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ABSTRACT In this paper, we present an automated skeletal maturity recognition system that takes a single
hand radiograph as an input and finally output the bone age prediction. Unlike the conventional manually
diagnostic methods, which are laborious, fallible, and time-consuming, the proposed system takes input
images and generates classification results directly. It first accurately detects the distal radius and ulna areas
from the hand and wrist X-ray images by a faster region-based convolutional neural network (CNN) model.
Then, a well-tuned CNN classification model is applied to estimate the bone ages. In the experiment section,
we employed a data set of 1101 hand and wrist radiographs and conducted comprehensive experiments on
the proposed system. We discussed the model performance according to various network configurations,
multiple optimization algorithms, and different training sample amounts. After parameter optimization,
the proposed model is finally achieved 92% and 90% classification accuracies for radius and ulna grades,

respectively.

INDEX TERMS Classification, convolutional neural network, detection, radiographs, skeletal maturity.

I. INTRODUCTION

Assessment of a child’s skeletal maturity is crucial for man-
agement of skeletal disorders during growth [1]. Accurate
prediction of growth spurts allow for precise implemen-
tation of growth guidance treatment [2]-[5]. Outside of
scoliosis, endocrine and metabolic disorders also require
good knowledge of skeletal maturity parameters [6]. There
are many commonly used radiological parameters but bone
age assessment using a hand and wrist radiograph is most
accurate [1]. Several commonly used classification methods
include the Greulich and Pyle [7] and Tanner-Whitehouse
staging [8]-[10]. The GP method utilizes an atlas to match
the child’s X-ray image to estimate the bone age. This
method is simple but is subjected to reliability problems.
The TW3 method is more complex as it requires scoring
of 20 bone complexes in the hand and wrist to determine the
bone age. Due to its complexity, it is difficult to implement

in a busy clinic [1]. In 2013, Luk et al. [6] simplified the
TW3 system and proposed a novel bone age assessment
scheme based on the distal radius and ulna (DRU). The DRU
has been refined and validated in the adolescent idiopathic
scoliosis population [11], [12]. Furthermore, with its wide
range, it can detect the growth patterns of the infantile
and juvenile population as well. It has also been shown to
accurately predict the acceleration and deceleration phases
of puberty and also used for prediction of risk of curve
progression [13], [14]. With all radiographic parameters,
interobserver reliability may be of concern especially for
beginners and untrained eyes. Furthermore, standardizing an
assessment method provides more reliable data for research
purposes.

Deep learning which originates from artificial neural net-
work (ANN) is a powerful kind of machine learning tech-
nique. It can learn higher level features from training data
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and achieve more accurate. Deep learning technologies are
a growing trend in data analysis around the world. Con-
volutional neural networks (CNN) have been proven to be
powerful in image object detection and classification tasks.
Some medical research groups have tried to apply CNN
and other deep learning models into medical image analysis
tasks [15]. For example, interstitial lung disease patterns can
be detected and classified precisely by a deep CNN [16].
Also, the vascular network of human eye segmentation task
outperforms the previous algorithms when using deep CNN
models [17]. To detect and classify pulmonary nodules,
Setio et al. [18] used multi-view CNN. Hence, deep learning
techniques especially CNN have been applied in many med-
ical imaging analysis projects with promising results [15].

Up to now, minimal studies have looked at the poten-
tial of using deep learning algorithms to process bone age
assessment let alone the DRU classification [19]. In this
study, we propose a completely automated deep learning
based DRU assessment system. Radiographic images of
the DRU will be detected and extracted directly by Faster
R-CNN model [20]. Subsequently, this data will be fed into
CNN models to predict bone ages. In the experiment section,
we will examine several different model configurations of
the DRU radiograph dataset and then choose the models that
achieve the best performances. In conclusion, the main con-
tributions of the study include: (1) to propose a totally auto-
mated and rapid skeletal maturity estimation system which
is developed based on deep CNNs; and (2) to improve the
models’ performance with data sample balance, data augmen-
tation and preferred optimization algorithms.

Il. RELATED WORK

Classical methods of GP and TW3 are well known to
be time-consuming and inaccurate in clinical management.
In 2008, Tristan-Vega and Arribas [21] proposed an end-to-
end automated system to estimate children’s skeletal age.
They adapted a clustering segmentation algorithm to seg-
ment the bones contour and then constructed a Generalized
Softmax Perceptron (GSP) neural network to estimate bone
ages. At the same year, Liu et al. [22] built an ANN which
contained feed-forward multilayers to estimate bone age from
digital left hand-wrist radiographs. Somkantha et al. [23]
employed boundary information of carpal bone X-ray images
to assess bone ages in young children. All these boundary
features were processed by the Support Vector Regression
(SVR) model to evaluate the bone ages. In 2012, another bone
age cluster assessment system utilizing a fuzzy neural net-
work (FNN) was presented by Lin et al. [24]. The phalangeal
segmentation images were used for the system to predict
bone ages. Seok et al. [25] constructed another automated
bone age determination system using left hand-wrist radio-
graphs in 2012. They first located the feature positions from
input images using Scale Invariant Feature Transform (SIFT).
Then, they proposed a Singular Value Decomposition based
feature vectors to represent those features. After that, all these
feature vectors were taken as input into a Neural Network
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classifier to predict bone ages. Davis et al. [26] also proposed
a decision tree classifier to predict bone stages by salient
radiographic features in 2012. Then, they recreated ages using
the standard TW3 approach. Harmsen et al. [27] also built
a SVM based model to predict bone age with epiphyseal
regions of the hand. They evaluated their models comparing
with k-nearest neighbor (k-NN) classifier on hand radio-
graphs of 30 diagnostic classes. In 2014, Cunha et al. [28]
used ensemble techniques to improve bone age assessment.
They extracted feature descriptors from each finger joints.
Then, these descriptors were combined using various ensem-
ble schemes to obtain an estimated bone age. According to
their reports, the combination of bagging and a rule-based
regression achieved the best results. Bone age estimation also
extended research attention from X-ray images to MRI. For
example, Ebner et al. [29] proposed multiple random regres-
sion forests to locate the joints in a hand MRI via anatomical
landmarks. There are still several more bone age assessment
projects using conventional machine learning techniques.
Although these methods achieved compelling results, they
are still not completely automated systems. Moreover, only
few deep learning based methods have been applied to solve
bone age estimation [19]. Hence, more fully automated deep
learning based approaches are necessary to investigate bone
age assessment in current medical image areas.

Ill. DATA AND METHOD

A. DATA PREPARATION

In our experiments, all hand and wrist radiographs were
obtained from patients with adolescent idiopathic scolio-
sis (AIS) undergoing treatment in a tertiary scoliosis clinic.
Although all images were of the left hand and wrist, many
have different resolutions and positions. A total of 400 radius
images and 600 ulna ones were retrieved which also contain
label information. The sample image is shown in Fig. 1.

Based on the refined DRU classification system [11], [12],
the DRU were graded from RI1-R11 and UI1-U9.
Sample images of radius and ulna at each stage are illustrated
in Fig. 2. Data regarding standing height, sitting height, arm
span, radius length, and tibia length during all these epiphysis
maturity stages were collected. All the growth change infor-
mation of the radius and ulna at different maturity stages are
listed in Table 1.

It is not necessary to identify the bone age stages in such
exhaustive division. In most clinical applications, identifying
peak growth angrowth cessation is more important for AIS
patients since it can be used to judge for initiating or ter-
minating brace-wear. According to Table 1, the growth peak
period for radius is around R7 stage and ulna is around U4 or
US stage. Besides, the growth cessation period for radius is
around R9 or R11 stage and ulna is around U9 stage. Then,
we can re-define the maturity periods of the radius and ulna
base on the above analysis in the following:

(1) The development of radius is graded as 4 periods:

o growth early period including R5 and R6 stages

o growth peak period including R7 stage
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FIGURE 1. Hand radiograph samples of different resolutions and positions.

R1 R2 R3 R4 R5 R6
R7 R8 R9 R10 R11

U1 U2 U3 U4 U5 U6
U7 us U9

FIGURE 2. Each stage samples of radius and ulna.

o growth cessation period including R9 stage

o growth maturation period including R11 stage
(2) The development of ulna is graded as 3 periods:
o growth peak period including U4 and U5 stages
o growth transition period including U7 stage

o growth maturation period including U9 stage

VOLUME 6, 2018

The sample radiographs of each developing grade are dis-
played in Fig. 3.

For the radius radiographs dataset, 75 images of early
growth period were gathered from 33 images of R5 stage
and 42 images of R6 stage which closely resembled RS.
We collected 75 images from the R7 stage and 175 images
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TABLE 1. Growth changes of radius and ulna at different maturity stages.

Growth Change Radius Stages | Ulna Stages
Initial Visible Stage RS U2
Chronological Age Interval Between Two Stages 1.1 years 1.1 years
Mean Bone Age Interval Between Two Stages 1.5 years 1.3 years
Standing Height R7 U4
Sitting Height R7 us
Growth Peak Arm Span R7 U4
Radius R7 us
Tibia R6 us
Standing Height R9 U9
Sitting Height R9 U9
Growth Cessation | Arm Span R11 U9
Radius R11 U9
Tibia R9 U9
Growth Periods Early(R5) Peak(R7) Cessation(R9) Maturation(R11)
Radius
Growth Periods Peak(U5) Transition(U7) Maturation(U9)

Ulna

FIGURE 3. New stages of radius and ulna epiphysis maturity grades.

from RO to create the peak growth period and growth cessa-
tion period respectively. Also, 75 images were selected from
the original R11 stage to build the maturation period. There
were 400 radius X-ray images in total. They were separated
as: 100 images which were randomly selected equally from
the above four periods as testing samples and 300 images
treated as training samples. The separation details are listed
in Table 2 and Fig. 4(a).

TABLE 2. Samples distribution of radius developing grades.

Growth Periods Early Peak Cessation Maturation
Training Samples (300) 50 50 150 50
Testing Samples (100) 25 25 25 25
Total (400) 75 75 175 75

For the ulna radiographs dataset, we collected 191 images
from the U4 and US stages and selected 9 images from
the U6 stage which resembled the U5 stage. There were
finally 200 images of early growth period. 250 images were
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chosen from the U7 stage to be composed as growth transition
period. Also, we combined 138 images from the U9 stage
and 12 images from the U8 stages to construct the growth
maturation period samples. We collected 600 ulna X-ray
images in total. Then, we randomly selected 150 images
equally from the three periods to establish as testing samples.
The remaining 450 images were used as training samples.
The details are showed in Table 3 and Fig. 4(b).

TABLE 3. Samples distribution of ulna developing grades.

Growth Periods Peak Transition Maturation
Training Samples (450) 150 200 100
Testing Samples (150) 50 50 50
Total (600) 200 250 150

B. SAMPLE BALANCE AND DATA AUGMENTATION
For our original clinical DRU dataset, we collected around
1000 image samples in total. However, these data samples
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[ Testing Samples
Training Samples

Early Peak Cessation Maturation

Radius Bone Age Periods
()

[ Testing Samples
[ Training Samples

Maturation

Early Transition
Ulna Bone Age Periods

(b)

FIGURE 4. Radius and ulna samples distribution in each growth period. (a) Radius samples distribution. (b) Ulna samples distribution.

were not well balanced between each category (growth
period). Networks cannot learn useful enough features from
categories with less samples. It will affect networks perfor-
mance negatively. To solve this problem, oversampling the
less prevalent data can balance the dataset samples. In our
training dataset, radius data distribution was 50, 50, 150 and
50 of each group. This data was balanced to be 150 in each
maturity period. The ulna dataset contained 150, 200 and
100 of each period which was balanced with all data as
200 images.

In our experiment section, we explored numerous deep
neural networks with various configurations to evaluate their
performance. When training deep networks, we needed suffi-
cient training data in order to prevent overfitting issues. More
specifically, some data augmentation transformations such
as translations and rescale was used to enlarge the training
dataset in the experiment section. Finally, for the radius

training dataset, we obtained 750 radius images of each bone
age period. Also, 1000 ulna images of each period were
collected in the ulna training dataset. The details of radius
and ulna data distribution are shown in the Tables 4 and 5 and
Fig. 5.

C. METHOD

The original X-ray images were taken on the whole hand and
wrist area as illustrated in Fig. 1. Besides, images were of dif-
ferent resolutions and sizes. It was too large to use the original
radiographs as input for the CNN models directly. For exam-
ple, there were two representative resolutions: 1400 x 900,
989 x 1302. However, the radius and ulna information were
assessed within a small region of original X-ray images only.
Furthermore, these regions have almost identical sizes and
fixed locations. To reduce other irrelevant regions’ negative
influences, we first decided to use object detection tools to

TABLE 4. Radius training data distribution after balance and data augmentation.

Bone Age Periods (Radius) Early Peak Cessation Maturation Total

Original Training Data 50
After Data Balance 150
After Data Augmentation 750

50 150 50 300
150 150 150 600
750 750 750 3000

TABLE 5. Ulna training data distribution after data balance and augmentation.

Bone Age Periods (Ulna) Peak Transition Maturation Total

Original Training Data 150
After Data Balance 200
After Data Augmentation 1000

200 100 450
200 200 600
1000 1000 3000

VOLUME 6, 2018
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FIGURE 5. Radius and ulna training data distribution after data balance and augmentation. (a) Radius training data distribution. (b) Ulna training

data distribution.

extract distal radius and ulna regions. Then, we used the
detected image segments to cut out the radius and ulna regions
separately and resized them into identical resolutions. After
obtaining the radius and ulna regions images, new labels were
assigned to them and saved in a file. Finally, we used the
data to train CNN to predict the bone ages and visualize the
final outputs. The whole architecture of the proposed system
is illustrated in Fig. 6.
The proposed bone age assessment system mainly included
the following key steps:
1) Data preparation
2) Object detection model which extracted distal radius
and ulna regions from hand radiographs
3) Automatic clipping distal radius and ulna regions and
to resize them
4) CNN-based classifier to predict bone age stages
5) Final output visualization

The above steps can be summarized into one flow diagram
displayed in Fig. 7.

1) ROI DETECTION

In our proposed bone age assessment system, distal radius
and ulna regions were extracted separately from original hand
and wrist X-ray images. These regions were inputted into a
CNN to do bone age prediction. Therefore, their resolutions
were resized identically i.e. 128 x 96 in our experiment.
To detect these distal radius and ulna regions, we chose to
use the Faster R-CNN algorithm [20]. The basic network was
ZFNet [30]. It had 5 shareable convolutional layers. The first
convolutional layer had 96 filters with 7 x 7 size. Then it was
followed by a 3 x 3 max pooling layer. The second convolu-
tional layer contained 256 filters with 5 x 5 size. A 3 x 3 max
pooling layer was attached to the preceding layer. The strides
were 2. Then, three 3 x 3 convolutional layers were added to

@0 0D
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Input Detection Model ROI Crop

FIGURE 6. The whole architecture of our proposed deep learning system.

Classification Model
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(Faster R-CNN)

Classification
Model
(CNN)

Input Hand
X-ray Images

Results
Visualization

(Start ) DRU Crop Identical
a Size
Regions Resize DRU

Images

FIGURE 7. Framework of bone age assessment system.

the model. They have 384, 384 and 256 filters respectively.
The strides were all 1. After this, a 3 x 3 convolutional
layer was attached to these shared convolutional layers. Then
it was followed by two sibling 1 x 1 convolutional layers.
The score of proposed regions and the bounding box was
presented as output in the end. The above network structure
was the so-called Region Proposal Network (RPN) which
was used to extract regions of interest (ROI). The shareable
convolutional layers and ROI information were passed into
the ROI pooling layer. Then, it was followed by two fully
connected layers which have 4096 neurons on each layer.
Finally, the network showed the classified score and bound-
ing box coordinates as output. The above network structure

Input
ZFNet Feature Vector
5 Shareable 256-d
Conv. Layers| ——
\\ ---------
| 7 T
L
I" I:I _________________
{ \
_________ R
Input
with
Proposals

Feature Maps

is known as Fast R-CNN [31]. It predicted the exact ROI
bounding box position and corresponding categories. In our
proposed example, we set 3 categories which included radius,
ulna and background. The proposed object detection model
structure is shown in Fig. 8. The detection model was trained
by back-propagation and stochastic gradient descent (SGD)
with mini-batch data. The initial learning rate was set as
0.01 and all layer weights were randomly initialized from a
Gaussian distribution. The first step was to train RPN with
8000 iterations and to train Fast R-CNN with 4000 iterations
as the second step. Then, the third step was to train RPN with
another 8000 iterations and finally the fourth step to train Fast
R-CNN with another 4000 iterations.

Proposal
Region

1
]
1
1
7
’
’

-
-

softmax

-
-\
= a
Feature . |:|
Pooling bboxreg. Output

FIGURE 8. The proposed object detection model structure (Faster R-CNN).
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FIGURE 9. The proposed CNN classification model structure.

2) SKELETAL MATURITY CLASSIFICATION

CNN is a multiple-layer neural network model. It includes
an input layer, hidden layers and an output layer. Normally
hidden layers consist of one or several convolutional layers
and pooling layers alternately followed by one or several
fully connected layers. The features of input images can
be extracted by convolutional layers and pooling layers can
reduce data dimensions and improve feature invariants. Fully
connected layers are used to choose useful features to con-
struct mapping relations between previous layers and final
outputs. The proposed CNN classification model configura-
tion is illustrated in Fig. 9. In our experiment, the proposed
network configuration included: input data with the DRU
image size of 128 x 96, the number of convolutional layers
was 4 or 5, convolutional kernel sizes were chosen as 7 x 7,
5x 5,3 x 3 (ZFNet) or all 3 x 3 (VGGNet) [32]. The number
of convolutional kernels were selected as 32, 64 and even 128.
Each convolutional layer was followed by a 2 x 2 max pooling
layer. Two more fully-connected layers in which the size
was set as 4096 or 1024 with or without Dropout [33] were
added into the model. ReLU was used as active functions.
In this work, we employ the index, accuracy, to evaluated the
performance of the proposed model. Accuracy is calculated
by (TP+TN)/(TP+TN+FP+FN), where TP=True Positive,
TN=True Negative, FP=False Positive, and FN=False Neg-
ative. False positive is a classification result that indicates a
given condition exists, when it does not, and false negative is
a classification result that indicates that a condition does not
hold, while in fact it does. The best performance parameters
configuration for our proposed system are described in the
following section.

IV. EXPERIMENT AND RESULTS

A. EXPERIMENT CONFIGURATION

Our experiment was implemented on Ubuntu 16.04 system.
CPU is Intel® Xeon® CPU E5-1620 v3. Its CPU frequency
is 3.5GHz, GPU is NVIDIA Quadro M4000, CUDAS.0,
cuDNNS5.0. Detection task was based on Caffe framework,
and classification task was based on Theano, Lasagne Deep
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Learning framework. In the training process, we used the
Adam optimization algorithm [34] and minimized the multi-
ple classification cross-entropy loss function. Adam is a kind
of self-adapted parameters update algorithm which includes
3 parameters: learning rate and two decay parameters. They
were initialized as 0.0001 and 0.9, 0.999 in our experiment.
The weight matrix W initialized with Xavier uniform distri-
bution, and the bias b uses O as the initialization value. These
parameters were updated using mini-batch with size of 16.

B. CLASSIFICATION RESULTS

1) MODEL PERFORMANCE WITH SAMPLE BALANCE

In this subsection, we used the above two different datasets
(balanced & unbalanced) to verify the performance in some
basic neural network models. The basic network structure in
our experiment was as follows: 4 convolutional layers and
2 fully-connected layers. Our network detailed configuration
was: the first convolutional layer with 32 filters with size
7 x 7. The second convolutional layer contained 64 filters
with size 5 x 5. The third one was 64 filters with size
3 x 3, and the fourth one was 32 filters with size 3 x 3.
The sizes of two fully-connected layers were 4096 and 1024.
The output size was set as 3. Each convolutional layer was
followed by a 2 x 2 max pooling layer. The experiment results
are displayed in Fig. 10.

From the above experiment results, there was only tiny
accuracy improvement after data balanced. However, during
the training procedure, the balanced samples convergence
speed was faster than unbalanced samples convergence speed.
In Fig. 11(a), the unbalanced data experiment started to
converge around 40 iterations. But, according to Fig. 11(b),
the balanced data experiment began to converge after 20 itera-
tions. This indicated that data balance was effective and time-
saving when training neural networks.

2) MODEL PERFORMANCE WITH DATA AUGMENTATION

In our experiment, we used translations and rescale tricks to
enlarge the radius and ulna training dataset 5 times more.
This led to 1000 samples in each category and 3000 samples

VOLUME 6, 2018
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Unbalanced Samples(Original) As shown in Fig. 12, data augmentation helped to improve
Balanced Samples the model’s performance significantly. In the rest of the exper-
% ] 83 84 iment section, we composed new experiments with the dataset
7,7 F—————— e T SR after data augmentation. Even more, data augmentation also
704 687 107 | | | accelerated the models’ convergence speed during training.

We used the same network configurations with identical
| Y R s I B B parameters only except for the training data (with/without
augmentation). As shown in Fig. 13, the training loss of mod-
els which fed with augmented data decreased dramatically
1 rr { | 1 | after about 10 iterations. On the other hand, the training loss

of models which trained with original data reduced towards
"""" zero after 30 iterations.
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| For this bone age assessment task, we wanted to determine
Y - g the best performance network configuration in the subsec-
Radius . Ulna tion. There were several factors which influenced the model
ROI Regions

performance such as the number of neurons in fully con-
FIGURE 10. The network performance with different data sample nected layers, the size of convolutional kernels, the number of
distributions. convolutional layers and Dropout techniques. We compared
seven different network configurations of prediction accuracy
in total. Also, we compared the performance of the above and chose the best one. The experiment results are recorded

two datasets with a basic neural network model. The model in Table 6.
contained 4 convolutional layers and 2 fully connected layers. In the above table, the column of Convolutional
The comparison result is posted in Fig. 12. Layer stands for the convolutional layers configuration.
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FIGURE 11. Convergence speed comparison of unbalanced samples and balanced samples. (a) Unbalanced Data. (b) Balanced Data.

TABLE 6. Various network configurations in the experiment.

Net No. . Network Configurations
Convolutional Layer Fully-Connected Layer
1 32¢7-64c5-64c3-32¢3 1024-1024
2 32¢3-64c3-64c3-32c3 1024-1024
3 32¢3-64c3-64¢3-128c¢3-128¢3 4096-1024
4 32¢7-64c5-64c3-128¢3-128c3 1024-1024
5 32¢5-64c5-64¢5-128c¢3-128¢3 1024-1024
6 32¢5-64c5-64c5-128c¢3-128c3-128c3 4096-1024
7 32¢3-64¢3-64¢3-128¢3-128c3-128¢3 1024-1024
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FIGURE 12. The network performance with/without data augmentation.

For example, ““32c7-64c5-64c3-32¢3” means it has 4 con-
volutional layers. The first layer (32c¢7) represents 32 fil-
ters with size 7 x 7. The stride is 1. Each convolutional
layer is followed by a 2 x 2 max pooling layer. Besides,
the column of Fully—Connected Layer represents a differ-
ent combination of fully—connected layers. For instance,
“1024-256” means there are two fully-connected layers
with the size of 1024 and 256 respectively. During training
procedure, we used the Adam optimization algorithm to
minimize the loss function. The learning rate and two decay
parameters of Adam algorithm were set at 0.0001 and 0.9,
0.999 respectively. The weight matrix W was initialized with
Xavier uniform distribution. Also, bias b was set equal to O at
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the beginning. The classification results of the radius and ulna
are displayed in Fig. 14.

From the above experiment results, we can observe that
the radius classification result has the best performance
0f 0.92 on No. 3 network classification and ulna classification
performs the best which is 0.88 on No. 4 network classifica-
tion. The results illustrate that deeper networks cannot guar-
antee higher classification accuracies. It also explains that
the appropriate network configuration for DRU classification
should be decided after various experiments with different
network structures. Additionally, networks that use Dropout
will also help improve the classification accuracy.

4) MODEL PERFORMANCE WITH VARIOUS OPTIMIZATION
ALGORITHMS

In this subsection, we compared classification accuracies
with several optimization algorithms including: Stochastic
Gradient Decent (SGD), Adam, Nesterov’s Accelerated Gra-
dient (Nesterov), Adaptive Gradient (AdaGrad), RMSprop
and AdaDelta with different learning rates. The No. 3 and
No. 4 network configurations for the radius and ulna were
used in this part. The experiment results are displayed
in Fig. 15. Based on the experiment results, Adam performed
better than any other optimization algorithm in our bone age
classification task.

We also verified the network (No.3 and No.4) perfor-
mances with Dropout techniques on the selected optimization
techniques. Adam, SGD and RMSprop were chosen as the
top 3 optimization algorithms to be tested in the following
experiments. The results are displayed in Fig. 16. We can
say that Dropout will help the network achieve higher clas-
sification accuracy. Moreover, Dropout technique helps the
proposed model achieve a stable loss value during training.
Experiment results are displayed in Fig. 17. In a word, Adam
with Dropout performs slightly better than the other two
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FIGURE 13. Training loss of models trained with or without data augmentation. (a) Radius. (b) Ulna.
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FIGURE 14. Radius and ulna classification results of different network configurations. (a) Radius. (b) Ulna.
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FIGURE 15. Radius and ulna classification accuracy with diverse optimization algorithms and learning rates. (a) Radius. (b) Ulna.

algorithms with Dropout. Radius classification accuracy can
achieve 92% and ulna classification accuracy finally reaches
the maximum value of 90%.

Besides all the experiments described above, we also want
to explore the proposed model performance according to
different number of training samples. We collected different
training set sizes including 800, 1500, 2000, 2500 and 3000.
All other model configurations were kept identical except

TABLE 7. The best radius and ulna classification accuracy results.

training samples. The classification accuracies are reported
in Fig. 18. We can make a conclusion that the highest accu-
racies are always achieved by models with 3000 training
samples.

To summarize the performances of different experiment
configurations in this section, we can conclude that the best
network configurations for radius and ulna classification
tasks are listed in Table 7.

Net No. Optimization Algorithms Learning Rate Training Sample Amounts Classification Accuracy

Radius 3
Ulna 4

Adam + Dropout
Adam + Dropout

0.0001
0.001

3000
3000

92%
90%
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FIGURE 16. Three selected optimization algorithms (Adam, SGD and RMSprop) performance with dropout. (a) Radius. (b) Ulna.
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FIGURE 17. Training loss value of model training with/without dropout. (a) Radius. (b) Ulna.

V. DISCUSSION

A. ERROR ANALYSIS

In this section, we used confusion matrix to perform error
analysis and then computed recall rate and accuracy of each
bone maturity stage. For example, two confusion matrices
have been created for the experiment accuracies of radius
(0.90) and ulna (0.87) classification in Fig. 19. In the

TABLE 8. Recall and precision rate of radius classification results at each stage.

confusion matrix, the rows stand for the accurate labels. The
predicted labels are denoted by the columns. The value at
row i and column j represents the true label is i which is
predicted as j. The diagonal line in the matrix contains the
number of correct classification results.

The recall and precision rate of radius and ulna classifi-
cation results can be calculated from the above confusion

Growth Periods 0-Early 1-Peak 2—Cessation 3-Maturation
Recall 0.88 (22/25) 0.76 (19/25) 0.96 (24/25)  1.00 (25/25)
Precision 0.85(22/26) 0.86(19/22) 0.92 (24/26) 0.96 (25/26)
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FIGURE 18. Classification accuracy of the proposed model with different
size training datasets.

matrices. The classification errors are mainly caused by
adjacent maturity stages which have high similarity in the
X-ray images. The recall and precision rate are summarized
in Tables 8 and 9.

B. COMPARISON WITH OTHER METHODS

The results of comparison with other methods are shown
in Table 10. As for the test accuracy, our method is sig-
nificantly superior to other methods. Comparing with the
traditional methods [7], [9], [10], the greatest advantages of
our method is its high efficiency and time saving. Once the
proposed automated skeletal maturity recognition system is
established, it can work without involving manual work. The

Confusion Matrix, without normalization

25

True Label

r10

T —-0
Q ~ v 2
Predicted Label

(a)

TABLE 9. Recall and precision rate of ulna classification results at each
stage.

Growth Periods
Recall
Precision

0—Peak 1-Transition 2-Maturation
0.92 (33/36) 0.88 (28/32) 0.81 (26/32)
0.92 (33/36) 0.76 (28/37) 0.96 (26/27)

TABLE 10. Comparison of accuracy with others methods.

Growth Periods Our methods Ref.[19] Ref.[35]
Radius 92% 88% 75%
Ulna 90% 87% 76%

disadvantage of the proposed model is that its performance
relies heavily on training samples with high quality. However,
a large of labeled samples with high quality are always dif-
ficult to collect. Our future work will focus on the optimised
model which can work with limited training samples.

VI. CONCLUSION

In this study, we utilized hand and wrist radiographs and
DRU data to train CNN for automatic analysis of skeletal
maturity. Our proposed system can improve the bone age
assessment efficiency, reduce doctor’s workload and assist
physicians’ clinical decisions. The best performance of the
system achieves a radius classification accuracy of 92%
and an ulna classification accuracy of 90%. Moreover,
the classification errors by confusion matrices were analyzed.
Although performing well, our system still has some limita-
tions. For example, early growth stage data were limited for
training our model. Also, the detected distal radius and ulna
regions contain noise which influences the final prediction
accuracy of our model. In future work, we will consider

Confusion Matrix, without normalization

30
ol 3 0
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@
K 3 1
2 1
£ L s
b 10
i 0 6
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(b)

FIGURE 19. Confusion matrices of radius and ulna classification results. (a) Radius. (b) Ulna.
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implementing more robust deep learning based systems to
overcome the above issues. For example, more patients’ fea-
tures (e.g. standing height, sitting height and arm span) can
be involved in the classification procedure. Even deeper and
more complicated network models can be chosen to perform
skeletal maturity classification tasks. This has high likelihood
of achieving better bone age assessment results.
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