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ABSTRACT This paper addressed the fuzzy dynamic output feedback control problem for a class of non-
linear discrete-time Takagi–Sugeno (T-S) fuzzy systems with multiple time-varying delays and unmatched
disturbances. Based on the control input matrix and output matrix, the T-S fuzzy model is employed to
approximate the nonlinear discrete-time system. Based on the stochastic system theory and the Bernoulli
distribution, the fuzzy dynamic output feedback controller is constructed for the nonlinear discrete-time T-S
fuzzy system with multiple time-varying delay and unmatched disturbance. The H∞ performance analysis
is presented, and the cone complementarity linearization algorithm is employed for the stability analysis
to deal with the non-convex problem caused by the basis-dependent linear matrix inequalities conditions.
Compared with the previous works, the developed controller in this paper is smooth and only uses the
system output. The control design conditions are relaxed because of the developed cone complementarity
linearization algorithm. The results are further extended to the chemical process case and the mobile robot
case. Finally, two simulation examples are performed to show the effectiveness of the proposed methods.

INDEX TERMS T-S fuzzy model, stochastic system theory, fuzzy dynamic output feedback, multiple time-
varying delays, unmatched disturbances.

I. INTRODUCTION
Many practical systems are the large nonlinear complex sys-
tems and consist of the time-delays and external disturbances
in the real world [1], [2]. In these existing literatures, there
are two main issues, the time-delays issue and the external
disturbances issue, to be solved for the nonlinear uncertain
systems [3]. Due to the effect of the time-delays and external
disturbances, the systems may instability, and the system
control performances of the nonlinear systems are assured
hardly [4]. So far, the stability analysis and robust control
for the dynamic time-delay systems have attracted a num-
ber of researchers over the past years, see [5]–[8] and the
references therein. The fuzzy system can be regarded as a
fuzzy blending ofmany local linear models and utilized effec-
tively to approximate nonlinear plants encountered in control

engineering. Thus, the method has become an important
methodology for the nonlinear system design [9].

On the other hand, it is well known that the fuzzy
control theory provides the powerful method to solve the
control design issues for the nonlinear systems with the
time-delays and external disturbances [10]. Particularly,
the nonlinear T–S fuzzy model has attracted lots of atten-
tion for the intelligent fuzzy design methods, since it is
rigorously effective and conceptually simple for the non-
linear highly complex systems [11]. Based on the dynamic
fuzzy back-stepping control theory, an adaptive tracking con-
troller was designed for the nonlinear MIMO system with
time-delays [12]. In [13], an adaptive fuzzy-decentralized
robust output-feedback control strategy is proposed for a
class of large-scale strict-feedback nonlinear systems with
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unmeasured states and external disturbances. Then, a new
adaptive T-S fuzzy method was developed in [14] to improve
the haptic feedback fidelity of the nonlinear stochastic system
with actuator faults. It should be point out that the above
results are based on the parallel distributed compensation
design scheme [15], and the fuzzy filter controller needs to
share the same premise membership functions. To reduce the
conservatism of the filter design methods, the fuzzy-basis-
dependent Lyapunov-Krasovskii functional is employed and
the stability conditions in the form of LMIs are derived [16].
In order to consider the delay distributions fully, the delay
segmentation approach is introduced and the guaranteed cost
controller was investigated for a class of interval type-2
T-S fuzzy descriptor system with time-varying delays [17].
However, if the nonlinear system contains the multiple time-
delays and external disturbances, the membership functions
of T-S fuzzy model will contain the nonlinear uncertainties.
Based on the above reasons, the grades of membership for
the nonlinear fuzzy system will become uncertain in value,
and the non-convex problem caused by the nonlinear system
may arise. Therefore, dealing with the trade-off between the
less conservative condition and increased design complexity
remains an important problem in control system design.

Recently, the adaptive fuzzy and output feedback con-
trol theories have been studied extensively in the nonlinear
control problems and application problems, see [18], [19],
and the references therein. In [20], a fuzzy-model-based
static output-feedback method was proposed and the reli-
able distributed fuzzy controller was constructed. In order
to deal with the unknown nonlinear uncertainties caused by
the time-varying delays, some adaptive fuzzy and robust
output-feedback control strategies [21]–[23] have been devel-
oped. In addition, the output-feedback controllers based on
the fuzzy theory are often considered as universal effective
controllers, and these controller have the better ability to
approximate the nonlinear uncertainties. In [24], the dynamic
output-feedback control theory was employed for a class
of nonlinear industrial systems with unknown disturbances,
and the fuzzy network design methodology was presented.
Recently, the predictive control and fuzzy output feedback
control methods based on the LMIs have been developed
for the nonlinear affine/non-affine system [25]–[27]. In [28],
the mode-dependent nonrational output feedback control
method was proposed for the nonlinear semi-Markovian
jump systems with time-varying delays. Then with the help
of dynamic output feedback control technique, the two-
term approximation theory was investigated in [29] for the
Markovian jump systems with time-varying delays and
defective mode information. However, most of the above con-
trollers are designed based on the Lyapunov-Krasovskii func-
tional. In addition, it should be mentioned that the unmatched
disturbances have not been considered for the nonlinear sys-
tem with multiple time-varying delays in these literatures.
Very few results employed the stochastic system theory and
Bernoulli distribution, and consider with the unmatched dis-
turbances for the nonlinear T-S fuzzy system with multiple

time-varying delays. The dynamic output feedback technique
is more flexible and the required conditions are less con-
servative. Based on the above discussion, the H∞ dynamic
output-feedback controller for a class of nonlinear T-S fuzzy
systems with multiple time-delays and unmatched external
disturbances is investigated in this paper.

The objective of this paper is to design the dynamic output-
feedback controller for the nonlinear discrete-time T-S fuzzy
system, such that the solutions of the closed-loop system
converge to an adjustable bounded region. Compared with
the previous works, the developed controller in this paper is
smooth and only uses the system output. The control design
conditions are relaxed because of the developed cone comple-
mentarity linearization algorithm. The contributions of this
paper are summarized as follows:

(1) The T-S fuzzy model is employed to approximate the
nonlinear system based on the control input matrix and output
matrix. And the nonlinear uncertainties caused by the multi-
ple time-varying delays and unmatched disturbances can be
approximated effectively.

(2) The fuzzy dynamic output feedback controller is con-
structed based on the stochastic system theory and Bernoulli
distribution. The developed controller is smooth and more
flexible, and only uses the system output.

(3)By introduced the stochastic system theory and
Bernoulli distribution, it can be seen that the solutions of
the resultant closed-loop system converge to an adjustable
bounded region. The H∞ performance analysis is pre-
sented, and the cone complementarity linearization algo-
rithm is employed for the stability analysis to deal with the
non-convex problem caused by the basis-dependent LMIs
conditions.

This paper is organized as follows. In Section II,
the preliminary knowledge is presented for the nonlin-
ear discrete-time T-S fuzzy systems with multiple time-
delays and unmatched disturbances. In Section III, based
on the stochastic system theory and Bernoulli distribution,
the fuzzy dynamic output feedback controller is constructed.
In section IV, the H∞ stability analysis and cone com-
plementarity linearization algorithm are introduced for the
closed-loop system. In Section V, two simulation examples
are performed to show the effectiveness of the proposed
methods. Finally, Section VI concludes with a summary of
the obtained results.

II. SYSTEM DESCRIPTION
In this section, the T-S fuzzy model [30] is employed to
approximate the physical plant of the nonlinear discrete-time
system with multiple time-varying delays and unmatched
disturbances.

Consider a class of nonlinear discrete-time system with
multiple time-varying delays and unmatched disturbances as
follows

x (k + 1) = Aix (k − τi (k))+ Biu (k)+ Eidi (k)
z (k) = C1ix (k)+ Diu (k)
y (k) = C2ix (k), i ∈ [1, r]

(1)
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where x (k) ∈ Rn, y (k) ∈ Rm, z (k) ∈ Rs and u (k) ∈ Rq are
the state variable, measured output, control output and control
input of the system, respectively. Ai, Bi, C1i, C2i, Di, and Ei
are the gain matrices with appropriate dimensions. r is the
number of IF–THEN rule. τi (k) are themultiple time-varying
delays. di (k) are the unmatched external disturbances such
that [31]

|di (k1 + 1)− di (k2 + 1)| ≤ li |k1 − k2| (2)

where li is a scalar, k0 is the initial time for k0 < k1, k2,
the time-varying delays di (k1 + 1) and di (k2 + 1) satisfy the
Lipschita conditions [31].

Then, by employing the T-S fuzzy modeling technique
in [30], the system (1) is further rewritten as follows

Plant rule i: IF θ1 (k) is Mi1, θ2 (k) is Mi2, . . . , and θj (k)
is Mij (j ∈ [1, r]), THEN

x(k+1)=
r∑
i=1

fi(θ(k))[Aix(k−τi(k))+Biu(k)+Eidi(k)]

z (k) =
r∑
i=1

fi (θ (k)) [C1ix (k)+ Diu (k)]

y (k) =
r∑
i=1

fi (θ (k)) [C2ix (k)], i,∈ [1, r]

(3)

where θ (k) =
[
θ1 (k), θ2 (k), . . . , θj (k)

]T is the premise
variable, Mij is the fuzzy set, fi (θ (k)) is the fuzzy basis
functions of θ (k) and described as follows

fi (θ (k)) =

r∏
j=1

Mij
(
θj (k)

)
r∑
i=1

r∏
j=1

Mij
(
θj (k)

) (4)

whereMij
(
θj (k)

)
is the membership function of θj (k) in the

fuzzy set Mij.
Assumption 1: For the system (3), if there exist

r∏
j=1

Mij
(
θj (k)

)
≥ 0 and

r∑
i=1

r∏
j=1

Mij
(
θj (k)

)
> 0 for all i ∈

[1, r] and j ∈ [1, r], then the following conditions holdfi (θ (k)) ≥ 0
r∑
i=1

fi (θ (k)) = 1, i ∈ [1, r]
(5)

Remark 1: The objective of this paper is to design the
fuzzy dynamic output feedback controller for the systemwith
Assumption 1, such that the solutions of the resultant closed-
loop system converge to an adjustable bounded region.
Remark 2: Since the closed-loop system performance

can be degraded severely by the time-varying delays and
external disturbances, the control design problem for the
nonlinear systems presents a tremendous challenge. The
adaptive dynamic fuzzy back-stepping control approach is
proposed for a class of nonlinearMIMO systemswith immea-
surable states, without considering the time-delays [12].
The nonrational output feedback control approach is pro-
posed for the nonlinear semi-Markovian jump systems with

time-varying delays, without considering the external dis-
turbances [28]. The state estimation problem is addressed
for the discrete-time dynamical networks with time-varying
delays and bounded disturbances, without considering the
unmatched disturbances [32]. Different from the above
literatures, the fuzzy dynamic output feedback control prob-
lem is addressed in this paper for the nonlinear discrete-
time T-S fuzzy system with multiple time-varying delays and
unmatched disturbance. With the help of the proposed meth-
ods, both the steady-state performance and transient-state
performance can be guaranteed. Moreover, by introduced the
stochastic system theory and Bernoulli distribution, it can be
seen that the solutions of the resultant closed-loop system
converge to an adjustable bounded region
Remark 3: For the problem formulated, there are three

challenging issues as follows. The first one is how to employ
the T-S fuzzy model for the nonlinear system to approxi-
mate the nonlinear uncertainties caused by the multiple time-
varying delays and unmatched disturbances. The second one
is how to introduce the stochastic system theory and Bernoulli
distribution to design the fuzzy dynamic output feedback
controller, such that the solutions of the resultant closed-loop
system converge to an adjustable bounded region. The third
one is how to employ the cone complementarity linearization
algorithm to deal with the non-convex problem in the LMIs.
If the above three issues are solved, the controller will be
designed with easy implementation in practical engineering
systems.

III. CONTROLLER DESIGN
In this section, based on the stochastic system theory and
Bernoulli distribution, the fuzzy dynamic output feedback
controller is designed for the system (3). The graphical
abstract of the proposed methodology is shown in Fig. 1.

For the system (3), the dynamic output feedback controller
is designed as follows.

Controller rule i: IF θ1 (k) is Mi1, θ2 (k) is Mi2, . . . , and
θj (k) is Mij(j ∈ [1, r]), THEN{

xc (k + 1) = Acixc (k)+ Bciyc (k)
uc (k) = Ccixc (k)

(6)

where xc (k) ∈ Rn, yc (k) ∈ Rm and uc (k) ∈ Rq are the state
vector, control output and control input of the dynamic output
feedback controller, respectively. Aci, Bci and Cci are the gain
matrices with appropriate dimensions.

Then, for the system (3), the fuzzy dynamic output feed-
back controller (6) is obtained as follows

xc (k + 1) =
r∑
i=1

fi [Acixc (k)+ Bciyc (k)]

uc (k) =
r∑
i=1

fi [Ccixc (k)]
(7)

Remark 4: Due to the existence of the multiple time-
varying delays and unmatched disturbances between the
system plant and the dynamic output controller (as shown
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FIGURE 1. The graphical abstract of the proposed methodology.

FIGURE 2. Fuzzy dynamic output feedback control for the nonlinear T-S
system.

in Fig. 2). The output vector y (k) of the system plant is
not equal to the input vector yc (k) of the controller (i.e.
y (k) 6= yc (k)), and the output vector uc (k) of the controller
is not equal to the input vector u (k) of the system plant (i.e.
uc (k) 6= u (k)).

Base on the above reasons as show in Remark 4, the
stochastic system theory in [33] is employed to describe the
phenomenon as follows{

yc (k) = α (k) y (k)
u (k) = β (k) uc (k)

(8)
Prob {α (k) = 1} = E {α (k)} = ᾱ
Prob {α (k) = 0} = 1− ᾱ
Prob {β (k) = 1} = E {β (k)} = β̄
Prob {β (k) = 0} = 1− β̄

(9)

with

α (k) =

{
1, yc (k) = y (k) (e.t.yc (k) is available)
0, yc (k) 6= y (k) (e.t.yc (k) is unavailable)

(10)

β (k) =

{
1, uc (k) = u (k) (e.t.u (k) is available)
0, uc (k) 6= u (k) (e.t.u (k) is unavailable)

(11)

where ᾱ and β̄ are the positive scalars. α (k) and β (k)
are the random variables representing the measurements
probabilistic-density functions. If α (k) = 1 (β (k) = 1)
representing successful transmission. If α (k) = 0
(β (k) = 0) representing failed transmission. {α (k)} and
{β (k)} obey the Bernoulli distribution and representing the
missing measurements nature from the sensors to the con-
troller due to the time-delays, external disturbances, sud-
denly breakdown or limited capacity in information trans-
mission (as shown in Fig.2). Prob {α (k)} and Prob {β (k)}
are the probability of the random variables α (k) and β (k),
respectively. E {α (k)} and E {β (k)} are the mathematical
expectation values of the random variables α (k) and β (k),
respectively.

Based on the stochastic equation (8), the fuzzy dynamic
output feedback controller (7) is further rewritten as follows

xc (k + 1) =
r∑
i=1

fi [Acixc (k)+ Bciα (k) y (k)]

u (k) = β (k)
r∑
i=1

fi [Ccixc (k)]
(12)

By employing the controller (12) for the system (3), the non-
linear discrete-time T-S fuzzy closed-loop system is obtained
as follows
x̄ (k + 1) =

r∑
i=1

r∑
j=1

fifj
[(
A1ij + A2ij

)
x̄ (k)+ Ēidi (k)

]
z (k) =

r∑
i=1

r∑
j=1

fifj
[(
C1ij + C2ij

)
x̄ (k)

] (13)

where

x̄ (k) =
[
x (k)
xc (k)

]
, A1ij =

[
Ai β̄BiCci

ᾱBciC2i Aci

]
,

A2ij =
[

0 β̃ (k)BiCci
α̃ (k)BciC2i 0

]
, Ēi =

[
Ei
0

]
,

C1ij =
[
C1i β̄DiCci

]
, C2ij =

[
0 β̃ (k)DiCci

]
,

in which {
α̃ (k) = α (k)− ᾱ
β̃ (k) = β (k)− β̄

(14)

Based on the definition of the stochastic variables, with
(8)-(11), one has

E {α̃ (k)} = E {α (k)− ᾱ} = 0

E
{
β̃ (k)

}
= E

{
β (k)− β̄

}
= 0

E
{
α̃2 (k)

}
= E {α (k)− ᾱ} = ᾱ (1− ᾱ) = a2

E
{
β̃2 (k)

}
= E

{
β (k)− β̄

}
= β̄

(
1− β̄

)
= b2

(15)
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where a and b are the scalars.
For the problem formulated, there exist the Lemmas 1

and 2 as follows.
Lemma 1: For the system (13), if there exist the positive

scalar χ , positive matrix G such that χ > 0 and G > 0 for
the initial conditions x̄ (0) ≡ 0 and d (k) ≡ 0, the following
inequalities holds

E

{
∞∑
k=0

|x̄ (k)|2
}
< xT0 Gx0 (16)

E


(
∞∑
k=0

|z (k)|2
)1/2

 ≤ χ ‖di (k)‖2 (17)

where x0 is the initial state of the nonlinear system. Then the
closed-loop system is stable.
Lemma 2: For the system (13), if there exist the negative

matrices Mil such thatMil(i=l) < 0
Mil(i=l)

r − 1
+

(
Mil(i 6=l) +Mli(i 6=l)

)
2

< 0, i, l ∈ [1, r]
(18)

Then, the following inequality holds

r∑
i=1

r∑
l=1

fiflMil < 0 (19)

IV. STABILITY ANALYSIS
In this section, the H∞ performance analysis is presented at
first, then the cone complementarity linearization algorithm
is employed for the system (13) to deal with the non-convex
problem caused by the LMIs conditions.
Remark 5: First, the H∞ stability analysis is presented for

the system (13). The fuzzy discrete Lyapounov-Krasovskii
functional (24) is introduced, and a non-convex condition
will be produced when obtaining the LMIs conditions for
the controller design. Secondly, in order to deal with the
non-convex problem, the cone complementarity linearization
algorithm is employed for the fuzzy dynamic output feedback
controller design.

A. H∞ STABILITY ANALYSIS
In this section, the H∞ stability analysis is presented for the
system (13).
Theorem 1: For the system (13), if there exist the positive

scalar χ > 0, identity matrix I , positive matrix Qi > 0, and
nonsingular positive matrix Qj > 0 such that[

ϒj 2il
∗ Q̄i

]
< 0 (20)

where

Q̄i = diag {−Qi,−χ I } (21)

ϒj = diag
{
−Q−1j ,−Q−1j ,−I ,−I

}
(22)

2il =


A1il Ēi
Ā2il 0
C1il 0
C̄2il 0

 (23)

in which

A1il =
[

0 bBiCci
aBciC1i 0

]
, Ā2il =

[
0 bBiCci

aBciC2i 0

]
,

C1il = C̄2il =
[
0 bDiCci

]
, Ēi =

[
Ei
0

]
.

Then, it can be seen that the solutions of the closed-loop
system (13) converge to an adjustable bounded region.
Proof: For the system (13), choose a fuzzy discrete

Lyapunov-Krasovskii functional fi (·) as follows

V (k) = x̄T (k)

(
r∑
i=1

fiQi

)
x̄ (k) (24)

where fi (·) is the fuzzy basis functions, and Qi > 0 is a
positive matrix.

With the Lemma 1, the mathematical expectation value of
E {V (k + 1)− V (k)} satisfies

E {V (k + 1)− V (k)}

= E{(x̄T (k)
r∑
j=1

f +j (
r∑
i=1

r∑
l=1

r∑
s=1

r∑
t=1

fifl fsft (A1il + A2il)T

× Qj (A1il + A2il)
)
x̄ (k) )}− x̄T (k)

(
r∑
i=1

fiQi

)
x̄ (k)

≤ x̄T (k)
r∑
j=1

f +j

r∑
i=1

r∑
l=1

fifl
(
AT1ilQjA1il + Ā

T
2ilQjĀ2il

)
x̄ (k)

− x̄T (k)

(
r∑
i=1

fiQi

)
x̄ (k)

= x̄T (k)
r∑
j=1

f +j

r∑
i=1

r∑
l=1

fifl
[
AT1ilQjA1il+Ā

T
2ilQjĀ2il−Qi

]
x̄(k)

= x̄T (k)
r∑
j=1

f +j

r∑
i=1

r∑
l=1

fifl
(
2T
il Q̂j2il − Qi

)
x̄ (k) (25)

where f +j = fj (θ (k + 1)) and Q̂j = diag
{
Qj,Qj

}
.

By employing the Schur complement, one knows that the
inequality (20) is equivalent to the inequality (26) as follows

2T
il Q̂j2il − Qi < 0, i, j, l ∈ [1, r] (26)

For the system (13), defining the parameter 4 such that

4 =

r∑
j=1

f +j

r∑
i=1

r∑
l=1

fifl
(
2T
il Q̂j2il − Qi

)
< 0 (27)

With (24) and (27), one has

E

x̄T (k+1)
 r∑
j=1

f +j Qj

 x̄(k+1)

−xT (k)
(

r∑
i=1

fiQi

)
x̄(k)

≤ −µ (−4) x̄T (k)GxT (k) (28)

where µ is a positive scalar.
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Based on the Lemma 1, taking the mathematical expecta-
tion value for right side of (28), one has

E

xT (ε+1)
 r∑
j=1

fjQj

 x̄(ε+1)

−x̄T (0)
(

r∑
i=1

fiQi

)
x̄(0)

≤ −µ (−4)E

{
ε∑

k=0

|x̄ (k)|2
}

(29)

where k = 0, 1, . . . , ε with ε ≥ 1 is a positive integer scalar.
With the Lemma 1 and (29), one has

E

{
ε∑

k=0

|x (k)|2
}

≤ (µ (−4))−1 ×

{
x̄T (0)

(
r∑
i=1

fiQi

)
x̄ (0)

− E

x̄T (ε + 1)

 r∑
j=1

f +j Qj

 x̄ (ε + 1)




≤ (µ (−4))−1 x̄T (0)

(
r∑
i=1

fiQi

)
x̄ (0) (30)

where x̄ (0) is the initial condition.
Assumption 2: For the system (13), if there exist the posi-

tive scalar ε ≥ 1 and the nonsingular positive matrix Qj > 0
such that

E

x̄T (ε)
 r∑
j=1

f +j Qj

 x̄ (ε)

 ≥ 0 (31)

then based on the Lemma 1, the following inequality holds

E

{
ε∑

k=0

|x̄ (k)|2
}
≤ (µ (−4))−1 x̄T (0)

(
r∑
i=1

fiQi

)
x̄ (0)

= x̄T (0)

(
(µ (−4))−1

r∑
i=1

fiQi

)
x̄ (0)

= x̄T (0)Gx̄ (0) (32)

where

G = (µ (−4))−1
r∑
i=1

fiQi (33)

With (27) and (33), one can obtain 4 < 0 and G > 0. Thus,
based on the above analysis and Lemma 1, it can be seen that
the nonlinear T-S fuzzy closed-loop system (13) is stable.

Then, for the system (13), the H∞ performance index J is
introduced as follows

J=E
{
zT (k) z(k)

}
−χ2dTi (k) di(k)+E {V (k+1)−V (k)}

(34)

For (34), defining the parameter ξi (k) as follows

ξi (k) =
[
x̄ (k)
di (k)

]
(35)

With (34) and (35), one has

J = E
{
zT (k) z(k)

}
−χ2dTi (k) di (k)+E {V (k + 1)−V (k)}

= E

{
ξTi (k)

r∑
i=1

r∑
l=1

r∑
s=1

r∑
t=1

fifl fsft

([
C1il + C2il 0

]T
×

[
C1il + C2il 0

])
ξi (k)

}

+E

ξTi (k)
r∑
j=1

f +j

r∑
i=1

r∑
l=1

r∑
s=1

r∑
t=1

fifl fsft

×

([
A1il + A2il Ēi

]T
Qj
[
A1il + A2il Ēi

])
ξi (k)


−χ2dTi (k) di (k)− x̄

T (k)

(
r∑
i=1

fiQi

)
x̄ (k)

= ξTi (k)
r∑
j=1

f +j

r∑
i=1

r∑
l=1

r∑
s=1

r∑
t=1

fifl fsft

×

[
CT
1ilC1st + C̄T

2ilC̄2st 0

0 0

]
ξi (k)

+ ξTi (k)
r∑
j=1

f +j

r∑
i=1

r∑
l=1

r∑
s=1

r∑
t=1

fifl fsft

×

[
AT1ilQjA1st + Ā

T
2ilQjĀ2st AT1ilQjĒs

ĒTi QjA1st ĒTi QjĒs

]
ξi (k)

− ξTi (k)
r∑
i=1

fi

[
Qi 0

0 γ 2I

]
ξi (k)

(36)

where

J ≤ ξTi (k)
r∑
j=1

f +j

r∑
i=1

r∑
l=1

fifl

[
CT
1ilC1il + C̄T

2ilC̄2il 0

∗ 0

]
ξi (k)

+ ξTi (k)
r∑
j=1

f +j

r∑
i=1

r∑
l=1

fifl

×

[
AT1ilQjA1il + Ā

T
2ilQjĀ2il AT1ilQjĒi

ĒTi QjA1il ĒTi QjĒi

]
ξi (k)

− ξTi (k)
r∑
i=1

fi

[
Qi 0

0 χ2I

]
ξi (k)

= ξTi (k)
r∑
j=1

f +j

r∑
i=1

r∑
l=1

fifl

{[
CT
1ilC1il + C̄T

2ilC̄2il 0

∗ 0

]

+

[
AT1ilQjA1il + Ā

T
2ilQjĀ2il AT1ilQjĒi

∗ ĒTi QjĒi

]
−

[
Qi 0

0 γ 2I

]}
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× ξi (k)

= ξTi (k)
r∑
j=1

f +j

r∑
i=1

r∑
l=1

fifl


[
A1il Ēi
Ā2il 0

]T [Qi 0

0 Qj

]

×

[
A1il Ēi
Ā2il 0

]

+

[
C1il 0

C̄2il 0

]T [C1il 0

C̄2il 0

]
−

[
Qi 0

0 γ 2I

] ξi (k)
By employing the Schur complement and considering the
inequality (20), one has

J≤E
{
zT (k) z (k)

}
−χ2dTi (k) di (k)+1V (k) ≤ 0 (37)

The proof for the Theorem 1 is completed.
Remark 6: For the system (13), due to introducing the fuzzy

discrete Lyapounov-Krasovskii functional (24), the non-
convex condition will be produced when obtaining the LMIs
conditions for the controller design. Thus, it will be more
difficult to solve the parameter matrices Aci, Bci and Cci for
the proposed controller. In order to deal with the non-convex
problem, the cone complementarity linearization algorithm is
employed for the controller design in Section B.

B. CONE COMPLEMENTARITY
LINEARIZATION ALGORITHM
In this section, the cone complementarity linearization algo-
rithm is employed for the fuzzy dynamic output feedback
controller design. And the control design conditions are
relaxed because of the developed cone complementarity lin-
earization algorithm.
Remark 7: The dynamic output feedback technique is more

flexible and the required conditions on the nonlinear systems
are less conservative. The proposed controller is smooth and
the precise time delays are not required for the control imple-
mentation. But the control design conditions for the nonlinear
systems are more conservative because of the non-convex
problem. Thus, based on the Lemma 2, the more flexible
conditions will be presented in the Theorem 2 as follows.
Theorem 2: For the system (13), if there exist the positive

scalar χ > 0, identity matrix I , positive matrix Qi > 0, and
nonsingular positive matrix Li > 0 such that[

L̂i 2̂il
∗ Q̄i

]
< 0 (38)

where

Q̄i = diag {−Qi,−χ I } (39)

L̂i = diag {−Li,−Li,−I ,−I } (40)

2̂il =


Â1il Ēi
ˆ̄A2il 0
Ĉ1il 0
ˆ̄C2il 0

 (41)

in which Â1il , ˆ̄A2il , Ĉ1il and ˆ̄C2il are the system parameter
matrices with appropriate dimensions, then the following
conditions hold

N̄ilj(i=l) < 0, i, l, j ∈ [1, r] (42)

N̄ilj(i 6=l)

r − 1
+

(
N̄ilj(i 6=l) + N̄lij(i 6=l)

)
2

< 0 (43)

QiLi = I (44)

where N̄ilj =

[
L̂i 2̂il
∗ Q̄i

]
< 0 is a negative matrix

Then, it can be seen that the solutions of the resultant
closed-loop system (13) converge to an adjustable bounded
region.
Proof: For the matrix 2̂il in (41), the parameter matrices

Â1il , ˆ̄A2il , Ĉ1il and ˆ̄C2il are defined as follows
Â1il = 3i + EKi8i +�iC̄ci
ˆ̄A2il = EKiRi + SiC̄ci
Ĉ1il = 9i + β̄DiC̄ci
ˆ̄C2il = bDiC̄ci

(45)

where

3i =

[
Ai 0
0 0

]
, E =

[
0
I

]
, Ki =

[
Aci Bci

]
,

8i =

[
0 I

ᾱC2i 0

]
, �i =

[
β̄Bi
0

]
, C̄ci =

[
0 Cci

]
,

Ri =
[

0 0
aC2i 0

]
, Si =

[
bBi
0

]
, 9i =

[
C1i 0

]
.

With (45), the inequality (20) can be rewritten as follows[
ϒj 2̂il
∗ Q̄i

]
< 0 (46)

Let ϒj = L̂i, one has[
L̂i 2̂il
∗ Q̄i

]
< 0 (47)

With the Lemma 2 and (47), the following inequality holds

r∑
j=1

f +j

r∑
i=1

r∑
l=1

fiflN̄ilj < 0 (48)

With the above analysis, it can be seen that if Qi and Li are
the feasible solutions of (42)-(44), the gain matrices of the
controller Aci, Bci and Cci can be solved in the Theorem 2.
The proof for the Theorem 2 is completed.
Remark 8: From the Theorem 2, it can be seen that the

condition (44) is a non-convex set. In order to deal with the
non-convex problem, the cone complementarity linearization
algorithm is introduced as follows.
Lemma 3 [34]: The basic idea of the cone complementarity

linearization algorithm is that if there exist the positive matri-
ces Qi ∈ Rn×n and Li ∈ Rn×n such that Qi > 0, Li > 0 and
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[
Qi I
I Li

]
≥ 0 for i ∈ [1, r], then the following conditions

hold {
Tr (QiLi) > n
Tr (QiLi) = n,Qi = Li = I

(49)

where Tr (QiLi) is the trace of the matrix QiLi.
Note, the LMIs can be solved by the LMIs toolbox, and

the basic feasible solutions Aci, Bci, Cci, Qi and Li can be
obtained. With the above analysis, it can be seen that the
nonlinear minimization problem can be instead of the non-
convex feasibility problem in the Theorem 2. Thus, the LMIs
conditions for the nonlinear minimization problem are given
as follows

minTr

(
r∑
i=1

QiLi

)
s.t. (19), (20) and

[
Qi I
I Li

]
≥ 0

(50)

where minTr (·) is the minimum value for the trace of

matrix
r∑
i=1

QiLi.

For the nonlinear minimization problem, if there exist the
feasible solutions rn such that the following conditions hold

Tr
(

r∑
i=1

QiLi

)
> rn

Tr
(

r∑
i=1

QiLi

)
= rn, Qi = Li = I

(51)

then the LMIs conditions are solvable in the Theorem 2.
For the system (13), the cone complementarity lineariza-

tion algorithm is designed as follows (Step 1-5) [34].
Step 1. Select the membership functions and construct the

fuzzy rules for the system (3). Giving the H∞ performance
index J for the closed-loop system (13). Go to Step 2.

Step 2. Solve the LMIs (42), (43), and
[
Qi I
I Li

]
≥ 0 in the

Lemma 3 to obtain the initial feasible solutions (A0ci, B
0
ci, C

0
ci,

Q0
i and L

0
i ). Then, set k = 0, where k is the numbers of the

iterations. Go to Step 3.
Step 3. Solve the following LMIs for the parameter matri-

ces Aci, Bci, Cci, Qi and Li such that

minTr

(
r∑
i=1

(QiLi)

)
, s.t. (19), (20) and

[
Qi I
I Li

]
≥ 0

(52)

Set Qk+1i = Qi and L
k+1
i = Li. Go to Step 4.

Step 4. If the LMIs (42), (43) and
[
L̂i 2̂il
∗ Q̄i

]
< 0 are

feasible for the parameter matrices Aci, Bci, Cci, Qi and Li
obtained in Step 3, then go to Step 5. If the LMIs (42), (43)

and
[
L̂i 2̂il
∗ Q̄i

]
< 0 are unfeasible with k < N , where N is the

maximum number of iterations allowed, then set k = k + 1
and return to Step 3.

Step 5. Output the feasible solutions Akci, B
k
ci, C

k
ci, Q

k
i and

Lki . Then let Akci = Aci, Bkci = Bci, Ck
ci = Cci, Qki = Qi and

Lki = Li. STOP.
Remark 9: The static output feedback control problem

has been studied extensively for the nonlinear uncertain sys-
tem with time-delays [20], [25]. It is well known that the
dynamic controller provides more freedom and results in less
conservativeness than the static controller. Compared with
the design conditions for the static output feedback control,
the design conditions for the fuzzy dynamic output feedback
control are relaxed in this paper. In addition, with the help of
the cone complementarity linearization algorithm, the non-
convex problem is solved effectively.

V. SIMULATION RESULTS
In this section, two simulation examples are performed to
show the effectiveness of the proposed methods.

A. EXAMPLE 1
Consider a chemical stirred tank reactor system as
follows [35]
ĊA=qV−1

(
CAfsik−CA

)
−a0 exp

(
−
E
RT

)
CA

Ṫ =qV−1
(
Tfsik−T

)
−a1 exp

(
−
E
RT

)
CA+a2 (TC−T )

(53)

where κ = 1, 2 is the mode index, fsi is the feed stream
index, and the use details of parameters κand fsi were shown
in [35]. CA, T and TC are the reactant concentration, reactor
temperature and coolant temperature, respectively (as shown
in Fig. 3).

FIGURE 3. The schematic diagram of chemical stirred tank reactor.

In this paper, the mode index κ is chosen as κ = 1 [35],
then the system (53) is rewritten as follows
ĊA = qV−1

(
CAfsi1 − CA

)
− a0 exp

(
−
E
RT

)
CA

Ṫ =qV−1
(
Tfsi1−T

)
−a1 exp

(
−
E
RT

)
CA+a2 (TC−T )

(54)
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In addition, the using details of the parameters in (54) are
shown in [35].

For the chemical stirred tank reactor system (54),
the desired nominal operating values are C∗A = 0.5mol/L,
T ∗ = 350K and T ∗C = 280K . In this case, x1 = CA − C∗A
and x2 = T − T ∗ are the state variables. With [35, Table 1],
the model index κ is given as κ = 1, then the system (54) is
rewritten as follows

(κ = 1) :



x1 (k + 1) = x2 (k)+ 0.5 (1.5− x1 (k))
−a0x1 (k) e−8750/(x2(k)+350) − x2 (k)

x2 (k + 1) = a2u (k)− 2.592x2 (k)
−a1x1 (k) e−8750/(x2(k)+350) − 104.6

y =
[
x1 x2

]T
(55)

Consider the chemical stirred tank reactor system (55)
with the multiple time-varying delays and unmatched distur-
bances, the system (55) is further rewritten as follows

(κ=1) :



x1(k+1)=x2(k−τ2(k))+0.5(1.5−x1(k−τ1(k)))
−a0x1 (k − τ1 (k)) e−8750/(x2(k−τ2(k))+350)

−x2 (k − τ2 (k))+ d1 (k)
x2 (k + 1) = a2u (k)− 2.592x2 (k − τ2 (k))
−a1x1 (k − τ1 (k)) e−8750/(x2(k−τ2(k))+350)

−104.6+ d2 (k)

y =
[
x1 x2

]T
(56)

For the problem formulated, the system (56) is transformed
into the form of system (1) as follows

x (k + 1) = Aix (k − τi (k))+ Biu (k)+ Eidi (k)
z (k) = C1ix (k)+ Diu (k)
y (k) = C2ix (k), i ∈ [1, r]

(57)

where r = 2.
By employing the T-S fuzzy model technique in [30], the

system (57) is rewritten as follows

x(k+1)=
2∑
i=1

fi(θ(k))[Aix(k−τi(k))+Biu(k)+Eidi(k)]

z (k) =
2∑
i=1

fi (θ (k)) [C1ix (k)+ Diu (k)]

y (k) =
2∑
i=1

fi (θ (k)) [C2ix (k)], i ∈ [1, 2]

(58)

where x1 = CA−C∗A and x2 = T −T ∗ are the state variables.
y (k), z (k) and u (k) are the measured output, control output
and control input of the system, respectively. d1 (k) and d2 (k)
are the unmatched disturbances.A1,A2,B1,B2,C11,C12,C21,
C22,D1,D2, E1 and E2 are the gain matrices with appropriate
dimensions and given as follows

A1=
[
4.4800 210.2019
−0.0468 −1.899

]
, A2=

[
−0.9868 30.1905
−0.2328 −1.2400

]
,

FIGURE 4. The response of system state variable x1.

B1 =
[
2.0921
0.2305

]
, B2 =

[
0.4681
0.3549

]
,

E1 =
[

1
0.7

]
, E2 =

[
1
0.5

]
, C11=C12 =

[
0.2 −0.1

]
,

C21 = C22 =
[
0.02 0.05

]
, D1 = D2 = 0.01.

The membership functions for the fuzzy rules 1 and 2 are
given as followsf1 (θ (k)) =

2− sin θ (k)
2

, 0 ≤ θ (k) ≤ π

f2 (θ (k)) = 1− f1 (θ (k))
(59)

Base on the Lemma 1, with (8) and (9), the parameters ᾱ, β̄χ
and G are given as ᾱ = 0.7, β̄ = 0.7, χ = 1 and G = [1.50].
Then, based on the stochastic system theory and Bernoulli
distribution, the fuzzy dynamic output feedback controller is
designed as follows

xc (k + 1) =
2∑
i=1

fi [Acixc (k)+ Bciyc (k)]

uc (k) =
2∑
i=1

fi [Ccixc (k)], i ∈ [1, 2]
(60)

where

Ac1=
[
0.3948 −0.1703
−0.5537 0.3445

]
, Ac2=

[
−0.0360 0.2072
−0.0333 −0.2645

]
,

Bc1 =
[
0.0577
0.5280

]
, Bc2 =

[
−0.0455
−0.4962

]
,

Cc1=
[
−5.3759 −1.6552

]
, Cc2 =

[
12.6825 8.7557

]
.

For the simulation, the initial states are given asx (0) =[
−0.36 52

]T . The multiple time-varying delays are given
as τ1 = 0.25 (1+ sin k) and τ2 = 0.1 (1+ sin k). The
unmatched disturbances are given as d1 (k) = sin (0.1k) and
d2 (k) = 0.8 sin (0.2k). The responses of the system state
variables x1 and x2 are shown in Figs. 4 and 5. The control
input is shown in Fig. 6. From the three figures, it can be seen
that the proposed method is effective and can stabilize the
chemical stirred tank reactor system quickly.
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FIGURE 5. The response of system state variable x2.

FIGURE 6. The response of system control input.

B. EXAMPLE 2
Consider a nonlinear mobile robot system as follows [30]

x1 (k + 1) = x1 (k)+
vr tr
lr

u (k)

x2 (k + 1) = x2 (k)+ sin (x1 (k))

x3 (k + 1) = x3 (k)+ cos (x1 (k))

y (k) = 1.5x2 (k)+ 1.5x3 (k) (61)

where x1 (k) is the direction angle of the mobile robot, x2 (k)
and x3 (k) are the mobile robot position coordinates in the
global coordinate system. u (k) is the control input. vr =
0.9m/s is the linear velocity of robot, lr = 2.5m is the length
of robot and tr = 1.0s is the sampling time.

Consider the mobile robot system (61) with the multiple
time-varying delays and unmatched disturbances, the system
(61) is further rewritten as follows

x1 (k+1) = x1 (k − τ1 (k))+
vr tr
lr

u (k)+ 0.01d1 (k)

x2(k+1)= x2(k−τ2(k))+sin(x1(k)−τ1(k))+0.02d2 (k)

x3(k+1)= x3(k−τ3(k))+cos(x1(k−τ1(k)))+0.03d3(k)

y (k) = 1.5x2 (k − τ2 (k))+ 1.5x3 (k − τ3 (k)) (62)

For the problem formulated, the system (62) is transformed
into the form of system (1) as follows

x (k + 1) = Aix (k − τi (k))+ Biu (k)+ Eidi (k)
z (k) = C1ix (k)+ Diu (k)
y (k) = C2ix (k), i ∈ [1, r]

(63)

where r = 3.
By employing the T–S fuzzy model technique in [30],

the system (63) is rewritten as follows

x(k+1)=
3∑
i=1

fi(θ (k))[Aix (k−τi(k))+Biu(k)+Eidi(k)]

z (k) =
3∑
i=1

fi (θ (k)) [C1ix (k)+ Diu (k)]

y (k) =
3∑
i=1

fi (θ (k)) [C2ix (k)], i ∈ [1, 3]

(64)

where x1 (k), x2 (k) and x3 (k) are the state variables of the
mobile robot system. y (k), z (k) and u (k) =

[
v (k) ω (k)

]T
are the measured output, control output and control input of
the system, respectively. vp (k) andωp (k) are the linear veloc-
ity and angular velocity of the mobile robot, respectively.
d1 (k), d2 (k) and d3 (k) are the unmatched disturbances. A1,
A2, A3, B1, B2, B3, C11, C12, C13, C21, C22, C23, D1, D2,
D3, E1, E2 and E3 are the gain matrices with appropriate
dimensions and given as follows

A1=

1 2 0.8
2 1 0
0 0 1

, A2=

1 0 0
0 −1 0
0 0 1

, A3=

1 0 0
0 1 0
0 0 1

,
B1 =

 0.03
0.01
0.02

, B2 =

 0.04
0.03
0.05

, B3 =

 0.01
0.01
0.05

,
E1 =

−0.010.07
0.02

, E2 =

−0.020.05
0.03

, E3 =

 0.05
0.02
−0.06

,
C11 = C12 = C13 =

[
0.14 −0.07 0.06

]
,

C21 = C22 = C23 =
[
0.02 −0.05 0.04

]
,

D1 = D2 = D3 = 0.01.

The membership functions for the fuzzy rules 1, 2 and 3 are
given as follows

f1 (θ (k)) = 1−
sin θ (k)

2
, 0 ≤ θ (k) ≤ π

f2 (θ (k)) = 1−
sin θ (k)

2
f3 (θ (k)) = 1− f1 (θ (k))− f2 (θ (k))

(65)

Based on the Lemma 1, with (8) and (9), the parameters ᾱ, β̄χ
and G are given as ᾱ = 0.9, β̄ = 0.8, χ = 1 and G = [1.50].
Then, based on the stochastic system theory and Bernoulli
distribution, the fuzzy dynamic output feedback controller is
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FIGURE 7. The response of system state variable x1.

designed as follows
xc (k + 1) =

3∑
i=1

fi [Acixc (k)+ Bciyc (k)]

uc (k) =
3∑
i=1

fi [Ccixc (k)], i ∈ [1, 3]
(66)

where

Ac1 =

 0.4079 −0.2013 0.8527
−0.6860 0.4778 0.9173
0.6981 −0.6149 −0.2846

,
Ac2 =

−0.2493 0.3103 0.8255
−0.2446 −0.5726 −0.6842
0.4413 0.6915 −0.4891

,
Ac3 =

 0.1236 −0.2583 −0.3719
0.1206 0.5561 0.8619
0.1201 −0.1946 0.0925

,
Bc1 =

 0.1468
0.4190
−0.5558

, Bc2 =

−0.0544−0.5843
0.5387

,
Bc3=

 0.1002
0.1118
−0.0619

, Cc1=
[
−4.4874 −1.4798 −0.5852

]
,

Cc2 =
[
22.5714 7.8688 0.3159

]
,

Cc3 =
[
0.2336 −0.2689 −0.4915

]
.

For the simulation, the initial states are given as x (0) =[
8.8 0 0

]T . The multiple time-varying delays are given as
τ1 = 0.25 (1+ sin k), τ2 = 0.1 (1+ sin k) and τ3 =
0.2 (1+ sin k). The unmatched disturbances are given as
d1 (k) = sin (0.1k), d2 (k) = 0.5 sin (0.3k) and d3 (k) =
0.9 sin (0.25k). The responses of the system state variable x1
is shown in Fig. 7, the responses of the system state variables
x2 and x3 are shown in Fig. 8. The control input is shown in
Fig. 9. From the three figures, it can be seen that the proposed
method is effective and can stabilize the mobile robot system
quickly.

FIGURE 8. The response of system state variables x2 and x3.

FIGURE 9. The response of system control input.

VI. CONCLUSIONS
This paper addressed the fuzzy dynamic output feedback con-
trol problem for a class of nonlinear discrete-time T-S fuzzy
systems with multiple time-varying delays and unmatched
disturbances. The T-S fuzzy model is employed for the
nonlinear system, and the nonlinear uncertainties caused by
the multiple time-delays and unmatched disturbances can
be approximated effectively. The proposed fuzzy dynamic
output feedback controller is smooth and flexible, con-
structed based on the stochastic system theory and Bernoulli
distribution, and only uses the system output. The cone com-
plementarity linearization algorithm is employed for the sta-
bility analysis, and the control design conditions are relaxed.
By introducing the stochastic system theory and Bernoulli
distribution for the controller design, it can be seen that
the designed controller renders that the closed-loop system
has better transient state performance and better steady state
performance. Finally, two simulation examples are performed
to show the effectiveness of the proposed methods. In the
future work, the finite/fixed-time stabilization for the stochas-
tic system with asymmetrical time-varying delays will be
considered.
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