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ABSTRACT The fixed-time strategy is crucial in traffic signal control which applies signal plans to
different time periods of the day. One critical step is to determine the optimal breakpoints to divide one
day into periods with homogeneous traffic flow. Most existing methods are based on k-means clustering
algorithm and have to select the optimal number of clusters. Since direct k-means and time-incorporated
k-means clustering will result to noncontiguous time periods, several adjustments are needed including
further partitioning and re-clustering via empirically adjustment which merges short time periods into
adjacent longer ones to finalize the time-of-day (TOD) partition plan. Such adjustments can make the
previous optimal number of clusters selection suboptimal. This paper proposes an enhanced method to
determine optimal TOD breakpoints through optimizing the process. Instead of choosing the optimal
partition plan before adjustments, we propose to determine the optimum after all the adjustments. A case
study based on Qingdao City in China is presented to evaluate the added value of the enhanced method.
It is shown through simulation experiments that the enhanced method can avoid over-partitioning and
substantially improve the traffic operational efficiency especially during high demand periods.

INDEX TERMS Time-of-day, TOD breakpoint, k-means clustering, empirical adjustment.

I. INTRODUCTION
Traffic signal control is one of the most effective methods
to ensure the safety and improve the mobility efficiency
in urban transportation systems. A large number of traffic
signal control systems have been designed, which can be
divided into online and offline systems. Online systems use
traffic information collected in real-time from loop detectors
to develop responsive signal control strategies [1]–[3]. They
can conduct short term traffic flow forecasting based on
real-time and historical data [4]–[6]. With the forecasting
results, an optimal signal timing plan can be presented with
specific control strategy and target. Online systems can be
quite effective when facing high fluctuation of the traffic
flow, and can improve the operation efficiency of one isolated
intersection or even an area especially for peak hours.

However, the loop detectors usually suffer from a fairly
high level of failure rate, and the failure rates were reported
to be between 24-29% in different states in the United
States (U.S.) [7], [8]. Additionally, for the 12,225 traffic
signals in New York, more than 95% of them are offline pre-
timed, with no detectors deployed at these intersections [9].
Due to many practical issues, a lot of current signal control
systems take the fixed time strategy as alternative option,
which will be operated when the loop detectors or the fibers
to transfer the data from loop detectors become invalid.
In addition, the fixed time strategy is also recommended for
low traffic demand and is operated between adaptive control
periods [10].

In recent years, many emerging sensors such as wireless
magnetic sensors, video-imaging sensors, mobile sensors
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have been used to obtain traffic flow data [11]–[14]. Although
these sensors can provide more stable and reliable traffic
flow data, they are not connected with existing traffic signal
control systems therefore cannot be used for responsive traffic
signal control strategies.

The offline systems use historical traffic data as inputs to
generate signal plans, and are implemented with fixed time
strategies [15], [16], which consist of two steps: (1) deter-
mine the optimal breakpoints to divide one day into periods
with homogeneous traffic flow, i.e., to determine time-of-
day (TOD) plan; and (2) generate the signal timing plans
off-line based on traffic conditions within each time period.

In summary, fixed time strategy is still a crucial component
in traffic signal control practice. A significant amount of liter-
ature has been devoted to signal timing plan optimizationwith
various control objectives including delay time minimum,
queue length management, and output maximum for both
online and offline systems [17]–[20].

This paper focuses on the other major task for fixed time
strategy, i.e., the TOD breakpoint optimization. Although the
TOD breakpoint optimization can be crucial for operating
efficiency of traffic signal under certain conditions, most
existing literature on signal control has been focusing on
responsive traffic signal control especially in recent years and
limited attention has been paid to this practically important
problem. Since there would be many feasible TOD plans,
the optimization problem is not easy to solve. A good solu-
tion to the time-of-day breakpoints optimization problem can
significantly improve the operating efficiency of traffic signal
control systems.

II. LITERATURE REVIEW AND MOTIVATION
In the current practice, the experience of traffic engineers and
an imprecise analysis of traffic volume data usually deter-
mine the current day plan schedules [21], [22]. Specifically,
the time of one day is usually spilt into morning peak-hour
interval, flat-hump interval, evening peak-hour interval, and
off-peak hour interval, which is the general fluctuation pattern
within a day [23], [24]. The methods have been proved to
be feasible and usually perform well in actual applications.
However, they are hard to automate this method as it entirely
relies on engineers’ subjective judgment.

There are also some algorithm-based approaches, which
can be divided into two categories in terms of methodol-
ogy: artificial intelligence and clustering. The former kind
of approaches, such as genetic algorithm (GA) [25], [26],
can have good operational performance and computational
efficiency, but the results often have to be modified manually
due to premature convergence issue [27].

The majority of existing methods for TOD break-
points optimization are built upon clustering methods.
Smith et al. (2001) first used direct k-means (DKM) cluster-
ing method, which is the most common clustering analysis
method, to divide intervals of one day into similar groups;
the method takes the traffic flow and time occupancy in each
time interval as input [28]. The DKM cluster-based methods

are semi-intelligent as the total number of groups or clusters
(denoted by k) has to be set in advance. Later, many other
clustering methods were introduced to improve the method
proposed by Smith, including improved k-means clustering
with subtraction, and spectral clustering [29]–[32].

These methods can generate the optimal breakpoints plan
for given number of clusters. Some researchers have recently
used two ways to determine the final optimal plan across dif-
ferent values of ks. One is to select the final optimal number
of clusters by comparing performance of plans given different
values of ks through simulation experiments [33]. The other
is to identify optimal number of clusters through statistical
methods such as ‘‘elbow’’ method, silhouette measure and
gap statistic [34]–[37]. The latter two methods require the use
of a ‘‘reference distribution’’ which has to be chosen by the
researchers and they may not work very well in practice [38].
As a result, ‘‘elbow’’ method is often used. The ‘‘elbow’’
method plots the sum of intra-cluster variances versus number
of clusters and pick the optimal number of cluster as the
‘‘elbow’’ point which uses smallest number of clusters to
explain most of the variances in the data.

In the conventional methods above, the optimal number
of clusters is selected by ‘‘elbow’’ method after applying
k-means clustering across different numbers of clusters.
However, as most of the existing methods above have not
explicitly treated the traffic data as time series data, the sam-
ples of traffic data belonging to the same cluster may need
to be further divided into different time periods, since they
are not contiguous in the time dimension. In consequence,
the number of resulting time periods is usually greater than
the corresponding number of clusters, and it often leads to
short time periods. These short time periods should bemerged
into their neighbors, as frequent transitions between different
signal timing plans may harm both the safety and operational
performance. In actual applications, the merging procedure
can be based on engineers’ subjective decisions or some
rules and is called empirical adjustment. For convenience,
the TOD plans before and after empirical adjustment are
regarded as original and final plans. Due to the noncontiguous
issue and the need of empirical adjustment, the final plan can
deviate a lot from optimal number of time periods or clusters
determined from the ‘‘elbow’’ method. Therefore, the final
plan would likely be suboptimal.

Guo et al. (2014) considers the time of traffic occurring as
the additional dimension of input in clustering analysis, called
as time-incorporated k-means (TKM) [27]. TKM might mit-
igate but can not eliminate the issue of having noncontiguous
time intervals within one cluster from the clustering result.
The mitigation comes from the increased sum of intra-cluster
variances if noncontiguous time intervals are selected into
one cluster as the differences in time of traffic occurring will
be large. It is obvious that it cannot eliminate the issue as
TKM does not add constraints or reformulate the problem to
directly partition the time-of-day into contiguous time peri-
ods. Since the noncontiguous time intervals still exist, addi-
tional steps are still needed to adjust the clustering results.
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The enhancement for DKM can also be applied with TKM to
improve its performance.

The primary purpose of this paper is to enhance the existing
approach of determining TOD breakpoints through optimiz-
ing the whole process of the method. The main contribution
includes (1) illustrate the issue of traditional approach to
determine TOD breakpoints; (2) clearly illustrate the details
of necessary steps in k-means clustering based TOD break-
points method including further partitioning, re-clustering
via empirical adjustment, optimal cluster number determi-
nation through modified ‘‘elbow’’ method; (3) propose a
new approach through process optimization to enhance the
traditional approach. The remainder of this paper is organized
as follows: section three illustrates the main methodology
and the detailed process of the proposed method. In section
four, we will evaluate the added value of the proposedmethod
against the benchmark through a simulation-based case study
based on real data. In the end, we summarize the finding of
this paper.

III. TOD BREAKPOINTS OPTIMIZATION
Traffic volumes (or rate of traffic flow, measured in vehicles/
hour) at intersection approaches are the most commonly-used
clustering elements in existing TODbreakpoints optimization
studies [25]–[32], [39], [40], and we also follow the element
in this paper. Since k-means clustering algorithms, including
DKM and TKM could not deal with contiguous time series
data partitioning, several steps need to be taken to adjust the
results from k-means clustering including further partitioning
and empirical adjustment. As the whole processes based on
DKM and TKM are similar and also exist the same limita-
tions, they can be enhancedwith the same idea. In this section,
we just propose an enhanced method through optimizing the
whole process based on DKMclustering, and the TKM-based
method can also be improved in the same way. For each
possible number of clusters k (e.g., from 2 to 15), first apply
DKM clustering algorithm, then further partition each of
these clustering results into contiguous partitions, and then
conduct empirical adjustment to merge short time periods
into neighboring time periods, finally use a modified elbow
method to select the optimal partition results from all these
adjusted partitions which can be led back to those many
k-means clustering results with different values of ks at the
beginning.

The enhanced method starts with DKM clustering results
with various values of ks, then conduct further parti-
tioning and empirical adjustment for each of clustering
results respectively, finally select the optimal partition results
(TOD plans). The traditional method also starts with
DKM clustering results with various values of ks, then it
selects the ‘‘optimal’’ k or ‘‘optimal’’ clustering results.
Further partitioning and empirical adjustment is applied on
this ‘‘optimal’’ clustering results therefore the final partition
result is likely suboptimal. The framework of the comparison
between traditional and enhanced method is shown in Fig.1.
Both the traditional and enhancedmethods contain four steps,

FIGURE 1. The framework of the comparison between traditional and
enhanced method.

but some differences still exist in the order of the steps. In the
end of this section, we also present overall summary of the
traditional and enhanced methods.

In this paper, we follow the common practice that uses data
from a historical day as input for TOD breakpoints optimiza-
tion.More specifically, we divide one-day data into1-minute
intervals and there are T intervals in total (T = 1440/1) for
one day. For a specific intersection, there would be multiple
lanes from different directions. So the data would be a matrix
with rows representing the lanes and columns representing
the (1-minute) time intervals.

A. CLUSTERING
Let X be the matrix of the entire data and X =

(x1, x2, · · · , xT ) where xt is traffic flow for t-th time interval.
The k-means clustering method is to find an optimal solution
for the following problem [40], [41].

min
G1,G2,··· ,Gk

k∑
i=1

∑
xt∈Gi

‖ xt − E(xt ) ‖2 . (1)

where Gk is the k th time period; k is the number of clus-
ters, which should be fixed before the clustering, k ∈ N+;
G1

⋃
G2

⋃
· · ·

⋃
Gk = X = (x1, x2, · · · , xT ) and

Gp
⋂
Gq = ∅; ‖ ‖2 is l2 norm of a vector andE is expectation

over T time intervals. Any k-means clustering algorithm can
be used to solve this problem [43]–[45]. We don’t elaborate
the solution algorithm here.

To determine optimal TOD plan, we apply k-means algo-
rithms on the data with different inputs of k , and use statistical
methods such as elbow or silhouette to determine which
inputting number of clusters is optimal. It often requires to
explain most variances among data (minimizing sum of intra-
cluster variances) with few number of clusters. More details
about selecting optimal number of clusters can be found in the
section D. However, due to issues of using k-means algorithm
for partitioning time series data, additional steps are needed
to finalize the TOD plan. Therefore, the evaluation of optimal
number of clusters at this stage would be sub-optimal.
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B. FURTHER PARTITIONING
Due to noncontiguous issue of resulting clusters from apply-
ing k-means clustering algorithms on time series data, both
traditional method and enhanced method need to apply an
additional step to split or partition those time intervals within
the same cluster but not contiguous in time into separate par-
titions. For example, k-means clustering could cluster time
intervals inmorning peak and evening peak into one cluster as
the values of traffic flow during these intervals may be close
to each other, which obviously requires further partitioning.

The algorithm or procedure for further partitioning is very
simple. For example, In G1,G2, · · · ,Gk , if all the clusters
contain contiguous time intervals except that G1 contains
x1, x2, x3, x7, x8, x9 and G2 contains x4, x5, x6. Since G1 con-
tains noncontiguous time intervals, we have to further par-
tition G1 into G′1=(x1, x2, x3) and G

′′

1=(x7, x8, x9). Then we
order those new partitions in terms of time. We would have
a sequence of k + 1 partitions as G′1,G2,G′′1,G3, · · · ,Gk .
Fig.2 describes the pseudo code for further partitioning.

FIGURE 2. Pseudo code for further partitioning.

In the enhanced method, we would further partition for
each of many clustering results respectively. The resulting
number of partitions may be the same even if the starting
number of clusters are different. For example, both 3-means
clustering and 4-means clustering can result to 7 number of
partitions but their breakpoints can be quite different. Note
that in traditional method, there is only one clustering result
that is ‘‘optimal’’ considering clustering results before further
partitioning.

C. RE-CLUSTERING VIA EMPIRICAL ADJUSTMENT
After further partitioning, an issue of over-partitioning rises
as there might exist too many short time periods as shown
in Fig.3a. Due to safety and operational efficiency con-
cerns, frequent switching signal plans are not desired [27].
Therefore, an empirical adjustment is needed to merge short
periods into long periods and eliminate the short time periods.
Fig.3b shows the resulting partitions after empirical
adjustment.

Although it is common to adjust short periods after further
partitioning, no explicit algorithm has been provided in exist-
ing literature. In actual applications, those short periods are

merged to their adjacent partitions based on the experience
of the traffic engineers. This paper first present a detailed
empirical adjustment algorithm which can be used for both
traditional and enhanced method.

First we specify the desirable length of shortest time period
denoted by p (e.g., 12, which means 60 minutes). It’s an
iterated procedure and we use j to index iteration. Assume
that there are in total N (j) partitions for the whole day at
iteration j. A TOD partition plan at iteration j can be denoted
as Gj

= (Gj1,G
j
2, · · · ,G

j
i, · · · ,G

j
N (j)). G

j
i is the i-th partition

at iteration j. At beginning, j=1, and G1 can be written as
follows.

G1

= [x1, x2, · · · , xt11−1︸ ︷︷ ︸]
G1
1

[xt11
, xt11+1

, · · · , xt12−1︸ ︷︷ ︸]
G1
2

, · · · ,

[xt1i−1
, xt1i−1+1

, · · · , xt1i −1︸ ︷︷ ︸]
G1
i

, · · · [xt1N−1
, xt1N−1+1

, · · · , xT︸ ︷︷ ︸]
G1
N

.

(2)

Let l1i present the length of partition G1
i , then

l1i = t1i − t
1
i−1. (3)

As discussed above,G1
i should be merged to its former or lat-

ter partitions if l1i < p.
At the first iteration, we can have two alternative

TOD plans by merging G1
i to G1

i−1 or G1
i+1 for each short

partition or time period. The plan with a lower sum of inter-
partition variances should be selected, which is to solve the
following problem.

min
G∈{G+i ;G

−

i }

∑
G

∑
xt∈G

‖ xt − E(xt ) ‖2 . (4)

where G+i = (G1
i−1

⋃
G1
i ,G

1
i+1) and G−i = (G1

i−1,G
1
i
⋃

G1
i+1), which denote partition plans after merging to former

partition or latter partition respectively.
We keep iterating the procedure until the length of all

partitions are greater than p. We use j∗ to denote the index
of last iteration. The procedure is described as in Fig.4.

D. DETERMINE OPTIMAL TOD PLAN
In this section, we focus on how to determine opti-
mal number of partitions or optimal TOD plan for the
enhanced method by introducing the modified elbowmethod.
There have been many attempts to formulate a measure
of clustering performance in the past. The proposed mea-
sures include Calinski-Harabasz (CH), Davies-Bouldin (DB),
Weighted inter-intra (Wint), Akaike information criterion
(AIC), Bayesian information criterion (BIC), Deviance infor-
mation criterion (DIC), sum of intra-cluster variances (SIV).
By utilizing those measures, several methods have been pro-
posed to determine the optimal cluster number, such as the
elbowmethod, information criterion approach, and silhouette
method. The elbow method using SIV as the measure is
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FIGURE 3. (a) TOD plan with clustering; (b) TOD plan after adjustment.

FIGURE 4. Pseudo code for empirical adjustment.

used frequently in real world applications [46]. In this paper,
elbow method is selected to determine the optimal number of
clusters.

Assume that the whole day is finally divided into
k∗ partitions after empirical adjustment with k as the initial
number of clusters. Then, each k produces a final TOD plan
after further partitioning and empirical adjustment, and some
different ks will result to the final TOD plans with same
number of partitions, which means that each value of k∗ is
corresponding to multiple values of k . On the other hand,
some values of k∗ will do not relate to any final TOD plan.
From Fig.5, it can be observed that there are no partition
results at 2, 6, 9, and 11 partitions but there are more than
one partition results at 4, 5, and 10 partitions.

The SIV will decrease with the increasing of number of
partitions, and we always want to explain most of the vari-
ances by the smallest number of partitions. Thus, we can
still use the ideas from existing techniques such as elbow
method or silhouette to determine optimal number of parti-
tions. But we need to deal with two issues here. First there

FIGURE 5. Sum of intra-partition variances versus number of partitions.

might be several partition plans given the same number of
partitions from different initial inputs of k . Second, there
might be no partition plan at certain numbers of partitions.

For the first issue, we select the local optimal partition
plan, i.e. the one with lowest sum of intra-partition variances
among all partition plans with the same number of partitions.
For the second issue, we create quasi-value of sum of intra-
partition variances for those numbers of partitions where
partition plans are not available. It is created by extrapolating
linearly with the known values.

In the elbow method, the reduction in terms of intra-
partition variances from having an additional partition is
regarded as first-order marginal gain, which is diminishing as
the increasing of the number of partitions. We can determine
the optimal number of partitions by identifying the highest
second-order marginal gains. In other words, we want to find
the ‘‘elbow’’ point. We also call the second-order marginal
gain as acceleration in this paper and it is denoted by αk . For
k∗i−1, k

∗
i , k
∗

i+1, we denote that their local optimal sum of intra-
partition variances are vk∗i−1 , vk∗i and vk∗i+1 respectively, then
αk∗i

equals to zero if vk∗i − vk∗i−1 = vk∗i+1 − vk∗i .
If there is no partition plan at k∗, we will add a quasi-value

of sum of intra-partition variances assuming the reduction
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rate is linear therefore its acceleration is zero. Let that (k∗−m)
and (k∗ + n) are the closest number of partitions with at
least one partition plans before and after the k∗, then the
quasi-value of sum of intra-partition variances at k∗ can be
computed as

vk∗ = vk∗−m +
m · (vk∗+n − vk∗−m)

m+ n
. (5)

Given the set of sum of intra-partition variances with
different k∗ values denote as {v1, v2, · · · , vK∗} where K∗ is
max number of k∗, the acceleration of k∗ partitions can be
written as

αk = vk∗+1 − 2vk∗ + vk∗−1; 2 ≤ k∗ ≤ N ∗. (6)

Note that K∗ is different from kmax after two steps of
adjustments.

We choose the optimal number of partitions when the
acceleration reaches its maximum, which can be shown as
follows

K̂E = argmax
k

(αk ). (7)

where K̂E is the optimal number of partitions. Note that it’s
not just a number of partitions but it corresponds to a specific
partition plan.

E. SUMMARY
In summary, for the enhanced method based on DKM clus-
tering, we start from many initial values of ks which are
imputed into DKM clustering and adjusting each of those
many k-means clustering results respectively to have adjusted
partitioning results due to noncontiguous issue of clustering
algorithm. In the final step, we select which partition results
are optimal according to the sum of intra-cluster variances.
We use sum of intra-cluster or intra-partition variances to
evaluate the partitioning results in all these steps since it is the
objective of traffic signal control to have homogenous traffic
flow within each time period.

However, for the traditional method, we also start from
many initial values of ks which are imputed into DKM clus-
tering. The clustered results of DKM cannot be used directly
since a morning time period and an evening time period
can be put into the same cluster. However, the traditional
methodwould first choose which k is optimal based on result-
ing clusters. Then further partition and empirical adjustment
would be applied on clustering result of this single ‘‘optimal’’
ks clustering results.

The following Fig.6 and Fig.7 show the high level process
of twomethods. For detailed implementation of each part, one
can refer to previous subsections. The process and summary
based on TKM clustering are similar with DKM-clustering-
based method.

IV. QINGDAO-BASED CASE STUDY
In this section, we present a Qingdao-based case study to
show the added value of the enhanced method compared to

FIGURE 6. Pseudo code for traditional method.

FIGURE 7. Pseudo code for enhanced method.

the existing method. Simulation experiments are conducted
based on actual infrastructure characteristics and traffic flow
data of an intersection in Qingdao China.

The frequent-used time intervals for TOD breakpoints
optimization are 5 minutes and 15 minutes [47], which are
determined by the traffic flow data counting interval of the
traffic control system. The traffic flow data may changed
severely in a short time period, and a short counting interval
can result in more appropriate TOD breakpoints, ensuring
that the breakpoints are close to the severely changed time
points. Thus, a short time interval to counting traffic flow
is a better choice for TOD optimization than any longer
one. As the signal controller belonging to the studied inter-
section count the traffic flow data with 5-minute interval,
thus we presented the case study with 5-minute traffic flow
data.

A. BACKGROUND AND DATA
We collected the data at an intersection of Jiangxi Road
and Fuzhou South Road at Qingdao City in China. Detailed
information about this intersection is as follows. (1) There are
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two lanes at the east and west approaches, and there are six
and five lanes at the north and south approaches respectively.
The channelization and order phase sequence were shown
in Fig.8. (2) The length of four links, i.e., the north, south,
west and east approaches are 562m, 426m, 413m and 443m
respectively. (3) The intersection now implements a fixed-
time strategy, and a whole day is divided into four time
periods including morning peak hours, afternoon peak hours,
off-peak period and mid-night period. (4) There are no road-
side parking spaces.

FIGURE 8. Illustration of the intersection: (a) channelization; (b) phases
order.

The currently-used signal timing plan at the intersection
contained four time periods, namely, 0:00-7:00, 7:00-17:00,
17:00-20:00 and 20:00-24:00. Since there is no ‘‘no-turn-on-
red’’ restriction at this intersection, we ignore the right turn-
ing traffic. We use the traffic flow data from six lane groups
including through lanes of north and south approaches, left
turning lanes of north and south approaches, lanes of east
approach and lanes of west approach.

The Automatic Violation Detecting and Recording Sys-
tem (AVDRS) was installed at this intersection, and at
least one video-imaging detectors were assigned to each
approach. This new kind of detectors collects the lane-
based traffic flow, speed, and other parameters [48], and
we use the traffic flow data in July 2016 for the case
study. Fig.9a and Fig.9c show the traffic flow patterns of
six lane groups on July 4 and 5; Fig.9b and Fig.9d show
the aggregate traffic flow pattern of the same day. In the
latter part of the case study, our analysis focus on these
two days which have quite different traffic flow patterns.
On July 4, there are two peak hours, namely 7:30-8:30 and
17:30-18:00. On July 5 however, there is no palpable peak
hours.

B. TOD PLAN
We use the traffic flow data from six lane groups with five
minutes as the intervals, and calculate the TOD partition plan
using the two methods described in section 3. The optimal
number of clusters after k-means algorithms in traditional
method and the optimal number of partitions after all the
adjustments in enhanced methods for two test days are shown
in Fig.10. The elbow points can be identified by the maxi-
mum acceleration as defined in section 3. We can observe
that 3 is chosen to be optimal number of clusters which
is used for traditional DKM-based method but note that it
is not the final number of partitions after adjustments. The
enhanced DKM-basedmethod selects 6 to be optimal number
of partitions. Results for the traditional and the enhanced
TKM-based methods can also be found in Fig.10.
Fig.11 shows sixteen graphs of TOD partition results includ-
ing intermediate results. The first row of four pictures are for
July 4 and the second is for July 5 based on DKM algorithm.
The other eight figures are for the traditional and enhanced
TKM-based method.

Meanwhile, we calculate the sums of the intra-partition
variances for the final TOD partition plans with the traditional
and enhanced methods for the two days, which are shown
in Table 1.

TABLE 1. Sum of intra-variance of the final plans on different days.

From Table 1, we can see that the enhanced methods
for DKM or TKM result to smaller sum of intra-partition
variances for July 5, which implies that it is a better way to
determine the TOD breakpoints using the enhanced methods.
The number of partitions of the final TOD plan with the
traditional method on July 4, including DKM and TKM,
is twice as many as the enhanced methods; however, it just
brings a slight decrease in terms of the sum of intra-partition
variances, which implies that the traditional methods may
over-partition the time of day.We use simulation experiments
to illustrate the operational performance under two different
methods.

C. SIMULATION EXPERIMENTS
The most effective evaluation experiment is to collect and
analyze the actual traffic flow data under different plans
at one or more intersections during the same time periods.
However, such evaluation experiment, is not feasible in real
life for various reasons. For example, the traffic flow patterns
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FIGURE 9. (a) (c) traffic flow of six lane groups on July 4 and 5; (b) (d) aggregate traffic flow on July 4 and 5.

FIGURE 10. Optimal number of clusters for traditional and enhanced methods on July 4 and 5.

are different every day, it is impossible to select two days with
the exactly same traffic pattern. Therefore, in this case study,
we evaluate the enhanced method against the traditional one
through simulation experiments, where TOD plans optimized
by different methods are applied under the same traffic
condition.

The simulation model is built by VISSIM, a microscopic
simulation software developed by PTV Company [49]. Traf-
fic flow data are imputed with 5 min as the interval, shown as
in Fig.9. For each time period, we optimize the signal timing
plan using Webster algorithm [50], [51], and assign the split
for each phase with the principle to ensure saturation degree

among different phases uniform.

C0 =
1.5L + 5

1−
∑Z

p=1
qp
sp

gp = max{gp,min,
qp/sp∑Z
p=1

qp
sp

}. (8)

where Co is the optimum cycle length (s); L is sum of the
lost time for all phases, usually taken as the sum of the inter-
green periods (s), in this paper, and this value is set to be 20;
qp/sp is the ratio of the flow rate to the saturation flow rate
for the critical approach p or lane p in each phase, and we
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FIGURE 11. Partition results with different methods.

set the saturation flow rate for each lane is 0.5pcu/s; Z is the
number of phases; gp is the green time for phase p (s); gp,min
is the minimum green time to ensure the safety of cross-street
pedestrians, and it set as 15s in the simulations. The final
TOD plans, the green time for each phase and the cycle length
within different time periods (partitions) determined byDKM
and TKM clustering method are shown in Table 2.

Under given traffic flow, the operation performance is
also influenced by the distribution of the vehicle arrivals.
In VISSIM simulations, the distribution of the vehicle arrivals
vary with the change of the parameter of random seed. The
simulation was run 10 times for each day, with the random
seed varying from 42 to 51. and the average results of the ten
simulations are used to compare different TOD plans.

D. RESULT ANALYSIS
There are many performancemeasures to assess the operation
efficiency of traffic signal control including maximum queue
length (MQL), delay time (DT), average throughput(AT),
stop time (ST), and fuel consumption (FC). According to
High Capacity Manual (HCM) and Traffic Signal Timing
Manual (TSTM), the first two is the primary performance
measures at individual intersections [52].

VISSIM can output the two performances with a given
time intervals, and we use fifteen minutes as the time period
in this paper. Fig.12 illustrates the two performance mea-
sures under TOD plans generated by the traditional and the
enhanced methods across the whole day for July 4 and 5.
We also optimized the signal timing plans using Webster
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TABLE 2. Signal timing parameters under different time periods.

algorithm together with the real-used TOD plan, and then
presented the performance results in Fig.12. In Fig.12, each
point represents the average performance within the time
interval of 15 minutes; plans 1, 2, 3, 4 and 5 are currently-
used, traditional DKM-based [28], enhanced DKM-based,
traditional TKM-based [27] and enhanced TKM-based ones.
We can observe that the the performance currently-used plan

is the worst compared with the four optimization ones on both
the two days, which indicates that both the two clustering
methods, traditional or enhanced ones, are useful for traffic
signal control. Besides, on July 5, the enhanced method is,
during most time of the day, better than traditional one.
However, on July 4, it is hard to tell which one is better.
The traditional method divided the day into ten partitions,
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TABLE 3. Comparison of the performance measures with the enhanced and traditional methods.

FIGURE 12. Performances under different methods on July 4 and 5.

about twice comparing with the enhanced method; however,
the performance measures did not improved significantly,
implying that the day was over-partitioning by the traditional
methods. The plans with the enhanced methods are better
choices for traffic signal control.

During low traffic flow period, for example 00:00-06:30,
the signal timing plans are similar across different days, dur-
ing which the minimum cycle length are used to ensure safety
of street-crossing pedestrians. As a result, the performance
measures during these periods fluctuate slightly. For better
illustration, we select the relatively high traffic flow hours
(06:30-20:00) as the observational periods to evaluate the
advantage of the proposed method.

In order to quantity the average change of performance
measures of enhanced method against traditional method,

the relative change rate for each measure is introduced here,
which can be calculated by

Rc =
ye − yt
yt

. (9)

where Rc is the relative change rate for performancemeasures
during one certain time period; ye is the measure value with
the enhanced method; yt is the measure value with the tradi-
tional method.

The comparisons across the whole day and the high traf-
fic flow time period on both July 4 and 5 are summarized
in Table 3. On July 5, the new and traditional DKM-based
methods partition the whole day into five and six partitions,
and the enhanced method reduces MAQ and AD by 13.89%
and 7.69% respectively on average for whole day; mean-
while, for the time periods from 06:30 to 20:00, the improve-
ments are respectively 15.30% and 10.98%, which indicate
that the enhanced method can improve the operation effi-
ciency of traffic flow for the traffic signals with fixed-time
strategy, especially during high traffic flow period.

On July 4, the average MAQ and AD with the enhanced
DKM-cluster method are increased by 1.55% and 0.58%
respectively compared to the traditional method for the whole
day, which means that the new method performs slightly
worse than the traditional method. However, we should note
that the number of partitions with the enhanced and tradi-
tional methods are respectively 5 and 10, thus, the transition
times of signal timing plans with the traditional method are
twice as much as the enhanced. One important principle for
TOD is to minimize the transition times if the operation
efficiency can be guaranteed. However, the improvements
from having extra partitions are very minor or there is even
no improvement for MAQ during high traffic periods. Thus,
we can make a conclusion that the traditional methods some-
times produce over-partitioning plan, which can be avoided
by the enhanced methods.

For the the traditional and enhanced methods based
on TKM clustering algorithms, a similar conclusion can
be deduced by analyzing the results in Table 3. Thus,
the enhancement of process optimization is helpful to
improve the performance of TOD for both DKM and TKM.

V. CONCLUSION
In this paper, due to issues of traditional clustering-based
algorithms for TOD breakpoint optimization, we propose
an enhanced method with optimized process. The main
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difference between the two methods are when to select
the optimal number of partitions/clusters given the need
of empirical adjustment after k-means clustering algorithm.
We point out that the traditional method would lead to subop-
timal partition plans by selecting optimal number of clusters
before adjustments. Additionally, we also present procedure
of empirical adjustment and how to determine optimal num-
ber of partitions given complicated partition results, which
have not been shown in previous studies.

We present a case study which compares the traditional
and enhancedmethods through simulation experiments based
on the data collected by AVDRS. Then, we presented a
experiment to evaluate the benefits of the enhanced method
with VISSIM simulation, after determining the signal timing
parameters with a common algorithm. The results show the
new method can avoid the issue of over-partitioning, and
it can perform better than the traditional method in gen-
eral when traditional method does not generate too many
partitions.
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