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ABSTRACT Proliferation of mass market applications and all forms of smart devices have driven the
explosive growth of wireless sensor data traffic in recent years. In spite of notable advancements in wireless
sensor technologies, energy scarcity due to a limited battery capacity still remains a critical impediment
to consumer electronics applications. Thus, the energy harvesting (EH) technology, utilizing extra energy
collected from radio frequency (RF) signals, is regarded as a promising solution for addressing the battery
problem. This paper presents, analyzes, and discusses a joint sensing and power allocation scheme for
cognitive radio in conjunction with EH, in which a secondary transmitter can harvest energy from RF signals
transmitted by a primary transmitter during spectrum sensing. We formulate a non-convex optimization
problem to find the optimal sensing time and power allocation for maximizing energy efficiency, while
satisfying the constraints on the amount of harvested energy and interference at primary receivers. Using
nonlinear fractional programming, the original problem can be reformulated into a tractable convex one, and
an energy efficient resource allocation algorithm is devised while taking into account RF EH. Simulation
results are used to verify the optimality of the proposed scheme, where the secondary network can accomplish
maximum energy efficiency.

INDEX TERMS Energy efficiency, cognitive radio, energy harvesting, power control, optimization.

I. INTRODUCTION
The reliability and performance of wireless networks are sig-
nificantly limited by the lifetime of wireless sensors. Various
methods have been devised to address this problem, where
the main challenge was improving the energy efficiency of
wireless sensors [1]. As well as efforts to reduce energy
consumption, energy harvesting (EH) from radio frequency
(RF) signals has recently been considered as a prospective
technique for solving the problem of energy shortage. This
technique allows a wireless sensor to convert RF signals
into energy that can be used for its own purposes, e.g., data
processing and transmission [2].

Cognitive radio networks (CRNs) have also recently been
proposed as efficient means of utilizing unused spectrum,

thereby improving spectrum efficiency. In a CRN, unlicensed
secondary networks (SNs) can opportunistically access the
spectrum unoccupied by licensed primary networks (PNs),
provided that the use of the spectrum by the SNs does not
interrupt the operation of the PNs [3]–[10]. Accordingly,
the search for a vacant spectrum is one of the most important
tasks for CRNs, in which spectrum sensing based on energy
detection is generally used [4], [7]. Although spectrum sens-
ing and RF EH have different power sensitivity levels (e.g.,
−60 dBm for spectrum sensing [11] while −10 to −30 dBm
for RF EH [12]), the sensitivity of RF EH is expected to be
improved in the near future. Therefore, EH can be efficiently
undertaken during the spectrum sensing, i.e., SNs have an
opportunity to gather energy from the RF signals transmitted

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

30653

https://orcid.org/0000-0001-8206-4558
https://orcid.org/0000-0001-8444-2786
https://orcid.org/0000-0002-9431-7804


K. Lee et al.: Joint Optimization of Spectrum Sensing and Transmit Power in EH-Based CRNs

by PNs while determining the status of PNs during spectrum
sensing.

In this context, EH in CRNs has recently been the sub-
ject of extensive investigation [13]–[19]. In [13], an optimal
spectrum sensing policy was proposed for maximizing the
expected total throughput of SNs under energy causality
and collision constraints. The optimal transmit power and
density of secondary transmitters (STs), which maximize the
throughput of SNs, were found in [14]. Hoang et al. [15]
derived an optimal channel access policy for SNs based on
Markov Decision Process (MDP). In addition, the joint infor-
mation and energy cooperation strategy between PNs and
SNs was studied in [16] and [17]. Pratibha et al. [18] adapted
homogeneous Poisson point processes to propose a decentral-
ized channel-selection strategy for improving the throughput
of SNs in multiband CRNs. Finally, in [19], the authors
demonstrated the joint impact of sensing probability, access
probability, and energy queue capacity on the achievable
throughput of a multiuser CRN.

Nevertheless, previous studies on SNs in EH-based CRNs
have mainly focused on the maximization of throughput
of SNs only. However, the energy efficiency, which is the
transmitted bits per unit of bandwidth and energy, can be
a more significant metric for SNs in EH-based CRNs than
the throughput because the amount of data to be transmitted
in this environment is small in general and the lifetime of
network is utmost important. Accordingly, it is necessary
to take into account the maximization of energy efficiency
for SNs in EH-based CRNs, which can be challenging since
the characteristics of both EH and CR have to be jointly
considered. It should be noted that previous works which
consider energy efficiency in CRNs [10] cannot be directly
applied to this environment due to the consideration of EH.

We herein propose a joint sensing and power allocation
scheme that maximizes the energy efficiency of SNs in
EH-based CRNs, where a ST is capable of harvesting energy
from the RF signals transmitted by a primary transmitter (PT)
during spectrum sensing. Our main contributions can be sum-
marized as follows.
• We derive the optimal sensing time and power alloca-
tion for maximizing the energy efficiency of SNs in
EH-based CRNs, whilst not violating the constraints
imposed by PNs and EH, i.e., the maximum interfer-
ence caused at a primary receiver (PR) and the mini-
mum required harvested energy. Specifically, a practi-
cal model for CRNs is considered, in which imperfect
spectrum sensing and the channel occupancy of PNs are
taken into account.We expect our findings to point to the
possibility of mitigating the energy shortage problem for
wireless sensors in CRNs.

• By applying a nonlinear fractional programming,
we translate a non-convex problem into a tractable con-
vex one, and solve the problem using optimization tech-
niques. Based on the optimal solution, we propose an
iterativemethod for finding the optimal sensing time and
power allocation policy jointly.

• Via simulations in various environments, we verify the
optimality of the proposed scheme. We find that the
energy efficiency of the proposed algorithm can be
maintained at itsmaximumvalue, while that of a conven-
tional scheme which only considers the maximization of
throughput drops significantly as the maximum transmit
power increases. These results give insights about the
effects of sensing time and power allocation regarding
the energy efficiency of SNs with an EH capability,
which is the major contribution of our work.

The remainder of the paper is organized as follows.
In Section II, we describe our system model and formu-
late the non-convex optimization problem to maximize the
energy efficiency. In Section III, the optimization problem
is solved using a nonlinear fractional programming, and an
iterative way to find the optimal solution is proposed. Finally,
numerical results are provided in Section IV, and Section V
concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION
As shown in Fig. 1, we consider EH-based CRNs with one
primary and one secondary link. The instantaneous channel
gains of the link between the ST and the secondary receiver
(SR), the link between the PT and the SR, the link between
the ST and the PR, and the link between the PT and the ST,
are denoted by hss, hps, hsp, and gps, respectively. We assume
that the links experience a flat fading channel and the channel
gains at the links are ergodic, stationary, and known at the
SNs [3], [6]. In addition, the ST should acquire channel state
information on hss, hps, hsp, and gps, in order to perform power
allocation. We also consider channel estimation error since it
is impossible to obtain perfect channel state information at
the ST in practice. Herein, the real channels and the estimated
channels have the following relations: hss = ĥss + ε, hps =
ĥps + ε, hsp = ĥsp + ε, and gps = ĝps + ε, respectively,
where ε is the channel estimation error with zero-mean and
variance σ 2

ε [20]–[22].1 The noise at the SR is assumed to
be independent and identically distributed (i.i.d.) circularly
symmetric complex Gaussian (CSCG) with zero mean and
N0 variance, i.e., CN (0,N0).
In order to access the spectrum licensed to the PNs,

the ST must determine the channel occupancy of the PT,
i.e., whether it is idle or busy, using spectrum sensing.
Herein, we assume that the energy detection2 is used for
the spectrum sensing [7]. Two hypotheses, H0 and H1, are
considered, where H0 represents the case where the channel
is idle while H1 represents the case where the channel is
busy.

1The effect of the channel estimation error on the performances of system
will be evaluated and discussed in Figs. 9 and 10.

2 Although we only consider the energy detection for spectrum sensing,
our proposed scheme can be applied to the case when the other types
of spectrum sensing [23], e.g., soft combining, is considered by properly
changing the value ofPf andPd . Moreover, our work can also be applied to
the case when a Geolocation Database is used to determine which spectrum
is idle [9], [24]. In this case, we can assume that the detection of PT is perfect,
i.e., Pf = 0 and Pd = 1.

30654 VOLUME 6, 2018



K. Lee et al.: Joint Optimization of Spectrum Sensing and Transmit Power in EH-Based CRNs

FIGURE 1. System model which depicts EH-based CRNs.

In the energy detection, the signal strength of channel is
accumulated for NED channel samples, such that the test
statistics for the energy detection, which we denote as TED(y),
can be written as follows.

TED(y) =
1

NED

NED∑
n=1

|y(n)|2, (1)

where y(n) is the received signal sample. The ST determines
whether the channel is vacant or not based on TED(y), i.e.,
the channel is assumed to be busy when TED(y) ≥ ε and
it is assumed to be idle otherwise, where ε is the detection
threshold.

In spectrum sensing, there are two important performance
metrics which are the probability that a ST falsely detects a
presence of PTwhen no PT is present (false alarm probability,
denoted by Pf ) and the probability that a ST properly detects
an existence of active PT when one is present (detection
probability, denoted by Pd ). Let τ , fs, and γ be the sensing
time, sampling frequency,3 and received signal-to-noise ratio
(SNR) from the PT at the ST, respectively. Then, Pd can be
written as [4]

Pd = Pr(TED(y) ≥ ε|H1)

= Q
((

ε

N0
− γ − 1

)√
τ fs

2γ + 1

)
, (2)

whereQ(·) is the complementary distribution function of the
standard Gaussian, i.e., Q(x) = 1

√
2π

∫
∞

x e−t
2/2dt . On the

other hand, the false alarm probability, Pf , can be obtained
as

Pf = Pr(TED(y) > ε|H0)

= Q
((

ε

N0
− 1

)√
τ fs

)
. (3)

Therefore, when the value of ε increases, both Pd and Pf
decrease. In this paper, we assume that a target Pd is prede-
fined and ε is adjusted in order to satisfy this target value.
In this case, Pf can be rewritten as follows.

Pf = Q
(√

2γ + 1Q−1(Pd )+
√
τ fsγ

)
. (4)

3In this paper, we assume that NED = τ fs [4].

It should be noted that the cooperative spectrum sensing is
not considered in our work because only one ST performs
spectrum sensing.

As seen from Fig.1, each frame of the CRN consists of a
sensing slot with a time duration τ , and a data transmission
slot with a time duration T − τ [7]. During the sensing slot,
the ST does not transmit data and performs spectrum sensing
i.e., quiet period [7], in order to determine the status of the PT,
along with energy harvesting. In our system model, the con-
cept of interference temperature [5] is taken into account such
that when the channel is detected to be idle, the ST transmits
data with high power P0; otherwise when the channel is
detected to be busy, the ST transmits data with low power P1.
Given that the status of the PT can be confused by the ST due
to sensing error, four different cases of spectral efficiency for
SNs are possible. Let rij be the spectral efficiency of the SNs,
where the first subscript index i indicates the actual status of
the PT (‘0’ for idle and ‘1’ for active) and the second subscript
index j describes the status of the PT perceived by the ST (‘0’
for absent and ‘1’ for present). Then, rij can be summarized
as follows.

r00 = log2

(
1+

ĥssP0
N0

)
,

r01 = log2

(
1+

ĥssP1
N0

)
,

r10 = log2

(
1+

ĥssP0
ĥpsPp + N0

)
,

r11 = log2

(
1+

ĥssP1
ĥpsPp + N0

)
. (5)

Here, Pp is the transmit power of the PT which is assumed
to be constant. Moreover, we assume that the ST always has
data to transmit.

The average spectral efficiency of the SNs can then be
expressed as

R(τ,P0,P1)=E
{
T−τ
T

[
P(H0)(1−Pf )r00+P(H0)Pf r01

+ P(H1)(1−Pd )r10+P(H1)Pd r11
]}
. (6)

Here, P(H0) is the probability that the channel is idle while
P(H1) is the probability that the channel is occupied.
Next, we define a net energy dissipation at the ST.4 At first,

the expected amount of harvested energy at the ST during τ
should satisfy the minimum required energy (Em) constraint,
which can be formulated as

PH = E
{
τ

T
P(H1)Ppηĝps

}
≥ Em, (7)

4In this paper, we used the unit of Joule-per-second for energy consump-
tion. Therefore, the terms ‘‘power’’ and ‘‘energy’’ can be used interchange-
able.
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where η is the energy conversion efficiency from the received
RF signals into harvested energy by the ST.

Next, the average transmit power constraint at the ST
during the data transmission phase should be considered as
follows.

PT = E
{
T − τ
T

[
P0P(H0)(1− Pf )+ P1P(H0)Pf

+P0P(H1)(1− Pd )+ P1P(H1)Pd
]}
≤ Pav, (8)

where Pav is an allowable maximum average transmit power.
By using (7) and (8), the net energy balance at the ST can be
summarized as

P(τ,P0,P1) = PC + PT − PH , (9)

where PC is the power consumed in the circuit.
The energy efficiency of the ST, which is represented by

CE =
R(τ,P0,P1)
P(τ,P0,P1)

, is considered as the major performance
metric of our proposed scheme, such that τ , P0 and P1 are
adjusted to maximize CE . It should be noted that the energy
efficiency reflects the transmitted bits per unit of bandwidth
and energy (bits/Hz/joule); in other words, it shows how
efficiently the ST uses energy for transferring bits, and is thus
a more appropriate metric for energy-limited sensor networks
than the spectral efficiency [21], [22], [25], [26].

Our consideration of CRNs implies that the interference
caused by the ST to the PRmust be regulated in order to guar-
antee the quality of service (QoS) of the PNs. Specifically,
the average interference at the PR, i.e., IS , should satisfy the
following inequality.

IS

= E
{
T−τ
T

[
ĥspP0P(H1)(1−Pd )+ĥspP1P(H1)Pd

]}
≤ Im,

(10)

where Im is the maximum tolerable interference by the PR.
Note that T−τT is multiplied because the ST does not transmit
when spectrum sensing is performing.

Finally, we formulate the optimization problem to find the
optimal sensing time and power allocation, i.e., τ , P0, and P1,
that maximizes the energy efficiency of the SNs, as follows.

max
τ,P0,P1

R(τ,P0,P1)
P(τ,P0,P1)

s.t. (7), (8), (10), P0 ≥ 0, P1 ≥ 0, 0 ≤ τ ≤ T . (11)

III. OPTIMAL SENSING TIME AND POWER ALLOCATION
Unfortunately, it is difficult to solve the optimization problem
(11) because its objective function is not convex with respect
to (w.r.t.) the sensing time τ . In order to resolve this problem,
we seek an optimal transmit power for a fixed value of τ .
The optimal sensing time τ ∗ can then be found using a
one-dimensional exhaustive search5 over the interval (0,T ).

5The exhaustive search is easy to perform because the optimal P0 and P1
are given in a closed-form expression, as shown later.

Therefore, in the following we focus on deriving the optimal
values of P0 and P1 when τ is fixed.

Even though τ is fixed, the problem of finding the optimal
values of P0 and P1 is still non-convex because the objective
function is in fractional form. To transform the problem into
a tractable form, we translate an original objective function
into a subtractive form by adapting a nonlinear fractional
programming [27], such as f (τ,P0,P1) = R(τ,P0,P1) −
qP(τ,P0,P1). The transformation of the objective function
can be summarized in the following lemma 1.
Lemma 1: We can obtain the solutions (P+0 , P

+

1 ) and the
corresponding q+ by solving a subtractive objective function
and updating q iteratively, given the following two facts.

(i) The maximum energy efficiency q+ =
R(τ,P+0 ,P

+

1 )
P(τ,P+0 ,P

+

1 )
is

achieved if and only if the following condition is satisfied.

F(q+) = max
P0,P1

R(τ,P0,P1)− q+P(τ,P0,P1)

= R(τ,P+0 ,P
+

1 )− q
+P(τ,P+0 ,P

+

1 )

= 0. (12)

(ii) The function F(q) ≥ 0 is a monotonically decreasing
function of q.

Proof: Please refer to [21], [27], and [25] for the proof.

Then, based on Lemma 1, the original problem (11) can be
rewritten as follows.

max
P0,P1

R(τ,P0,P1)− qP(τ,P0,P1)

s.t. (7), (8), (10), P0 ≥ 0, P1 ≥ 0. (13)

Note that the optimization problem (13) is convex w.r.t. P0
and P1, such that we can find the optimal power allocation
using convex optimization techniques.

In order to find the optimal solution, we first derive the
Lagrangian function of (13), L(P0,P1, λ, β, µ), as shown
below.

L(P0,P1, λ, β, µ) = R(τ,P0,P1)− qP(τ,P0,P1)

+ λ(PH − Em)+ β(Pav − PT )+ µ(Im − IS ). (14)

Then, the dual problem of (13) can be given by

min
λ,β,µ,≥0

g(λ, β, µ), (15)

where the dual function, g(λ, β, µ), is represented by

g(λ, β, µ) = max
P0,P1≥0

L(P0,P1, λ, β, µ). (16)

By taking the derivative of (14) w.r.t. P0 and P1, respectively,
the values of P0 and P1 that maximize L(P0,P1, λ, β, µ)
can be calculated from the Karush-Kuhn-Tucker conditions,
as shown in (17) and (18), as shown at the bottom of the next
page. where v0 = P(H0)(1 − Pf ), w0 = P(H1)(1 − Pd ),
X0 = (log 2)

[
(q + β)(v0 + w0) + µĥspw0

]
, and [y]+ =

max(0, y). where v1 = P(H0)Pf , w1 = P(H1)Pd , and
X1 = (log 2)

[
(q+ β)(v1 + w1)+ µĥspw1

]
.
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Algorithm 1 Optimal Sensing Time and Power Allocation
1: for τ=1:T
2: Initialize P0 and P1 as

Pav
2 , and q, β, µ as 0.5, 0.1, 0.

3: repeat
4: Set q = R(τ,P0,P1) /P(τ,P0,P1)
5: repeat
6: Update P0 and P1 according to (17) and (18)
7: Update β and µ
8: until Convergence of P0 and P1
9: Update R(τ,P0,P1) and P(τ,P0,P1)
10: until |R(τ,P0,P1)−qP(τ,P0,P1)| < δ

11: Return P+0,(τ ) = P0, P
+

1,(τ ) = P1, q
+

(τ ) = q
12: end for
13: τ ∗ = argmax

τ
q+(τ ), P

∗

0 = P+0,(τ∗), P
∗

1 = P+1,(τ∗),

q∗ = q+(τ∗)

After calculating the transmit power, the dual variables
including λ, β, andµ related to the corresponding constraints,
i.e., (7), (8), and (10), can be updated via a gradient method
to solve (15). Then, the transmit power can be recalculated
based on the updated dual variables, and the optimal transmit
power can be found using this iterative process.

In summary, the overall procedures of the proposed algo-
rithm are described in Algorithm 1. From the initial val-
ues of the transmit power and the dual variables, q is set
to R(τ,P0,P1)

P(τ,P0,P1)
. Next, P0 and P1 are calculated according to

(17) and (18), and the dual variables, i.e., λ, β, and µ,
are updated iteratively until the inner loop (from line 5 to
line 8) converges. For the converged values, R (τ,P0,P1) and
P (τ,P0,P1) are updated, and the convergence of the outer
loop (from line 3 to line 10) is checked. If the condition,
|R (τ,P0,P1)− qP (τ,P0,P1)| < δ, is satisfied, the algo-
rithm stops and P+0 and P+1 are returned. For τ = 1 : T ,
P+0 and P+1 are found and the resulting energy efficiencies
are compared, enabling the optimal values to be found.

A. CASE FOR PERFECT SENSING
In the case of perfect sensing where Pd = 1 and Pf = 0,
the allocated power can be simplified as (19) and (20).6

P̃0 =
[

1
log 2(q+ β)

−
N0

ĥss

]+
. (19)

6Note that (19) and (20) are derived only to find meaningful insights, and
(17) and (18) should be used in our algorithm. On the other hand, (19) and
(20) can be used when a Geolocation Database is used to determine which
spectrum is idle [9], [24].

P̃1 =
[

1

log 2(q+ β + µĥsp)
−
ĥpsPp + N0

ĥss

]+
. (20)

Although it is difficult to find any meaningful insight
from (17) and (18) due to their complicated forms,
the optimal power allocations for the perfect sensing case,
i.e., (19) and (20), provide us with important information
on the effects of energy efficiency, estimated data channel
(ĥss), and estimated interference channel (ĥsp) on the power
allocation strategy. In particular, both transmit power, i.e., P̃0
and P̃1, increasewhen the direct channel for data transmission
is good, because the SNs can increase the spectral efficiency
still further. In addition, the average transmit power constraint
is satisfied by controlling β, and the power is allocated to
maximize the energy efficiency in consideration of q. In
particular, the ST decreases P̃1 by adjustingµ if the estimated
interference channel gain (ĥsp) is large, in order to reduce the
interference that it causes to the PR.

B. CASE FOR INTERWEAVE SPECTRUM SHARING
In the concept of interweave spectrum sharing [7], [9], the ST
accesses the spectrum only when the channel is sensed to be
idle, and otherwise, the ST ceases its transmission. However,
due to the inaccurate spectrum sensing, i.e., missed detection
[7], the ST might access the channel when it is actually occu-
pied by the PU. As a result, the average spectral efficiency of
the SNs, (6), can be reduced to

R̄(τ,P0)=E
{
T−τ
T

[
P(H0)(1−Pf )r00+P(H1)(1−Pd )r10

]}
.

(21)

Correspondingly, the average transmit power constraint is
simplified as follows.

P̄T (τ,P0)

= E
{
T−τ
T

[
P0P(H0)(1−Pf )+P0P(H1)(1−Pd )

]}
≤ Pav. (22)

In addition, the average interference constraint at the PR is
represented by

ĪS = E
{
T−τ
T

[
ĥspP0P(H1)(1−Pd )

]}
≤ Im. (23)

Finally, we can formulate the optimization problem that
maximizes the energy efficiency of SNs for interweave spec-

P0 =
[
1
2

{
v0+wo
X0
−

ĥpsPp+2N0

ĥss
+

√
( v0+woX0

−
ĥpsPp
ĥss

)2 + 4v0ĥpsPp
X0ĥss

}]+
, (17)

P1 =
[
1
2

{
v1+w1
X1
−

ĥpsPp+2N0

ĥss
+

√
( v1+w1

X1
−

ĥpsPp
ĥss

)2 + 4v1ĥpsPp
X1ĥss

}]+
, (18)
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trum sharing, as follows.

max
τ,P0

R̄(τ,P0)

P̄(τ,P0)
s.t. (7), (22), (23), P0 ≥ 0, 0 ≤ τ ≤ T . (24)

Here, P̄(τ,P0) = PC + P̄T −PH . In (24), the constraints (7),
(22), and (23) correspond to the minimum required energy to
be harvested, the maximum of the average transmit power of
SNs, and the interference caused to the PR, respectively.

It should be noted that the optimization problem in (24)
is almost the same with the optimization problem in (11)
such that the similar approaches for finding solutions in
the interference temperature case can be used to derive the
optimal value of P0. In fact, the optimal value of P0 for (24)
is identical to (17). Accordingly in the interweave CRNs, the
ST transmits data with P0 in (17) when the channel is idle,
otherwise, it ceases its transmission by letting P1 = 0.

IV. SIMULATION RESULTS AND DISCUSSION
In this section, the performance of the proposed algorithm
is evaluated in EH-based CRNs with a single primary link
and a single secondary link. In the simulation, the transmit
power of PU-Tx, Pp, is 43 dBm while the transmit power
of SU-Tx is varied. The duration of one frame is 10 ms and
the channel gains in each link are assumed to be exponen-
tially distributed random variables with a unit mean. Here,
we assume that E[hsp] = E[hps]. In addition, the probability
that the channel becomes idle, i.e., P(H0), is assumed to be
0.7, and the target probability of energy detection, Pd , is set
to 0.9 [7]. Moreover, the noise variance is 0 dBm [6] and
the maximum allowable interference to PU, Im, is assumed
to be -3 dBm [7].7 For energy harvesting, an energy con-
version efficiency, i.e., η, is assumed to be 0.25 [28], and
Em = −20 dBm [2], [26]. Furthermore, the PC is assumed
to be 40 dBm [25], [29] and fs = 10 MHz. Finally, we set
the channel estimation error as σ 2

ε = 0.1 [20]–[22]. The
simulation parameters are summarized in Table I.

We compared the performance of the following algorithms:

• ES (Exhaustive Search): The optimal sensing duration
and power allocation are found by solving the optimiza-
tion problem (11) using an exhaustive search.

• RA-EE (Resource Allocation for Energy Efficiency):
The sensing duration and power allocation are found
using our proposed scheme as shown in Algorithm 1.

• RA-RM (Resource Allocation for Rate Maximization):
The sensing duration and power allocation that maxi-
mize the spectral efficiency of the SNs are found.

It should be noted that ES requires significantly more com-
putations than our proposed scheme does. Although we do
not include the results, we have found that the number of
computations is reduced by 1/10 using RA-EE compared to
ES. To be more specific, the average simulation time of ES

7Im is calculated assuming that the sensing threshold of CRN is -107 dBm
when the noise variance is -104 dBm [7].

TABLE 1. Simulation Parameters.

FIGURE 2. Energy efficiency versus sensing time τ .

for one iteration was measured as 284.9404 seconds while
that of RA-EE was measured as 26.5961 seconds.

In Fig. 2, we show the energy efficiency, CE , found by the
proposed scheme, against the sensing time, τ , for varying γ
and Pav. The optimal sensing time and corresponding energy
efficiency, found by exhaustive search, are also depicted. The
results show that the optimal sensing time and CE coincide
with those of our proposed scheme even when the channel
estimation error exists, revealing its optimality and robustness
to the channel estimation error.We also observe that the graph
starts at τ = 0.7 ms when γ is 0 dB, because the constraint
on the harvested energy is not satisfied when τ is less than
0.7 ms, i.e., the optimization problem is infeasible. Moreover,
the energy efficiency is high when Pav is high, i.e., Pav =
30 dBm, because the ST can transmit data at a higher power.
In addition, for the same τ , the energy efficiency increases as
γ increases because more energy can be harvested. It should
be noted that although the energy efficiency is negatively
affected due to the interference constraint (10) when γ is
large, the positive effect from harvesting more energy over-
comes this negative effect. Finally, we can find that small τ
is chosen because the capacity is a logarithmic function of
the transmit power such that short transmission period with
high transmit power is not beneficial in the view of energy
efficiency.

In Figs. 3-5, the energy efficiency (CE ), spectral effi-
ciency (R), total consumed power (P), and transmit power
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FIGURE 3. Energy efficiency versus Pav .

FIGURE 4. Spectral efficiency and total consumed power versus Pav .

(P0 and P1) of the ES, RA-EE and RA-RM schemes are
shown for various values of maximum allowable transmit
power, Pav. In the simulations, γ is set to 0 dB. First,
we observe that the simulation results of RA-EE, which is
based on Algorithm 1, coincide with those of ES, i.e., our
proposed scheme in Algorithm 1 achieves optimal perfor-
mance. As shown in Fig. 3, the CE of RA-EE increases as
Pav increases when Pav ≤ 30 dBm, but it converges to its
optimal value when Pav > 30 dBm. This indicates that extra
transmit power beyond the optimal value causes a loss of
energy efficiency. On the other hand, the CE of RA-RM
decreases abruptly when Pav > 30 dBm, because RA-RM
only considers the maximization of the spectral efficiency.
When Pav = 45 dBm, the energy efficiency of RA-EE is
2.6 times larger than that of RA-RM.

From Fig. 4, we find that the spectral efficiency of RA-RM
is higher than that of the other two schemes while the total
consumed power also increases rapidly when Pav > 30 dBm.
For example, when Pav = 45 dBm, the spectral efficiency of
RA-RM is 40 % higher than that of other two schemes while
the total consumed power of RA-RM is 3.5 times higher than
that of other two schemes. On the other hand, both the spectral
efficiency and total consumed power are maintained for both
ES and RA-EE, which results in the preservation of energy
efficiency. In other words, the transmit power is not increased

FIGURE 5. Transmit power versus Pav .

FIGURE 6. Energy efficiency versus γ by varying Pav .

for ES and RA-EE in order to improve energy efficiency, even
though Pav is increased. Finally, from Fig. 5, we find that P0
and P1 are almost the same when Pav is sufficiently large,
i.e., Pav > 15 dBm, because the effect of interference from
the PT is minor. However, more power is allocated to P0 than
P1 as Pav decreases, since the interference from the PT plays
a significant role. This indicates that it is better to use more
power in cases of lower interference, i.e., P0.

In Fig. 6, we show the energy efficiency, CE , by varying γ
and Pav. Given that our previous results justify the fact that
the energy efficiency of ES and RA-EE are the same, we only
show the results for RA-EE and RA-RM. As can be seen
from the results, the energy efficiency of RA-EE increases as
Pav increases, e.g., the energy efficiency increases 3.8 times
maximally. It is due to the fact that the ST with high Pav
has more capability to adjust its transmit power. We can also
find that the energy efficiency of RA-EE decreases when
γ is either low or high. To be more specific, when γ is
high, the interference constraint of PN deteriorates the energy
efficiency, on the other hand when γ is low, the harvesting of
energy from PN deteriorates the energy efficiency, i.e., ST
allocates more time for energy harvesting and time for data
transmission diminishes. It should be noted that the energy
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FIGURE 7. Energy efficiency versus noise variance, N0, by varying Pav .

FIGURE 8. Energy efficiency versus P(H0) by varying Pav .

efficiency of RA-RM coincides8 with that of RA-EE when
Pav = 25 dBm and 5 dBm, however, it becomes different
from that of RA-EE when Pav = 45 dBm. Specifically,
in this case, the energy efficiency of RA-RM decreases as
γ decreases, because the ST is likely to transmit with higher
power compared with RA-EE to increase its data rate which
results in the decrease of energy efficiency.

In Fig. 7, we show the energy efficiency, CE , as a function
of N0 for different values of Pav. As can be seen from the
results, the energy efficiency decreases as N0 increases for all
cases, because the achievable spectral efficiency decreases,
which agrees with our expectation.Moreover, we can observe
that the energy efficiency of RA-RM coincides with that of
RA-EE when Pav = 25 dBm and 5 dBm same with Fig. 6.
In Fig. 8, we show the energy efficiency, CE , by varying

the channel idle probability, P(H0), and Pav. First, we can
find that the energy efficiency of RA-EE is larger than that of
RA-RM when Pav is 45 dBm due to the excessive transmit
power of RA-RM, which can be conjectured from Fig. 3.
We can also find that the energy efficiency of all schemes
decreases as P(H0) increases when Pav is high and γ is low,
which is somewhat counter-intuitive. It is due to the fact that
whenP(H0) is large, the amount of harvested energy is lower,

8In this case, the ST cannot transmit with high power due to the inter-
ference constraint of PN which prevent the excessive transmit power use of
RA-RM.

FIGURE 9. Energy efficiency versus channel estimation error by
varying Pav .

FIGURE 10. Interference violation probability versus channel estimation
error by varying Pav .

which results in the increase of τ in order to satisfy the con-
straint on the harvested energy, PH . Accordingly, the energy
efficiency becomes lower due to the shorter period for data
transmission. Moreover, the effect of interference from PT is
minor such that the achievable data rate of ST is almost the
same with or without the existence of PU. However, when
γ is large, the ST can collect enough energy using short
sensing period (which is the positive effect of high γ ), but the
interference from PT to SR as well as the interference from
ST to PR are also enormous (which is the negative effect of
high γ ) at small P(H0). In this situation, the negative effect
is more dominant to determine the energy efficiency in the
appearance of PT, as a result, the energy efficiency of all
schemes increases as P(H0) increases.
In Figs. 9 and 10, we show the energy efficiency, CE , and

the interference constraint violation probability, Pr(IS > Im),
by varying the channel estimation error, σε, and Pav. As we
can see from the results, the energy efficiency of all schemes
does not change greatly as σε varies. However, an channel
estimation error causes the inaccurate adjustment of the trans-
mit power, which can result in the violation the allowable
interference for PR. As a result, the interference violation
probability increases as σε increases. When γ = 0 dBm,
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the interference violation probability is zero when Pav ≤
25 dBm for both schemes because the transmit power of ST
is sufficiently small and the channel gain between ST and
PR is sufficiently low such that the interference constraint
of PR is not violated. However, when γ = 30 dBm, the
channel gain between ST and PR is sufficiently large such
that the interference violation probability is larger than zero
even when Pav ≤ 25 dBm. In addition, we can find that the
interference violation probability of RA-RM is higher than
that of RA-EE because RA-RM uses higher transmit power
compared with RA-EE.

V. CONCLUSIONS
We investigated the EH of SNs from RF signals transmitted
by PNs, in order to improve the energy efficiency of CRNs.
In particular, we proposed an optimal sensing time and power
allocation strategy for maximizing energy efficiency by tak-
ing into account the realistic constraints caused by energy har-
vesting in CRNs. The formulated problem was solved using
optimization techniques, e.g., a nonlinear fractional program-
ming, and an iterative method was used to find the optimal
sensing time and power allocation. Finally, we revealed the
optimality of our proposed scheme using simulations. Even
though it might not be yet possible to harvest enough energy
from RF signals to support the stable operation of wireless
networks, we suggest that our results provide some insight
for the development of a prospective technique for using self-
powered CRNs. An interesting extension of this work might
be the generalization of system model in which multiple STs
and SRs coexist in the multichannel environment.
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