be reinserted.
This difference will have an advantage over networks with
distinct topologies.

TABLE 2. Pseudo-code of two types of node reinsertion.

Algorithm2: Node Reinsertion (R1 and R2)

1: INPUT: attack list /r, adjacency list graph G, number of removed nodes

nr;

2: OUTPUT: the attack order;

3: set state of node i "OFF" for each node Ir, while others are set "ON" ;

4: set fitlist for fitness of each node 7 in /r to 0;

5: assign component label for each node i; Y%Run the algorithm

6: for each node i in /r do

7 set fitlist of node i to 1/(number of components node i would join in
(when use NR1))or 1/(size of component would node i join in
(when use NR2));

end

8: sort fitlist from large to small ;

9: for eachnode i in /r do

10:  set state of node i "ON";

11:  assign component label for each node;

12:  for eachiin/r do % update fitlist

13: if node i in "OFF" state then

14: set fitlist of node i to 1/(number of components node i would

join in (when use NR1))or 1/(size of component would node i
join in (when use NR2));

15: end if

16: end

17:  sort fitlist from large to small;
18: end

19: reverse rl % to get attack order

Pseudo-code of R1 and R2 are described in detail
in Table 2. Both start with the attack list obtained from BP
process. State of each node is assigned based on an attack
list before running the reinsertion procedure. To achieve the
optimal attack order, we iteratively calculate the fitness of
each node in the attack list calculated by Eqs(11), where N;
represents the number of components node i would join in
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FIGURE 2. lllustration of BPR method compared with static degree method.

and S; stands for the size of clusters node i would join in.
After several iterations, an output of optimal attack list can
be obtained.

To further illustrate BPR method, we give an example of
comparison between BPR method and static degree method
on a small network with 20 nodes and 36 edges shown
in Fig. 2. In this case, static degree means degree centrality of
each node is calculated only once during the whole process.
First, BP procedure with R1 is performed on the graph to
get attack list of node set {1, 6, 7, 14, 16, and 18}, while
node set {6, 9, 11, 14, 16, and 18} with the highest degree is
obtained by static degree method. The attack list calculated
by BPR1 is {18 — 14 - 6 — 7 — 16 — 1}, whereas
{14 - 18 - 6 — 16 — 9 — 11} is obtained by static
degree method. It is found that even a minor modification on
the attack order is possible to obtain a considerably different
result, where static degree method (in a dashed line) has a
worse performance than BPR method (in a solid line).

1/N;
1/8;

(R1)

(R2) ©)

fit;

IV. METRICS AND NETWORK DESCRIPTION

A. METRICS DEFINITION

In general, the robustness of a network is measured by
the critical fraction of removed nodes g., where network
completely falls apart at the value of g.. However, this
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measurement cannot indicate the early collapse of a network
suffering from a malicious attack. There are numerous other
network measurements such as graph entropy [31], network
efficiency [32], pairwise connectivity [33] etc. In order to
measure the attack vulnerability of a network for each stage,
V-index [34] is considered referring to the relative size of
the largest component in the network during the whole node
removal process, which can be defined as:

N
V=1- (Z a(i/N)) /N

i=1

(10)

where V is the attack vulnerability index which can be shown
as 1 minus the area surrounded by the curve and axes, N is the
total number of nodes, and ¢ is the proportion of the largest
component in a network after removing ¢ = i/N fraction of
nodes.

In relation to a complex network, vulnerability refers to the
inability to withstand damage caused by the random or mali-
cious attack, which can be quantified as a V-index.
Numerous centrality measures have been proposed from
different perspectives in previous researches. The central-
ity of a node can be applied as a basis of attack strategy.
In this paper, we will first introduce several state-of-the-
art benchmark centrality measures and compare these mea-
sures with BPR method to test the attack effects on different
networks.
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B. NETWORK DESCRIPTION

Two model networks including Erdds—Rényi (ER) net-
work [35] and Scale-Free (SF) network [36] and four real
networks of distinct types are introduced to study effects of
removal on networks. ER network and SF network are two
kinds of models with different topologies, where they have
completely different behaviors under random or malicious
attack. It is known that the SF network is more vulnerable to
malicious attack but appears to be more robust under random
attack than ER model. We employ an SF network with power
exponent y = 2.5 and an ER network with edge existence
probability p = 0.00035.

The simulation also focuses on some real networks in
different fields, including C.elegans neural network [37],
the road network of Oldenburg in Germany [38], the power
grid of Europe [39], and human protein-protein interaction
network [40]. Details of basic network parameters for above
networks are described in Table 3. In order to exhibit the
topology of different networks, we show the number of nodes
|V|, edges |E|, mean degree k, clustering coefficient ¢, and
average path length I for each network.

TABLE 3. Basic property of different networks.

Network |V| |E| k c /
SF Network 10,000 20,000 4 0.013 441
ER Network 10,000 17,500 3.5 0.00035 7.39

C.elegans 453 4596 20.29 0.646 2.66

Oldenburg 6105 7029 2.30 0.011 40.69
Power Grid 1467 2289 3.12 0.126 17.39
Protein 3133 6726 4.29 0.063 4.84

V. NUMERICAL RESULTS

In this section, attack effects on different networks are
investigated by some specific procedures based on the above-
mentioned BPR measure and other centrality measures.
We calculate and analyze the correlation between these mea-
sures. The size of the giant component of each network and its
vulnerability with respect to distinct centrality measures are
also analyzed by removing nodes in the order of decreasing
centrality. In addition, vital nodes to be removed are based on
two types of different schemes, i.e. static attack and dynami-
cal attack.

A. CORRELATION ANALYSIS BETWEEN

DIFFERENT METHODS

To seek the correlation between BPR method and the other
centrality measures, we analyze the Pearson correlation,
which is a measure of linear correlation between two vectors
described as:

r=3y Gi=D0i-

/ (\/ > —x)z\/ > O —@2) (n

VOLUME 6, 2018

BPR 0.324 0.417 0.380 0.240 0.409

0.513 0.446 0.302 0.517

HD 0.894 0.771 0.979
Bet 0.612 0.853
0 - Keore | 0721
[N — ——
1.0
i o
i I & | | PageRank

0.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.0

FIGURE 3. Pearson correlation between six distinct centrality measures
on an ER network.
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FIGURE 4. Static attack (a) Critical removal fraction qc for methods of
different types. (b) Vulnerability of distinct networks under different
centrality methods.

where n is the number of variables, x; and y; are the single
element with index i, X and y are the mean value.

Scatter plots with normalized centrality on horizontal and
vertical axes between BPR1 and other typical measures on
an ER network are shown with different colors in Fig. 3.
For example, the first row represents the correlation between
BPR measure and the other measures. It is found that none
of the correlation coefficients between BPR measure and
other measures exceed 0.5, suggesting that BPR behaves very
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FIGURE 5. Static attack on (a) ER network (b) SF network (c) European power grid (d) Oldenburg road network (e) C.elegans neural network (f)
Protein-protein interaction network. The inset represents the complete figure of each network.

differently from other methods. The reason behind this is that
BPR model aims to find the minimum feedback vertex set
differing from the other method.

B. COMPARISON UNDER STATIC ATTACK STRATEGIES

Now we move on to study the vulnerability of a network by
simultaneously removing a fraction of nodes. In the static
scheme, the centrality measure of each node will not be recal-
culated when the structure of a network changes. First, we
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perform BPR and other benchmark methods on two different
model networks and four real networks, which have been
described in Section IV in detail. Here, we define a criti-
cal fraction of attack nodes g, as the minimum fraction of
removed nodes keeping the size of the largest connected
componento < o.. As seen in Fig 4a, BPR1 and BPR2 both
have the lowest g, on ER and SF network when o, = 0.1,
while other methods to achieve the same effect need to
remove a larger proportion of nodes. To further explore the
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FIGURE 6. Dynamical attack on (a) ER network (b) SF network (c) European power grid (d) Oldenburg road network (e) C.elegans neural network (f)
Protein-protein interaction network. The inset represents the complete figure of each network.

attack effects of different methods, we show the vulnerability
V-index that has been defined before in Fig 4b. It is found
that the vulnerability of networks can be clearly increased by
BPR method compared with other methods.

In Fig. 5, the size of the largest connected component o
as a function of the fraction of removed nodes ¢ is calculated
for both model and real networks following distinct central-
ity measures, where 1 minus the area enclosed by the axis
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and curve represents V-index of a network. It is clear that
our BPR measure with the smallest enclosed area is proved
superior to other measures. Besides comparing with some
typical methods, In Fig 5a and b, we also observe that BPR
method offers a superior solution compared with recently
proposed single BP [29], [30] and CI method [3], [41] at the
initial stage (0 < g < 0.1), where o by single BP and CI
decrease much slower than that by BPR. This suggests that

29207



IEEE Access

J. Zhong et al.: Identification of Vital Nodes in Complex Network via BPR

even though results in Fig 4 show BP and CI have a similar
behavior with BPR, BPR can also help to identify critical
nodes much more effectively at an early stage. We believe
that the attack sequence mainly determines the attack effects
during the failure process.

It is also found that network with a higher cluster-
ing coefficient exhibits a faster speed of structure collapse
(see Fig. 5 and Table 3). We believe that network that appears
to have a lower link density will be more robust than a higher
one. Calculation of the ER network and SF network, whose
degree distribution respectively follows a Poisson distribu-
tion and a power-law distribution, shows that SF network
is more vulnerable according to these centrality measures.
It is also found that the degree centrality that is a purely
local measure is more effective than other measures that
record global information of structure. Accordingly, degree
centrality outperforms other measures at exposing network
vulnerability in the static scheme whereas nodes identified by
global measures like betweenness act as a bridge to connect
highly connected parts of the structure.

Network topology highly affects the network robustness.
It is known that ER network has a more robust struc-
ture than SF network under malicious attack. Experiments
are also conducted on real networks of different fields
in Fig 5c —f, where the attack strategy by BPR method is
proved the most efficient at exposing the vulnerability of a
network. We think that a network with the low average degree
and long average path length will be easier to be degraded.
The possible explanation for this may be a network with these
properties is lack of spatially long-range correlation leading
to a vulnerable network topology, which indicates that failure
of the local structure may easily destroy the network.

C. COMPARISON UNDER DYNAMICAL

ATTACK STRATEGIES

BPR can be used to identify vital nodes with an efficient per-
formance in static attack scheme. The success of BPR leads
us to the question: can we apply BPR method to a dynamical
scheme? In the mode of dynamical attack, the importance of
anode needs to be recalculated repeatedly after each round of
attack. In other words, node centrality is updated iteratively
during the whole attack process. Fig. 6 shows the size of the
largest connected component o under the sequential attack
for networks and methods of different types. Compared with
the static scheme, the dynamical scheme has a quite different
behavior of destroying a network.

Network attacked by dynamical strategies appears to be
more vulnerable (with a smaller enclosed area) than its
static counterpart. In other words, dynamical attack scheme
exhibits a greater attack effect than that of the static scheme
due to the iterative calculation of importance of a node.
However, not all the results follow this rule. Taking C.elegan
neural network under K-core centrality measure for an exam-
ple, the static attack is counter-intuitively more effective than
a dynamical scheme. Moreover, different centrality measures
show a different efficiency of network degrading, where the

29208

0.5 1
c =0.1
C
0.4 1
— [l BP
. 031 I 5PRI
o I BPR2
0.2 a
' [ IBet
[ ]HD
011 R R
mllll =
0.0- "
ER SF
(a)
1.00
0.95
I 5P
2 Il sPR1
£0.90 1 I BPR2
[ 1
E Bet
; 0.85 ] HT)
[ ]PR
0.804 [ JKcore

CelegansOldenburg Power Protein
(b)

FIGURE 7. Dynamical attack. (a) Critical removal fraction qc for methods
of different types. (b) Vulnerability of distinct networks under different
centrality methods.

global measure BPR seems to be the most effective meth-
ods for both model and real networks compared with other
measures.

In Fig 7, further study of critical removal fraction g
and vulnerability V-index reveal that vital nodes of dis-
tinct networks can be located remarkably better and faster
by BPR than by other methods. To quantitatively test our
BPR method, we also calculate the performance improve-
ment based on Eqgs (12) between BPR and other methods.
Results are shown in Table 4. It is found that BPR can be
up to 4.35%~76.11% more efficient than other methods in
performance.

|V(BPR) — V(i)

g
40)

where V stands for vulnerability metric after removing vital

nodes, PI represents performance improvement, i can be

different methods including BP, CI, Bet, HD, PageRank and
K-core.

PI(i) = (12)

D. COMPUTATIONAL EFFICIENCY ANALYSIS

Here, we aim to analyze the complexity of BPR method and
other methods. BPR consists of two parts: BP and node rein-
sertion, where BP is almost linear complexity with O(N InN)
and average complexity of searching, finding and deleting
for node reinsertion is O(InN). The “Union” operation of
node reinsertion, merging the candidate node into a connected
component based on the previous graph, has a complexity
of O(N). Therefore, the overall complexity of BPR can be
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TABLE 4. Performance improvement on different networks.

PageRan

i BP CI Bet HD k Kcore

ER 529%  5.33% 22.40 17.92 51.70% 27.92
% % %

SF 11.56%  10.77 13.43 17.14 72.64% 23.68
% % % %

Neural ~ 8.96% 15.73 20.21 29.25 67.95% 3243
% % % %

Road  62.78%  75.61 73.68 81.82 86.30% 87.50
% % % %

Power  35.58 38.46 46.67 57.89 82.22% 57.89
% % % %

Protein  5.89% = 4.35% 12.73 9.43% 49.47% 15.79
% %

TABLE 5. Time comparison on different networks using various
methods (E and N respectively represents the number of edges
and nodes).

PageRa  Kcor

BPR BP CI
nk e

Bet HD

O(NInN) O(NInN) o(N?) O(EN) O(E+N) OE)  O(E)

7E-4s 4E-4s 2.96s 30.67s 8E-3s SE-4s 3E-4

ONInN +kInN +N) ~ ON InN). In Table 5, we show
the complexity of different methods and their calculation
time on an ER network with 10000 nodes and <k > = 4.
(The results are calculated on an 8-core CPU computer with
Intel i7 2.8 GHz and 16G memory and are averaged over
500 realizations). It is found that BPR has a relatively lower
complexity than other methods.

VI. CONCLUSIONS

In summary, it is important to make sense of impacts on
the integrity of the entire network against failure. In view
of previous studies, many efforts have been devoted to study
how the structure of a network changes after a fraction of vital
nodes are removed according to different centrality measures.
However, these methods perform differently in speed and
accuracy when network topology varies, which may lead to
underestimating the importance of some important nodes.
In this paper, we examine the attack vulnerability of both
model and real networks by vital nodes identification based
on BPR method. Two steps are included in BPR algorithm
to identify vital nodes and optimize attack order: BP process
and node reinsertion. Moreover, two kinds of attack schemes
are considered to test the efficiency of BPR in this paper:
static attack strategy and dynamical attack strategy. On the
one hand, we find that finding the minimum feedback vertex
set for both attack schemes is more efficient than other global-
based methods on different networks, indicating that nodes
identified by BPR method should be targeted first. On the
other hand, results demonstrate that BPR is able to achieve
better performance in terms of speed, where the complexity
of BPR is lower than other methods. However, due to the
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emergence property of vital nodes identified by BPR,
the removal of a fraction of these vital nodes may lead to
the abrupt breakdown of a network. This may make the
BPR-guided strategy a dangerous scheme for destructive
purposes. Moreover, BPR method may be only applicable
to static single networks, where we need a further study
to develop the new method for vital nodes identification in
the temporal network and interdependent network. It is also
possible for us to consider the impact of dynamical process
for vital nodes identification, such as cascading failure and
virus spreading.

There are many areas for application of BPR method
such as city traffic, power grid, and even ecological system.
For example, to best protect healthy people from infection,
we need to immune a specific group of people within a limited
time and resource, where identifying vital nodes at an early
stage is a key. As an ocean of empirical networks can be char-
acterized by multiple dependency links between networks
whose functioning in one network highly depends on another
one, the future work may be extended to investigate vulner-
ability of the interdependent network by vital nodes iden-
tification. Elucidation of the structural difference between
the interdependent network and single network seems to be
an important research due to its significance for network
vulnerability and normal functioning.
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