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ABSTRACT This paper put forward an improved stochastic stability condition for Markovian jump systems
with interval time-varying delays. Markov jump parameters are modeled as a continuous-timeMarkov chain.
We choose an improved Lyapunov–Krasovskii functional (LKF) and the linear matrix inequality (LMI)
formulation, which can improve stability conditions with delay dependent and more suitable for solving
related convex optimization problems. A new inequality processing method and the improved Wirtinger-
based inequality with integral are used to deal with the LKF. The new results are showed by the LMI. At the
end of this paper, some examples will be given to show that our method is effective and will bring lower
conservatism.

INDEX TERMS Markovian jump systems (MJSs), interval time-varying delay, improved Wirtinger-based
integral inequality.

I. INTRODUCTION
Markovian jump systems(MJSs) is a stochastic system with
multiple modes, the jump transfer between various modes is
determined by a set of Markov chains. In the process of prac-
tical application, because the equation of state of the system
often has a certain randomness, this kind of system can not be
described by the linear time invariant system. For example,
some industrial systems may change suddenly in different
parts of production or a sudden failure of some part of the
system. However, this dynamic system can be accurately
described by MJSs, which has been widely studied. In 1961,
a continuous time model of MJSs has been established by
Krasovskii and Lidskii et al. With the extensive application
of modern computers, the form of discrete time is extended in
the subsequent study, and the discrete timemodel of theMJSs
is established. Since then, the analysis and synthesis of MJSs
have been widely and deeply studied, and the results of the
phased research are reported. For example, In [1], the control-
lability, observability, stability, detectability and linear two
degree control problems of continuous time MJSs have been
discussed, and the indispensable and adequate conditions are
given. In [2], the problem of stability and control for uncertain
MJSs are studied, the necessary and adequate conditions are
shown in the form of LMIs. In [3], the H∞ control problem
of the MJSs and provides a design method of the expected

controller have been studied. In [4], the H∞ and H2 output
feedback control problems of MJSs are studied, the adequate
conditions for the existence of the expected controller are
shown in the form of LMIs. In [5] and [6], a design method
for a synovium controller has been provided for a MJSs with
uncertainty. In [7]–[9], for the singular systems with Marko-
vian jump parameters, the stability analysis, stabilization,
guaranteed cost control andH∞ control have been discussed,
the corresponding analysis and design results are given in the
form of LMIs.

However, in practical applications, time delay usually
exists in the MJSs, which reduces the normal operation of
the system and even affects the instability of the system.
Therefore, the research into MJSs with time delay has been
focused. Generally speaking, when a time-delay in a MJSs
is small enough, compared with the stable condition without
time delay, the stability criterion dependent on time delay
is not only not conservative, but also can get the upper
bound of the maximum time delay that satisfies the stability
condition of the system. In the interest of make the stability
of the jump system less conservative, researchers have put
forward many effective techniques and methods. Such as the
convex analysis method, the time delay processing, the model
transformation technology, the free weight matrix, the dis-
crete Lyapunov method in [10]–[13], [25], and [26]. These
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methods have effectively reduced the conservatism of the
conditions. However, these methods have some limitations.
Either it is not enough to consider the processing of the
condition of the function, or the method for the contraction of
the LKF can still be improved. In [24], the Jensen’s inequality
method has been used to deal with inequalities. Then we
found that this method was conservative and needed to be
improved.

In this paper, we have presented an improved stochas-
tic stability condition for MJSs with interval time-varying
delays. The improvedWirtinger-based inequality with double
integral and the new inequality processing method are used
to handle the LKF. This method has a lower conservativeness
compared to the methods mentioned above. At the end of the
article, some examples will be given to show that our results
are improved.

In this paper, the symbol ‘‘T’’ represents the matrix
transposition, Rn shows the n-dimensional Euclidean space.
0 indicate the zero matrix. The notation {�,z,P} indicate
the probability space.�,z andP represent the sample space,
σ -algebra of subsets of the sample space and probability
measure on z, respectively. S > 0 is used to show a
symmetric positive-definite matrix. The symbol ‘‘∗’’ shows
a term that is induced by symmetry. When κ(ρ) = i ∈ S =
{1, · · ·,M}, we sign Ai = A(κ(ρ)).

II. SYSTEM DESCRIPTION AND PROBLEM ANALYSIS
Let us define the following delayed MJSs:{

ẋ(t) = A(r(t))x(t)+ Ad (r(t))x(t − d(t))
x(t) = ϕ(t), t ∈ [−h2, 0]

(1)

where x(t) ∈ Rn represents the states,r(t) represents hav-
ing values in a finite-state space S = {1, · · ·,M} and a
homogenous stationary Markov chain defined on {�,z,P}.
The state transition rate matrix 4 = (µij)N×N is represented
by:

P{r(t +1) = j|r(t) = i} =


µij1+ o(1);
ifj 6= i,
1+ µii1+ o(1);
ifj = i

where µij > 0, if j 6= i,µii = −
∑N

j=1,j 6=i µij.In MJSs (1),d(t)
expresses the time vary delay which section is :h1 6 d(t) 6
h2 and ḋ(t) 6 µ. In MJSs (1), ϕ(t) is defined on interval
[−h2, 0].
Lemma 1 [15]: The given invariant values m and n with

m < n,for any constant matrix H > 0,and successively
differentiable functions x ∈ [m, n] → R,the following
inequality shows:

(n− m)2

2

∫ n

m

∫ n

θ

xT (u)Hx(u)dudθ

>

(∫ n

m

∫ n

θ

x(u)dudθ
)T

H
(∫ n

m

∫ n

θ

x(u)dudθ
)

+ 22T
dH2d

where

2d = −

∫ n

m

∫ n

θ

x(u)duds+
3

s− r

∫ n

m

∫ n

θ

∫ n

u
x(u)dvduds

Definition 1 [24]: The MJSs (1) is stochastically stable,
if r(0) ∈ S and for finite ϕ(t) defined on [−h2, 0], the follow-
ing relation holds:

lim
t→∞

E{
∫ t

0
xT (t, ϑ, r(0))x(t, ϑ, r(0))d(s)} <∞.

III. MAIN RESULTS
In this part, we get a improve synchronization method by
using aforementioned Lemma.
Theorem 1: For any delay d(t), given arbitrary constant

h1,h2,and µ. Then, if there exist n× nmatrices Pi > 0,Q1i >

0,Q2i > 0,Q3i > 0,Q1 > 0,Q2 > 0,Q3 > 0,Z1 > 0,
and Z2 > 0,the MJSs (1) is stochastically stable which the
following LMIs keep for any i = 1, · · ·,N :

6i < 0 (2)
N∑
j=1

µijQ1j 6 Q1 (3)

N∑
j=1

µijQ2j 6 Q2 (4)

N∑
j=1

µijQ3j 6 Q3 (5)

and (6), shown at the bottom of the next page, with

21i = PiAi + (PiAi)T + Q1i + Q3i + h1Q1

+ (h2 − h1)Q2 + h2Q3 − h21Z1 −
h21
2
Z1

− (h2 − h1)2Z2 −
(h2 − h1)2

2
Z2

+ATi (
h41
4
Z1 +

(h22 − h
2
1)

2

4
Z2)Ai +

N∑
j=1

µijPj

31i = PiAdi + ATi (
h41
4
Z1 +

(h22 − h
2
1)

2

4
Z2)Adi

22i = −Q1i + Q2i

23i = −(1− µ)Q2i

+ATdi(
h41
4
Z1 +

(h22 − h
2
1)

2

4
Z2)Adi

Proof: We apply the newly improved inequality
method to the Markov structure, a new method xt (s) = x(t +
s),s ∈ [−2h2, 0] is defined. And we use an improved LKF:
V (xt , t, r(t)) = V1(t)+ V2(t)+ V3(t)+ V4(t) where

V1(t) = xT (t)P(r(t))x(t)

V2(t) =
∫ t

t−h1
xT (s)Q1(r(t))x(s)ds
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+

∫ t−h1

t−d(t)
xT (s)Q2(r(t))x(s)ds

+

∫ t

t−h2
xT (s)Q3(r(t))x(s)ds

V3(t) =
h21
2

∫ t

t−h1

∫ t

s

∫ t

u
ẋT (v)Z1ẋ(v)dvduds

+
h22 − h

2
1

2

∫ t−h1

t−h2

∫ t

s

∫ t

u
ẋT (v)Z2ẋ(v)dvduds

V4(t) =
∫ 0

−h1

∫ t

t+θ
xT (s)Q1x(s)dsdθ

+

∫
−h1

−h2

∫ t

t+θ
xT (s)Q2x(s)dsdθ

+

∫ 0

−h2

∫ t

t+θ
xT (s)Q3x(s)dsdθ

where Pi, Q1i, Q2i, Q3i, i = 1, 2, · · ·,N , Q1, Q2, Q3, Z1 and
Z2 are matrices with proper dimensions, which are positive
definite, let ϒ be the weak infinitesimal generator of the
stochastic process xt , t > 0. Then, for each r(t) = i, i ∈ S,
the following equation is shown:

LV1(xt , t, i) = 2xT (t)Pi(Aix(t)+ Adix(t − d(t)))

+

N∑
j=1

µijxT (t)Pjx(t)

LV2(xt , t, i) = xT (t)Q1ix(t)

− xT (t − h1)Q1ix(t − h1)

+ xT (t − h1)Q2ix(t − h1)

− xT (t − h2)Q3ix(t − h2)

+ xT (t)Q3ix(t)

− (1− ḋ(t))xT (t − d(t))Q2ix(t − d(t))

+

∫ t

t−h1
xT (s)(

N∑
j=1

µijQ1j)x(s)ds

+

∫ t−h1

t−d(t)
xT (s)(

N∑
j=1

µijQ2j)x(s)ds

+

∫ t

t−h2
xT (s)(

N∑
j=1

µijQ3j)x(s)ds

LV3(xt , t, i) =
h41
4
(Aix(t)+ Adix(t − d(t)))TZ1

× (Aix(t)+ Adix(t − d(t)))

+
(h22 − h

2
1)

2

4
(Aix(t)+ Adix(t − d(t)))T

×Z2(Aix(t)+ Adix(t − d(t)))

−
h21
2

∫ t

t−h1

∫ t

s
ẋT (s)Z1ẋ(s)dsdθ

−
h22 − h

2
1

2

∫ t−h1

t−h2

∫ t

s
ẋT (s)Z2ẋ(s)dsdθ

LV4(xt , t, i) = h1xT (t)Q1x(t)

+ (h2 − h1)xT (t)Q2x(t)

+ h2xT (t)Q3x(t)

−

∫ t

t−h1
xT (s)Q1x(s)ds

−

∫ t−h1

t−h2
xT (s)Q2x(s)ds

−

∫ t

t−h2
xT (s)Q3x(s)ds

Using Lemma 1,we have

h21
2

∫ t

t−h1

∫ t

s
ẋT (s)Z1ẋ(s)dsdθ

6i =



21i 0 31i 0 0 3Z1 0 0 3Z2

∗ 22i 0 0 0 0 0 0 0

∗ ∗ 23i 0 0 0 0 0 0

∗ ∗ ∗ −Q3i 0 0 0 0 0

∗ ∗ ∗ ∗ −3Z1
6
h1
Z1 0 0 0

∗ ∗ ∗ ∗ ∗ −
18

h21
Z1 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −3Z2 −3Z2
6

h2 − h1
Z2

∗ ∗ ∗ ∗ ∗ ∗ ∗ −3Z2
6

h2 − h1
Z2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −
18

(h2 − h1)2
Z2



(6)
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> [h1x(t)−
∫ t

t−h1
x(s)ds]TZ1[h1x(t)

−

∫ t

t−h1
x(s)ds]+ 2[−

h1
2
x(t)−

∫ t

t−h1
x(s)ds

+
3
h1

∫ t

t−h1

∫ t

s
x(u)duds]TZ1[−

h1
2
x(t)

−

∫ t

t−h1
x(s)ds+

3
h1

∫ t

t−h1

∫ t

s
x(u)duds]

On the other hand,

h22 − h
2
1

2

∫ t−h1

t−h2

∫ t

s
ẋT (s)Z2ẋ(s)dsdθ

> [(h2 − h1)x(t)−
∫ t−h1

t−h2
x(s)ds]TZ2

[(h2 − h1)x(t)−
∫ t−h1

t−h2
x(s)ds]

+ 2[−
h2 − h1

2
x(t)−

∫ t−h1

t−h2
x(s)ds

+
3

h2 − h1

∫ t−h1

t−h2

∫ t

s
x(u)duds]TZ2

× [−
h2 − h1

2
x(t)−

∫ t−h1

t−h2
x(s)ds

+
3

h2 − h1

∫ t−h1

t−h2

∫ t

s
x(u)duds]

= [(h2 − h1)x(t)−
∫ t−h1

t−d(t)
x(s)ds

−

∫ t−d(t)

t−h2
x(s)ds]TZ2[(h2 − h1)x(t)

−

∫ t−h1

t−d(t)
x(s)ds−

∫ t−d(t)

t−h2
x(s)ds]

+ 2[−
h2 − h1

2
x(t)−

∫ t−h1

t−d(t)
x(s)ds

−

∫ t−d(t)

t−h2
x(s)ds+

3
h2 − h1

∫ t−h1

t−h2

∫ t

s
x(u)duds]TZ2

× [−
h2 − h1

2
x(t)−

∫ t−h1

t−d(t)
x(s)ds−

∫ t−d(t)

t−h2
x(s)ds

+
3

h2 − h1

∫ t−h1

t−h2

∫ t

s
x(u)duds]

Using this and combing, we have

LV (xt , t, i)

= LV1(xt , t, i)+ LV2(xt , t, i)+ LV3(xt , t, i)

+LV4(xt , t, i)

6 2xT (t)Pi(Aix(t)+ Adix(t − d(t)))

+

N∑
j=1

µijxT (t)Pjx(t)+ xT (t)Q1ix(t)

− xT (t − h1)Q1ix(t − h1)+ xT (t − h1)Q2ix(t − h1)

− xT (t − h2)Q3ix(t − h2)+ xT (t)Q3ix(t)

−(1− ḋ(t))xT (t − d(t))Q2ix(t − d(t))

+
h41
4
(Aix(t)+ Adix(t − d(t)))TZ2

× (Aix(t)+ Adix(t − d(t)))

+
(h22 − h

2
1)

2

4
(Aix(t)+ Adix(t − d(t)))TZ2

× (Aix(t)+ Adix(t − d(t)))

− [h1x(t)−
∫ t

t−h1
x(s)ds]TZ1[h1x(t)−

∫ t

t−h1
x(s)ds]

− 2[−
h1
2
x(t)−

∫ t

t−h1
x(s)ds+

3
h1

∫ t

t−h1

∫ t

s
x(u)duds]TZ1

× [−
h1
2
x(t)−

∫ t

t−h1
x(s)ds+

3
h1

∫ t

t−h1

∫ t

s
x(u)duds]

− [(h2 − h1)x(t)−
∫ t−h1

t−d(t)
x(s)ds−

∫ t−d(t)

t−h2
x(s)ds]TZ2

× [(h2 − h1)x(t)−
∫ t−h1

t−d(t)
x(s)ds−

∫ t−d(t)

t−h2
x(s)ds]

− 2[−
h2 − h1

2
x(t)−

∫ t−h1

t−d(t)
x(s)ds−

∫ t−d(t)

t−h2
x(s)ds

+
3

h2 − h1

∫ t−h1

t−h2

∫ t

s
x(u)duds]TZ2

× [−
h2 − h1

2
x(t)−

∫ t−h1

t−d(t)
x(s)ds−

∫ t−d(t)

t−h2
x(s)ds

+
3

h2 − h1

∫ t−h1

t−h2

∫ t

s
x(u)duds]+ h1xT (t)Q1x(t)

+ (h2 − h1)xT (t)Q2x(t)+ h2xT (t)Q3x(t)

Then we can get

ϒV (xt , t, i) 6 ηT (t)6iη(t)

where η(t) = [xT (t) xT (t − h1) xT (t − d(t)) xT (t −
h2)

∫ t
t−h1

x(s)ds
∫ t
t−h1

∫ t
s x(u)duds

∫ t−h1
t−d(t) x(s)ds∫ t−d(t)

t−h2
x(s)ds

∫ t−h1
t−h2

∫ t
s x(u)duds]

T .
We can get the above inequalities are equivalent to

ϒV (xt , t, i) < 0. After that, we use Definition 1, the stochas-
tic stability is established.
Remark 1: It can be seen from the derivation results of

previous papers that their results are conservative because
conservative scaling methods have been used in their deriva-
tion. Such as model transformation in delay system, Jensen’s
inequalitymethod, and freeweightingmatrixmethod. In [24],
we can see that dealing with

∫ t
t−h1

h1ẋT (s)Z1ẋ(s)ds and∫ t−h1
t−h2

(h2 − h1)ẋT (s)Z2ẋ(s)ds in LKF by Jensen’s inequality
method can make the result more conservative. In this paper,
we use a new V3(t) in LKF to proof the Theorem 1, which
is diffierent from [24], and the improved Wirtinger-based
integral inequality is used to handleV3(t). Thesemethods will
bring lower conservatism. Therefore, it is more reasonable to
study the comprehensive problem of MJSs with time-varying
delay.
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When µ (time derivative of delay) is unknown, by modify-
ing, we can deduce Corollary 1 from Theorem 1.
Corollary 1: For any delay d(t), given arbitrary constant h1

and h2, if there exist n × n matrices Gi > 0,F1i > 0,F3i >
0,F1 > 0,F3 > 0,D1 > 0 and D2 > 0, the MJSs (1) is
stochastically stable which the following LMIs keep for any
i = 1, · · ·,N :

6
6

i < 0 (7)
N∑
j=1

µijF1j 6 F1 (8)

N∑
j=1

µijF3j 6 F3 (9)

and (10), shown at the bottom of the next page, with

2
6

1i = GiAi + F1i + h2F3 + F3i + (GiAi)T + h1F1

− h21D1 +

N∑
j=1

µijGj −
h21
2
D1

− (h2 − h1)2D2 −
(h2 − h1)2

2
D2

+ATi (
h41
4
D1 +

(h22 − h
2
1)

2

4
D2)Ai

2
6

2i = −F1i

2
6

3i = ATdi(
h41
4
D1 +

(h22 − h
2
1)

2

4
D2)Adi

When h1 = 0, we can get Corollary 2 from Theorem 1.
Corollary 2: For any delay d(t), given arbitrary constant h2

and µ, if there exist n × n matrices Gi > 0,F2i > 0,F3i >
0,F2 > 0,F3 > 0 and D2 > 0, the MJSs (1) is stochastically
stable which the following LMIs keep for any i = 1, · · ·,N :

6
§
i < 0 (11)

N∑
j=1

µijF2j 6 F2 (12)

N∑
j=1

µijF3j 6 F3 (13)

where

6
§
i =



2
§
1i 3

§
1i 0 0 3D2

∗ 2
§
2i 0 0 0

∗ ∗ −F3i 0 0

∗ ∗ ∗ −3D2
6
h2
D2

∗ ∗ ∗ ∗ −
18

h22
D2


(14)

with

2
§
1i = GiAi + (GiAi)T + F2i + F3i + h2F2

FIGURE 1. (a) Time response of x1(t), x2(t). (b) Time response of r (t).

+ h2F3 − h22D2 −
h22
2
D2

+ATi (
h42
4
D2)Ai +

N∑
j=1

µijGj

3
§
1i = GiAdi + ATi (

h42
4
D2)Adi

2
§
2i = (µ− 1)F2i + ATdi(

h42
4
D2)Adi

IV. NUMBERICAL EXAMPLES
In this part, three examples have been given to show the
effectiveness of our method.

When the time delay are time-invariant, in order to show
the Theorem 1 have lower conservatism in MJSs with time
delay, we provide the following example.
Example 1: Let us choose a MJSs in (1) with two modes

and the matrix parameters [18]:

A1 =
[
0.5 −1
0 −3

]
A2 =

[
−5 1
1 0.2

]
VOLUME 6, 2018 33059
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TABLE 1. Different results to upper bound allowed h2 for example 1.

Ad1 =
[
0.5 −0.2
0.2 0.3

]
Ad2 =

[
−0.3 0.5
0.4 −0.5

]
with transition rates matrix

4 =

[
−7 7
3 −3

]
We now use Theorem 1 to system (1) by chooseing µ = 0
and h1 = 0. Then we choose LMIs (6) to get our results.
In addition, the upper bound h2 represents the time-varying
delay, which obtained for values of µ and h1(see Table 1).
It is clear that our results are better conserved than those
in [17]–[20] and [24].

When the time delays are time-variant, in order to show
the Theorem 1 have lower conservatism, we consider the
following example.
Example 2:We now use a MJSs in (1) with two modes and

the matrix parameters [21]:

A1 =
[
−3.4888 0.8057
−0.6451 −3.2684

]
A2 =

[
−2.4898 0.2895
1.3396 −0.0211

]
Ad1 =

[
−0.8620 −1.2919
−0.6841 −2.0729

]
Ad2 =

[
−2.8306 0.4978
−0.8436 −1.0115

]

TABLE 2. Different results to upper bound allowed h2 for example 2.

with transition rates matrix

4 =

[
−0.1 0.1
0.8 −0.8

]
We also use Theorem 1 to system (1) by chooseing h1 = 0.
Then we choose LMIs (6) to get our results. In addition,
the upper bound h2 represents the time delay,which obtained
for different values of µ. The comparison results are given
in Table 2, which indicates that Theorem 1 is better than those
in [21], [22], and [24]. This means that our results have less
conservative, and are more suitable for solving related convex
optimization problems.

When the lower bound h1 is biger than zero, the next
example shows that Theorem 1 is less conserved.
Example 3: We also use Theorem 1 to a MJSs in (1)

by chooseing µ = 0, h1 = 0.5, andµ11 = −7, and the
MJSs parameters are given as in Exmple 1. Then we choose
LMIs (6) to get our results. In addition, the upper bound h2
represents the time delay, which obtained for different values

6i =



2
6

1i 0 31i 0 0 3D1 0 0 3D2

∗ 2
6

2i 0 0 0 0 0 0 0

∗ ∗ 2
6

3i 0 0 0 0 0 0

∗ ∗ ∗ −F3i 0 0 0 0 0

∗ ∗ ∗ ∗ −3D1
6
h1
D1 0 0 0

∗ ∗ ∗ ∗ ∗ −
18

h21
D1 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −3D2 −3D2
6

h2 − h1
D2

∗ ∗ ∗ ∗ ∗ ∗ ∗ −3D2
6

h2 − h1
D2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −
18

(h2 − h1)2
D2



(10)
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TABLE 3. Different results to upper bound allowed h2 for example 3.

of µ22 (see Table 3). It can be seen through comparison that
our results are less conservative than those in [23] and [24]
when h1 > 0.

V. CONCLUSIONS
In this paper, we have been used a new LKF and an

improved Wirtinger-based double integral inequality for
MJSs with interval time-varying-delays, which are shown in
LMIs. Using a new inequality approximation method, our
results have lower conservativeness than published papers
with Jensen’s inequality method. At the end of the article,
three examples have been given to show the effectiveness of
our method.

In the next study, we will discuss MJSs of the filter design
and controller design, and consider the system design in the
finite frequency domain.
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