
Received April 15, 2018, accepted May 26, 2018, date of publication June 1, 2018, date of current version June 29, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2842706

Design and Implementation of a Hardware
Versatile Publish-Subscribe Architecture
for the Internet of Things
FADI T. EL-HASSAN 1, (Member, IEEE), AND DAN IONESCU2, (Senior Member, IEEE)
1College of Engineering, Al Ain University of Science and Technology, Al Ain 64141, UAE
2School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada

Corresponding author: Fadi T. El-Hassan (fadi.elhassan@aau.ac.ae)

ABSTRACT A variety of contemporary technologies are being framed within the Internet of Things (IoT)
architecture, including publish/subscribe (pub/sub) systems. In IoT, things, such as objects, machines, vehi-
cles, andwireless sensors, have to communicate with other things or humans and exchange information based
on Internet connectivity. With the integration of pub/sub mechanism with IoT, these things can ‘‘publish’’
their presence to a specific node, which can be named a broker or router, while things that ‘‘subscribe’’ to
that node are able to receive information based on publishers’ content. In order to perceive a sound and
efficient pub/sub structure in IoT, high performance processing and interoperability are valid requirements.
This paper presents a versatile architecture of a broker, namedX2CBBR, that can operate in IoTwith different
pub/sub systems. X2CBBR: 1) adopts XML-based publication data and XPath-based subscription data to
yield interoperability; 2) processes both XML data and XPath queries in hardware (instead of software) to
boost processing performance; 3) employs a hardware-based matching mechanism that exploits subscription
commonalities; and 4) makes use of four different operation modes as a method for accepting or limiting
acceptance of either publications or subscriptions. While maintaining the total decoupling feature between
publishers and subscribers, the broker switches from an operation mode to another to keep traffic under
control. Moreover, its content-based routing mechanism avoids redundant subscription and notification data.
Finally, the broker can effectively operate in either centralized or distributed systems. The results obtained
through a prototype hardware implementation targeting an FPGA demonstrate the high-efficiency of the
broker/router in multiple scenarios.

INDEX TERMS Internet of Things, publish/subscribe, FPGA, hardware processing, interoperability,
content-based routing, versatility, XML, XPath, broker.

I. INTRODUCTION
Integration of publish/subscribe (pub/sub) systemswith Inter-
net of Things (IoT) has become an interesting research topic
due to many inherent advantages of such systems. In IoT,
things (e.g. entities, objects, devices, machines, and wireless
sensors) have to communicate with other things or humans
and exchange information based on Internet wire/wireless
connectivity.Many of these things need to perform their Inter-
net communications using sensors and wireless technologies,
which raises the importance of wireless sensor networks in
IoT. In addition, interoperability among various things pose
challenges that should be faced and optimized in IoT. With
the integration of pub/sub mechanism with IoT, things can
‘‘publish’’ their presence to a specific node, which can be

named a broker or router, while things that ‘‘subscribe’’ to
that node are able to receive publishers’ information based
on content. Despite a variety of possible communication
standards/protocols, just a few standards may provide inter-
operability. In this paper, the broker, publishers, and sub-
scribers use and process XML and/or a subset of XPath in
order to yield interoperability.

The pub/sub mechanism has been considered as a
promising approach in disseminating various data in future
Internet. For example, the European projects PURSUIT
(Publish-Subscribe Internet Technologies) and its predeces-
sor PSIRP (Publish-Subscribe Internet Routing Paradigm)
aim to solve many of the biggest challenges of the current
Internet by building a new form of internetworking [1]–[3].

31872
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-1579-2288


F. T. El-Hassan, D. Ionescu: Design and Implementation of a Hardware Versatile Publish-Subscribe Architecture for the Internet of Things

FIGURE 1. Broker handling more subscription things than publication
things or vice-versa in IoT.

In IoT, content-based pub/sub networks can be over-
whelmed with both publication and subscription data. Sub-
scription data may highly dominate the network traffic, while
publication data makes a small percentage of the total traffic –
the other way around is certainly possible as illustrated
in Fig. 1. In the case that many subscriptions contain many
commonalities, initiating sequential matching processes for
such subscriptions incurs significant processing cost. There-
fore, there is a substantial need to effectively exploit com-
monalities among such subscriptions. In a pub/sub network,
redundant routed traffic incurs additional unnecessary band-
width and processing cost. Thus, a broker/router should have
a mechanism to avoid routing redundant information. The
broker may need to only route subscriptions or notifications
for a certain pub/sub network. However, it may need to also
route publications in response to specific network situations.
There can be other circumstances where routed data is of
different formats. In such cases, the data does not reach the
destination because of the lack of interoperability among
network entities. Moreover, centralized pub/sub systems may
suit the network of some localized entities and small enter-
prises, while distributed pub/sub systems are more appropri-
ate for large networks (Fig. 2).

FIGURE 2. Centralized versus distributed pub/sub system.

The versatile content-based broker/router described in this
paper can adapt with such diverse circumstances, thereby
providing an excellent solution for IoT. It holds the name
of X2CBBR (XML/XPath Content-Based Broker/Router).
To yield interoperability, X2CBBR adopts XML-based pub-
lication data and XPath-based subscription data. To boost
performance, it processes both XML data and XPath queries
in hardware, exploiting subscription commonalities. An oper-
ation mode algorithm allows the broker to switch from a
mode to another to keep subscription and publication data
under control. X2CBBRmakes use of a content-based routing
mechanism that can route a single subscription on behalf

of multiple subscriptions, or a single publication instead
of multiple notifications to avoid redundant data. In addi-
tion to the aforementioned features, X2CBBR maintains the
total decoupling feature between publishers and subscribers,
which is a fundamental and desirable pub/sub requirement for
security and privacy purposes. While some brokers may work
in either a distributed or a centralized environment, X2CBBR
can efficiently operate in both systems due to the inherent
decoupling feature between matching and routing.

The original version of the hardware broker was introduced
in our previous work [4] that described how commonalities
among XPath subscriptions can be systematically stored and
exploited in order to achieve high-performance matching
against XML publications. With the additional aforemen-
tioned features of versatility, X2CBBR performs content-
based routing and employs efficient mechanisms to cope with
different pub/sub networks within IoT. The main purpose of
this paper is to describe with details these versatility features,
and to highlight their applicability in the context of IoT.

The rest of the paper is organized as follows. Section II
presents related work. Section III describes the X2CBBR
architecture and its main tasks. Section IV states the notations
used in later sections of the paper. Section V discusses in
detail the operating modemechanism along with the top-level
algorithm. The operating mode mechanism allows X2CBBR
to switch from a mode to another to cope with different
situations of traffic, while the algorithm routes the traffic
accordingly. In Section VI, simulation results are depicted
and discussed. Finally, Section VII concludes this paper.

II. RELATED WORK
In the literature, to the best of our knowledge, pub/sub
systems have been characterized with some but not all
the versatile features that distinguish our proposed system.
The proposed architecture comprises interoperability, hard-
ware design targeting an FPGA, content-based routing, total
decoupling between publications and subscriptions, sepa-
rate matching from routing, operation mode mechanism to
cope with various traffic situations, and integration with IoT.
Therefore, the structure of this section consists of subsections
to describe the related work, where each subsection discusses
the published papers with regard of one category of pub/sub
features.

A. INTEROPERABILITY
For IoT, pub/sub systems with the interoperability feature
can be based on standards related to the eXtensible Markup
Language (XML) [5], such as Extensible Messaging and
Presence Protocol (XMPP) [6], XPath [7], XQuery [8], Mes-
sage Queue Telemetry Transport (MQTT) [9], Advanced
Message Queuing Protocol (AMQP) [10], SPARQL [11], and
Constrained Application Protocol (CoAP) [12].

A pub/sub architecture for IoT with the interoperability
feature is proposed by [13] based on XMPP. In this work,
subscribers’ interests are first processed by the publisher, and
then the publisher provides a customized publishing data to

VOLUME 6, 2018 31873



F. T. El-Hassan, D. Ionescu: Design and Implementation of a Hardware Versatile Publish-Subscribe Architecture for the Internet of Things

a server node in order to support a lightweight architecture.
It also supports periodic data transmission to save energy
for battery-powered devices. However, the proposed scheme
does not provide a total decoupling feature between publish-
ers and subscribers. A pub/sub system with total decoupling
in space and time is the usual expected assumption to pre-
serve confidentiality. Due to increased complexity in the total
decoupling, some architectures adopt loose or no decoupling,
and even indicate that with loose decoupling better key man-
agement solutions for secure group communication can be
achieved [14].

Examples of pub/sub systems and architectures for IoT
have been designed or developed with the interoperability
feature based on the SPARQL query language [15] and Data
Distribution Service (DDS) [16]. In [15], publishers and sub-
scribers use standard SPARQL updates and queries, where
a semantic event detection algorithm updates notifications
based on changes detected in previous notifications. The
purpose of the algorithm is to limit the network overhead and
save notification processing at the subscriber side.

In [16], Hakiri et al. combine Software Defined Network-
ing (SDN)withDataDistribution Service (DDS)middleware.
DDS is a middleware standard addressing pub/sub commu-
nications for real-time and embedded systems [17]. SDN
decouples the control plane from the data plane by moving
the control plane from routers/switches to a central software-
based controller. The controller dictates the policies and rules
that the data plane must use to forward packets from a flow
table to another. The purpose of combining SDN with DDS
is to improve service delivery of IoT systems and provide
network agility and flexibility.

In [18], Triawan et al. propose cloud-based pub/sub archi-
tecture that can be integrated with IoT. In this approach,
interoperability is handled through MQTT and JavaScript
Object Notation (JSON) [19].

B. XML FILTERING WITH XPATH
Away from the context of IoT, filtering/matching XML with
XPath expressions is the subject of pub/sub data dissem-
ination systems [20]–[25], where exploiting the power of
XML filtering takes place in software. In terms of the used
techniques, in [20], XML matching against XPath is per-
formed where commonalities among XPath expressions are
not exploited. In [21]and [26], content-driven routing and
XML filtering with additional complexity are addressed.
Another software-based work, named XNET [24], uses a
trie-based index data structure, called XTrie, where XPath
expressions are decomposed into common substrings that
contain parent-child operators [22]. An improved approach of
this method filters fragmented XML data [23], [25]. In addi-
tion, XNET employs an algorithm to efficiently manage a
large number of subscriptions, where its application-layer
routing protocol performs subscription aggregation to keep
the size of routing tables manageable. This work has interest-
ing desirable features that include elimination of redundant
subscriptions.

C. HARDWARE IMPLEMENTATIONS
Acceleration of pub/sub messaging using FPGAs has been
reported in [27]. More specifically, Quigley et al. [28] imple-
ment the topic-based pub/sub messaging of the Robot Oper-
ating System (ROS) development platform in hardware to
reduce the latency of the communication system. As the
acceleration is specific to ROS-compliant, the authors did not
suggest any interoperable generalization method for topic-
based pub/sub systems.

In a software/hardware application [29], Mitra et al. indi-
cate improvement over software XML filtering systems.
However, the need for stages of software/hardware conver-
sion for newXPath queries, and for queries that need frequent
updates, would significantly drop the overall performance.

In another software/hardware application [30] that utilizes
an FPGA,Moussalli et al. implement an XPath processor that
can handle many XPath queries in conjunction of a software-
based XML parser. The authors report a 200MB/s throughput
when the XML parser is replicated in software for each FPGA
cluster. Besides the high fan-out in the software-hardware
interface, the XPath architecture relies on intensive memory
resources.

D. SPECIFIC SOFTWARE APPROACHES
Even thoughmany of the software approaches in the literature
are not close to our proposed architecture, we select a few
approaches that have a special technique or methodology in
dealing with pub/sub systems.

In [31], a general cloud-based pub/sub service is proposed
to provide diverse data dissemination, scalability, and elas-
ticity. With this cloud-based approach, the capacities of event
matching and content distribution can adapt and increase with
the growth of servers. In addition, irrelevant users can be
filtered out. In terms of implementation and communication,
the approach includes Java code and uses a communication
framework based on Remote Procedure Calls (RPCs). In gen-
eral, the cloud-based approach is interesting to consider in the
future if it is coupled with IoT.

In [32], Diallo et al. propose a service model to meet
different requirements for content-based pub/sub systems.
By leveraging caching policies, the model can improve the
communication efficiency as a result of selected scenarios.
The caching policy could be more important if coupled with
interoperability.

In [33], an adaptive software mechanism is used to perform
alternate publication routing paths and improve the resilience
to dynamic loads. In another improvement attempt, a hybrid
approach makes use of a centralized brokering system cou-
pled with a decentralized peer-to-peer (P2P) protocol [34].
In another perspective of a hybrid approach, subscriptions
are organized into virtual groups based on common sub-
scriptions, where the matching process occurs once at the
entry point of each group [35]. Inside the group, messages
are simply forwarded, without further matching, similar to
the delivery of content to a multicast group in a topic-based

31874 VOLUME 6, 2018



F. T. El-Hassan, D. Ionescu: Design and Implementation of a Hardware Versatile Publish-Subscribe Architecture for the Internet of Things

pub/sub system. Facing the complexity of simultaneous XML
matching and routing, the authors of [36] describe an inter-
esting software mechanism that decouples the matching
and routing processes, where complex application-specific
matching only occurs at the network edge, and simple generic
address-based routing occurs in the network core. The sepa-
ration between matching and routing is one of our broker’s
features.

E. COMPARISON
In spite of the aforementioned important procedures, some
applications may outperform other ones depending on the
techniques used in processing/matching/filtering, traffic and
network situations, and hardware support.

The versatile X2CBBR, described in this paper, inher-
ently decouples matching from routing. The matching pro-
cess exploits commonalities among available subscriptions,
while the routing process focuses on the elimination of redun-
dancy in both subscription and notification data. Moreover,
X2CBBR can effectively operate in either centralized or
distributed pub/sub systems, and can efficiently accommo-
date different content-based scenarios. In terms of hard-
ware support, its native hardware architecture does not need
stages of software conversion into hardware. In addition to
interoperability, X2CBBR provides scalability (indicated in
section VI-B4). This versatility of X2CBBR is so attractive
for pub/sub systems, and these features are so desirable in IoT.

In order to have insights on the performance, we conducted
experiments taking into the account the type of interface
used in the communication between X2CBBR and exter-
nal entities. The corresponding results stated in section VI
show that the throughput may reach 1447 Mbps in the best-
case scenario. The experiments, simulations, and results were
described with details in [37].

III. XML/XPATH BROKER/ROUTER ARCHITECTURE
While the broker in [4] described hardware-based exploita-
tion of commonalities among XPath subscriptions in order
to achieve high-performance matching against XML publi-
cations, X2CBBR employs additional mechanisms includ-
ing the ones related to content-based routing, and possesses
therefore more versatile features. In order to accommodate
different pub/sub data situations, another add-on mechanism
dictates operation modes to allow the broker to switch and
revert from a mode to another, as described in section V.

While the paper [4] describes the basic broker architec-
ture and the experimental results of just the matching pro-
cess (subscriptions against publications), this paper includes
detailed descriptions of the broker modules and correspond-
ing algorithms, and shows more experimental results in
multiple scenarios when either a hardware interface or a
software/hardware interface is employed.

The X2CBBR architecture, depicted in Fig. 3, consists
of three main units that can communicate with external
entities through six dedicated interfaces that may be active
concurrently. Part A of the architecture is the Subscription

FIGURE 3. Block diagram of the X2CBBR architecture.

Processing Unit (SPU); Part B is the XML/XPath Processing
and Matching Unit (PMU), and Part C is the Notification
Processing Unit (NPU). The SPU may receive subscriptions
through one interface and route out subscriptions through its
other interface. The PMU may receive publications through
one interface and topology messages through its other one.
The NPUmay receive notifications through one interface and
route out notifications through its other one.

The new extensions of X2CBBR, compared to the pre-
vious work [4], are mainly related to the Vicinity Rout-
ing Table (VRT) of the PMU, the Subscription Mapping
Table (SMT) and the Subscription Buffer of the SPU, and the
operating mode and routing mechanisms. This paper primar-
ily focuses on these new extensions, which highly contribute
to the broker’s versatility. The reader is recommended to
consult the previous work for detailed description of the
original architecture.

FIGURE 4. Structure of a subscription.

A. BASIC FUNCTIONAL OVERVIEW
Each subscription consists of a 20-byte header, and up to
16 4-byte filters (64 bytes). The header includes an original
Subscription ID (o-SID) as illustrated in Fig. 4.

This restriction of the filter data volume is solely made so
as to keep enough room to many subscriptions. With no such
restriction, a too long subscription would occupy most or all
of the Content Routing Table (CRT). Consequently, X2CBBR
would not have the opportunity of simultaneously processing
many subscriptions.

The o-SID can be updated during the routing procedure
from 1 to 8 bytes (as we shall see in section III-D). X2CBBR
maps the o-SID of each subscription to an 8-bit temporary
Subscription ID (t-SID). These temporary IDs are used in
subsequent stages of X2CBBR to efficiently store and pro-
cess subscriptions. The Subscription Mapping Table (SMT)
stores (t-SID, o-SID) values until appropriate notifications

VOLUME 6, 2018 31875



F. T. El-Hassan, D. Ionescu: Design and Implementation of a Hardware Versatile Publish-Subscribe Architecture for the Internet of Things

and subscriptions are forwarded. At that time, the SMT
deletes or overwrites its entries and gets ready to receive new
subscription IDs.

FIGURE 5. Block diagram of the SCBXP technique.

Each publication is in XML format and is parsed using
our hardware-based SCBXP parsing technique [38] (Fig. 5).
The CRT registers the filters belonging to subscriptions as
well as the corresponding t-SIDs. Matching these filters
against available XML publications is the main task of the
XML/XPath matching engine. The entries of the CRT are
functionally of the format (Fi,SID(Fi)) where SID(Fi) is the
set of all t-SIDs whose subscriptions match filters Fi. Phys-
ically, the CRT consists of a Content Addressable Mem-
ory (CAM) and a Random Access Memory (RAM).

Once a match is found for all filters Fi of a subscription s,
a corresponding notification N is either locally delivered (if
s has come from a local subscriber that has a direct link
to the broker) or forwarded to a neighboring broker via the
‘‘Notification Forwarder’’ of the NPU (Part C in Fig. 3)
in order to deliver the notification to a remote subscriber.
In the case that the broker receives a notification from a
neighboring broker, it simply delivers it or forwards it without
any processing or matching tasks, because the notification is
actually ready for delivery.

The VRT describes the topology in the vicinity of a spe-
cific broker. The VRT entries are functionally of the format
(X, BID)where BID is the Broker ID of a neighboring broker,
and X can be a filter, a topic, a data type, or any specific
content. Accordingly, the mismatched subscriptions in a bro-
ker are forwarded to the neighboring brokers whose available
publications may have matching content. The VRT, which
is physically a RAM, regularly updates its entries according
to topology messages assumed to be issued by an external
entity that knows the network topology. The structure of this
particular entity is out of the scope of this paper and is not
further discussed.

On top of the mechanisms of (1) subscription registration,
(2) pub/sub matching, (3) notifying and routing, an operat-
ing mode mechanism (discussed in section V) maintains the
number of subscriptions and publications that are available in
the X2CBBR resources. Accordingly, this mechanism pushes
the X2CBBR to switch from a mode to another, allowing for
accepting, routing, or flushing data. Each of these mecha-
nisms will be discussed in detail in subsequent sections of
this paper.

In addition, the X2CBBR has to manage the interface data
that is coming in or going out through any of its six links.

B. DEFINITIONS
The following items define some concepts and terms that are
useful in the discussion of X2CBBR tasks.

1. A ‘‘local subscription’’ available in a broker Bi is an
XPath subscription sent to Bi by a subscriber that directly
communicates with Bi without passing by another broker.
2. A ‘‘remote subscription’’ available in a broker Bi is an
XPath subscription sent to Bi by a broker Bj, providing
that it has been originally issued by a subscriber that does
not directly communicate with Bi.
3. Based on items 1, and 2 above, all subscriptions avail-
able in an intermediate broker Bi (within a network of
brokers) are considered ‘‘remote’’ to Bi, while subscrip-
tions available in an edge broker Bj of the network may
be either ‘‘local’’ or ‘‘remote’’ to Bj.

FIGURE 6. Processing stages of a subscription.

The action sub(S,F) (or sub(o-SID, F)) of subscribing to the
system reads that a new subscription identified as S (or by its
o-SID) and consisted of the filter set F, has reached a bro-
ker. X2CBBR processes new subscriptions in the following
consecutive three stages: buffering, mapping, and registering.
While the buffering and mapping stages occur in the SPU,
the registering stage takes place in the PMU. Fig. 6 shows how
these stages would generally intercommunicate. The SPU
may also run a ‘‘forwarding process’’ on old subscriptions
(i.e. subscriptions that have been already registered in the
PMU).

The next sections address the subscription registration and
routing processes from an algorithmic point of view, while
the architectural hardware details of each unit of X2CBBR
are discussed starting from Section III-E.

C. SUBSCRIPTION REGISTRATION ALGORITHM
X2CBBR exploits commonalities among subscriptions by
registering filters of all subscriptions using a method that
allows simultaneous matching of the common filters that may
exist inmany subscriptions. The subscription registration pro-
cess aims to systematically store the filters and the t-SID of
each subscription in the CRT. Within the CRT, a CAM stores
the filters of XPath subscriptions, while a RAM (Subscription
IDs Visiting Location Memory) stores corresponding t-SIDs.
Each CAM address that contains a filter corresponds to an
equivalent RAM address that contains t-SIDs of subscriptions
that host this filter. Each RAM row consists of 256 bits, where
a maximum of 31 8-bit t-SIDs may coexist in addition to an
8-bit ‘‘next address’’ value. This latter value indicates the next

31876 VOLUME 6, 2018



F. T. El-Hassan, D. Ionescu: Design and Implementation of a Hardware Versatile Publish-Subscribe Architecture for the Internet of Things

row address in which additional t-SIDsmay be stored. Details
of the physical storage structure of both memory modules can
be found in our initial work [4]. From a functional point of
view, one can consider the CRT a recorder of all t-SIDs that
have ‘‘visited’’ each registered filter. For example, consider
two subscriptions s1 and s2, where each subscription has its
own t-SID and filters as follows: s1 = {t-SID1, (f1, f2)} and
s2 = {t-SID2, (f1, f3)}. The CRT records t-SID1 and t-SID2
as visitors of the filter f1, t-SID1 as visitor of the filter f2,
and t-SID2 as visitor of the filter f3. Therefore, the number of
CRT entries equals ‘‘at least’’ the number of registered filters
rather than the number of registered subscriptions. Function-
ally, for these two subscriptions, there are three CRT entries:
{f1: t-SID1, t-SID2}, {f2: t-SID1}, and {f3: t-SID2}.

FIGURE 7. Subscription registering algorithm.

Fig. 7 presents the Subscription Registration Algo-
rithm steps. In this algorithm, the first two lines summarize
the subscription buffering stage, which takes into account the
restriction of a maximum of 16 32-bit filters (Section III-A).

The third line identifies the task of the inspector that con-
sists of extracting the o-SID of a subscription and passing it on
to the mapping stage. The fourth and fifth lines are about the
generation of the t-SID of a subscription that happens in the
mapping stage. The sixth line indicates the process of picking
up the filters from the subscription. The lines 7 and 8 relate
to the aforementioned restriction of the maximum number of
filter data, and instruct the broker to clear any subscriptions
that either have no filter data or exceed the maximum allowed
number of 32-bit filter data.

Lines 10 to 32 describe the registration stage in the CAM
and RAM of the CRT. In the case that a full RAM row exists

during the registration of a filter, the algorithm reports a High
Commonality Degree (HCD) (line 21) to the SPU. This signal
indicates that a filter is common to at least 31 subscriptions.
Therefore, if manymismatched subscriptions have been iden-
tified and the HCD is reported, only a single subscription is
forwarded instead of all mismatched subscriptions in order to
reduce the routed subscription traffic.

The Reading Register RR is used to temporarily store the
RAM row content prior to appending the row with a new
matching t-SID (lines 29 - 30). In the case that the row is
full, the RR temporarily stores the ‘‘next address’’ value and
later uses it in the RAM to store additional matching t-SIDs
(lines 22 to 27).

Lines 13 and 14 of Fig. 7 indicate that the absence of
a filter Fi in the CAM triggers a CAM writing access to
register this filter. However, the existence of such a fil-
ter in the CAM does not trigger a CAM writing access
(line 16). Therefore, the more commonalities that exist
among subscriptions, the less registration time that is
needed.

D. SUBSCRIPTION ROUTING ALGORITHM
Prior to routing a subscription, the Subscription Forwarder
updates the subscription’s o-SID. The o-SID of a local sub-
scription has the format of {SID, 0}, where SID is a one-
byte subscription ID. A remote subscription s that reaches
a broker, say B2, must have crossed a neighboring broker,
say B1.

If the subscription s was local to B1, the o-SID of the
subscription appears in B2 as o-SID= {SID,B1, 0}, whereB1
is the BID of the broker B1. Subsequently, if this subscription
s continues its path to a third broker B3, the o-SID of s appears
in B3 as o-SID = {SID,B1,B2, 0}, where B2 is the BID of
the broker B2. Since the o-SID consists of a maximum of
8 bytes, there would be a maximum of 7 brokers in the path
of a subscription, providing that each BID consists of one
byte. In this latter case, the o-SID appears in a broker B7 as
o-SID= {SID,B1,B2,B3,B4,B5,B6, 0}. Then, if smatches
an available publication in the broker B7, this broker sends a
notification through its neighboring broker B6 with o-SID =
{SID,B1,B2,B3,B4,B5,B6,B7}. In the case that no match
occurs, B7 removes the subscription after a certain period of
time. Fig. 8 illustrates the o-SID update structure.

Following the aforementioned discussion, one can state
that the o-SID of a remote subscription has the format of o-
SID = {SID, . . .BID . . . ,Bj} where ‘‘. . .BID . . .’’ represents
the BIDs of all brokers crossed by the subscription before
reaching the broker whose BID is Bj.

X2CBBR forwards each mismatched subscription accord-
ing to the Subscription Routing Algorithm depicted in Fig. 9.
In this algorithm, the SPU receives from the PMU the
t-SID of the mismatched subscription (line 1), retrieves
the corresponding o-SID from the SMT (lines 2 and 3),
adds the broker’s own BID to the o-SID (line 4 or line 12),
extracts the subscription from the ‘‘Subscription Buffer’’ and
reconstructs it as sub(o-SID(s),F) (line 6 or line 13), and

VOLUME 6, 2018 31877



F. T. El-Hassan, D. Ionescu: Design and Implementation of a Hardware Versatile Publish-Subscribe Architecture for the Internet of Things

FIGURE 8. The o-SID structure in local and remote subscriptions.

FIGURE 9. Subscription routing algorithm.

forwards the subscription to a neighboring broker (identified
by the VRT) via the ‘‘Subscription Forwarder’’ (line 8 or
line 15).

E. PART A: HARDWARE SPU ARCHITECTURE
The Subscription Buffer of the SPU comprises two dual-
port memory modules, named DPM1 and DPM2 (Fig. 10).
The SPU loads raw (unprocessed) XPath subscriptions into
either DPM1 or DPM2. The subscriptions buffered into, for
example, DPM1 will remain in it until a match decision is
made and/or until the Subscription Forwarder routes these
subscriptions to neighboring brokers. Once DPM1 is full,
the SPU buffers new incoming subscriptions into DPM2 con-
currentlywith the forwarder’s task of routingDPM1 subscrip-
tions. While the subscriptions buffered in DPM2 are being
processed and forwarded, the broker can load DPM1 with
newly-arrived subscriptions, and so on. The SPU utilizes
multiplexers (MUX1, MUX2, MUX3, and MUX4) to select
the memory module to be loaded with raw subscriptions and
the one to be accessed for forwarding purposes, as shown
in Fig. 10. Note that either DPM1 or DPM2 is a 32 bits
x 2048 words memory module that may contain up to

FIGURE 10. Subscription buffer.

8 KB of XPath subscriptions. While the memory (either
DPM1 or DPM2) stores subsequent subscriptions via one
port, the ‘‘Subscription Header Inspector’’ reads stored sub-
scriptions via the other port, and extracts their o-SIDs. The
simultaneous writing and reading accesses allow the inspec-
tion process to run with no discontinuation of the buffering
process.

The inspector passes the o-SID to the mapping stage where
the SMT sends back a mapped 8-bit t-SID value. The inspec-
tor uses the t-SID as an address (index) to access one row
of a small dual-port SRAM (24 bits X 256 words). At this
specific row, reside the first and last buffer addresses (each is
11-bit wide) of the corresponding raw subscription buffered
in either DPM1 or DPM2 (b-Addr1-1st and b-Addr1-2nd
for DPM1, and b-Addr2-1st and b-Addr2-2nd for DPM2,
in Fig. 10). The Subscription Forwarder later utilizes these
two addresses to retrieve buffered subscriptions and route
them to neighboring brokers as mentioned in Section III-D.
The benefit of designing the ‘‘24 bits X 256 words’’ memory
as a dual-port SRAM is to allow both the forwarder and the
inspector to access it concurrently. The forwarder reads from
it while the inspector writes into it.

Forwarding a raw subscription implies that its format
depicted in Fig. 4 is preserved, with an updated o-SID (Fig. 8).
Fig. 11 illustrates the FSM of the subscription forwarder.
In this figure, the FSM transition to its ‘‘EvalSu’’ state from
the initial state only takes place on the release of the ‘‘reset’’
signal and on the completion of the set Su that identifies all
mismatched subscriptions registered in the CRT. Once the
t-SID of a mismatched subscription is retrieved, the FSM
steps to its ‘‘GrabAdr’’ to pick up the corresponding sub-
scription buffer addresses, then to its ‘‘GrabSub’’ state to
retrieve the buffered subscription. In the ‘‘AddBID’’ state,
the forwarder updates the o-SID of the subscription. Finally,
it routes the subscription to the identified neighboring broker
in the ‘‘FRWD’’ state, before the FSM steps again to the
‘‘EvalSu’’ state to retrieve the t-SID of the next mismatched
subscription, and so on.

31878 VOLUME 6, 2018



F. T. El-Hassan, D. Ionescu: Design and Implementation of a Hardware Versatile Publish-Subscribe Architecture for the Internet of Things

FIGURE 11. The FSM of the subscription forwarder.

FIGURE 12. Hardware XPath processor architecture.

F. PART B: HARDWARE PMU ARCHITECTURE
The XPath processor of the PMU communicates with the
SPU to perform its main role of registering subscriptions
using the finite state machines FSM1, FSM2, and FSM3
(Fig. 12). These machines reside in the ‘‘Subscription XPath
Registering Interface’’ to control the reception of subscription
filters and corresponding t-SIDs, register the filters in the
CAM of the CRT, and register the relevant t-SIDs in the RAM
of the CRT. The internal structure of either the CAM or the
RAMof the CRT can be found in details in the previous work.

FIGURE 13. XML/XPath matching engine.

Concurrently with XPath processing, the SCBXP parses
available XML publications. The matching engine (Fig. 13)
communicates with both the XPath processor and the XML

parser to find amatch for each 32-bit parsedXMLdata among
subscription filters located in the CAM. Once some publica-
tion content matches all filters of one or more subscriptions,
the matching engine triggers a ‘‘match’’ decision for such
subscriptions. Accordingly, the NPU (Part C of Fig. 3) derives
a notification from the matched publication and forwards it
to the corresponding subscriber(s) through the Notification
Forwarder. In the case that any of the filters of a registered
subscription does not match any of the available XML con-
tent, the matching engine remains silent.

The engine searches the CAM of the CRT in two differ-
ent stages: 1- in the subscription registration stage to verify
whether a 32-bit filter is already in the CAM (lines 11 to 17
in Fig. 7) and 2- in the post-registration stage to verify
whether a 32-bit string (parsed from an XML publication)
matches any 32-bit XPath filter existing in the CAM. During
the subscription registration, a storing counter for a specific
t-SID increments with each 32-bit registered filter. The final
value of a storing counter indicates the number of 32-bit
filters registered in the CRT for a particular t-SID. During
the post-registration, a matching counter for a specific t-SID
increments with each successfully-matched filter.

At the end of the matching process, the engine verifies
the matching counter and the storing counter for each t-SID.
In the case that the values of these two counters are equal
for a particular t-SID, the matching engine determines that
all registered filters for this particular t-SID have matched an
available XML publication. Thus, such a matching decision
must trigger a corresponding notification through the NPU.

G. PART C: HARDWARE NPU ALGORITHMS
The Notification Forwarder of the NPU (Part C in Fig. 3)
receives the t-SIDs of subscriptions whose all filters are
successfully matched. Subsequently, it utilizes these t-SIDs
as addresses to retrieve the o-SIDs stored in the SMT.
A retrieved o-SID reveals whether a matched subscription is
local or remote. Accordingly, the NPU delivers or routes the
relevant notification using the notification routing algorithm
(Fig. 14).

In the third line of Fig. 14, the SMT returns the o-SID
that corresponds to the t-SID of the matched subscription.
In line 4, the NPU recognizes a local subscription from
the o-SID. Accordingly, the NPU includes the o-SID of the
matched subscription in an XML notification N generated
as notify(SID,N). In line 5, the NPU actually sends this
notification.

In the case of a remote subscription, the NPU picks up the
BID of a neighboring broker from the o-SID (line 8). Since
the remote subscription may have crossed multiple brokers
in its path, multiple BIDs may have been concatenated in the
o-SID (Section III-D). X2CBBR selects the appropriate BID
of the last crossed neighboring broker, by picking up the o-
SID’s least significant non-null bits of length b, where the
value of b is the encoded length of the BID of any broker in
the network. Then, in line 9, the broker updates the o-SID
with its own BID. In line 10, the broker adds the updated

VOLUME 6, 2018 31879



F. T. El-Hassan, D. Ionescu: Design and Implementation of a Hardware Versatile Publish-Subscribe Architecture for the Internet of Things

FIGURE 14. Combined local & remote notification/publication routing
algorithm.

o-SID to the issued notification N , and in line 11, it forwards
N that is embedded in the message ‘‘forward(o-SID, N)’’ to
the neighboring broker whose BID was identified in line 8.

1) PUBLICATION ROUTING
Line 13 of the algorithm points to the case of a remote
subscription with SID = 0. The null-value of the SID tells
the neighboring broker that the routed subscription is a ‘‘sam-
ple’’ of multiple subscriptions containing common filters.
X2CBBR only routes a single subscription to reduce redun-
dant subscriptions that potentially consist of common filters.
This traffic reduction positively impacts the overall perfor-
mance of the system.

As a result of successfully matching this subscription,
the NPU of the neighboring broker responds with the publi-
cation itself (lines 16 and 17) instead of the notification. This
response brings the publication down to the broker where
the multiple subscriptions of common filters originally exist.
Eventually, the local broker of such homogeneous traffic
receives the routed publication and treats it as a new avail-
able publication. Subsequently, re-matching this publication
against subscriptions of common filters takes place in the
local broker of these subscriptions. As a result, relevant noti-
fications can locally reach their destinations.

2) NOTIFICATION RE-ROUTING
X2CBBR may receive notifications from an up-stream bro-
ker. X2CBBR buffers the notification in the notification
buffer of the NPU, and inspects the o-SID embedded in
the received message ‘‘forward(o-SID, N)’’ to appropriately
route the notification to the intended destination. The struc-
ture of the o-SID in a routed notification is the same as in a
routed subscription (Section III-D). Fig. 15 shows the steps
of the notification re-routing algorithm.

Upon receiving a notification from an up-stream broker,
the NPU removes the BID of that broker (Bu in line 2) from

FIGURE 15. Notification re-routing algorithm.

the o-SID. As a result, the o-SID reveals the BID of the
current broker. At this point, the broker also removes its own
BID from the o-SID. If the resulting o-SID has the format of
{SID, 0}, the NPU runs the local notification routing algo-
rithm and delivers the notification N as notify(SID, N) (line
4 of the algorithm). Otherwise, the resulting o-SID must have
the format {SID, . . .BID . . . ,Bd} where Bd is the BID of a
down-stream broker (Section III-D). Accordingly, the NPU
updates the o-SID with broker’s own BID (line 8 of the
algorithm) and forwards the notification with the updated
o-SID to the down-stream broker of BID = Bd (line 9 of the
algorithm).

IV. NOTATIONS
On top of the multiple algorithms discussed earlier, X2CBBR
works according to a sequence of the so-called ‘‘operation
modes’’ or ‘‘operating modes.’’ Either term should exactly
mean the same concept.

The operation modes of the broker can be:

• (nP, nS), in the case of accepting new Subscriptions and
new Publications.
• (nP, oS), in the case of accepting new Publications while
keeping old Subscriptions, in condition that no timeout
occurs.
• (oP, nS), in the case of accepting new Subscriptions
while keeping old Publications.
• (oP, oS), in the case of keeping old Subscriptions and
old Publications, in condition that no timeout occurs.

Later sections and algorithms of this paper rely on some
notations as described next.

• P: the number of Publications that have been processed
for matching.
• Pmax : the total number of Publications available in a bro-
ker (whether they have been processed or are waiting for
processing). A publication p 6∈ P is considered available
in a broker if either (1) it is in the buffer of the XML
parser and has not been parsed yet, or (2) it has signalled
its presence from an external buffer that is interfacing the
broker.
• S: the set of all subscriptions already registered in the
CRT.
• Smax : the maximum number of subscriptions that the
broker can register and keep in the CRT. This value is

31880 VOLUME 6, 2018



F. T. El-Hassan, D. Ionescu: Design and Implementation of a Hardware Versatile Publish-Subscribe Architecture for the Internet of Things

FIGURE 16. Determination algorithm (DA) of the maximum number of
registered subscriptions.

usually set to ≤ 255 as discussed below along with the
algorithm of Fig. 16.
• Sm ⊆ S: the set of all subscriptions that match at least a
Publication Pi, where i = 1, 2, . . . ,P.
• Smi ⊆ S: the set of all subscriptions that match a single
particular Publication Pi, where i = 1, 2, . . . , or P. This
set resets itself for each publication that has been matched
against registered subscription filters.
• Su ⊆ S: the set of all subscriptions that do not match any
single Pi, where i = 1, 2, . . . ,P.
• Sa 6⊂ S: the set of newly arrived subscriptions that
are not yet stored (i.e. not yet registered) in the CRT.
A subscription s ∈ Sa if (1) s exists in the Subscription
Buffer of the SPU and (2) all filters of s do not exist in the
CRT.

The setting for Smax depends on the capacity of the SMT
and the CAM of the CRT, as described in Smax Determination
Algorithm (Smax DA) depicted in Fig. 16. Providing that
the SMT can handle up to 255 (rather than 256) t-SIDs,
Smax may not exceed this value (line 4 of the algorithm).
Therefore, Smax = 255 initially. However, Smax may take
a lesser value when the CAM of the CRT becomes full,
as illustrated in line 6 of Fig. 16.

V. OPERATING MODE MECHANISM
A. INTRODUCTION OF OPERATION MODES
In IoT, pub/sub applications can have unbalanced numbers
of subscriptions and publications. A typical example of sub-
scriptions that by far outnumber available publications is the
case of a stock price publication where many users would
like to readily know the price variations. There are other
applications where publications may be more frequent than
subscriptions. For example, multiple sensors periodically
publish their presence, while sporadic events would trigger
sensor alarms. Sometimes, as in initial conditions, the broker
may be under-utilized by both subscription and publication
traffic. In other situations, both publication and subscription
traffic may overwhelm the broker. The basic system idea for
managing the incoming and outgoing traffic is to give asmany
available publications as possible the chance of matching as
many subscriptions as possible, while taking into account the
arrival rate of both publications and subscriptions.

Therefore, the introduced concept of operation modes
allows the broker to accommodate different situations, by ini-
tially working in a mode and reverting to another mode when

FIGURE 17. Operation mode FSM.

certain circumstances occur. Fig. 17 illustrates the operation
mode mechanism as an FSM, while the top-level algorithm
depicted in Fig. 18 highlights the tasks in eachmode. This fig-
ure embeds all hardware algorithms involved in subscription
registration, matching pub/sub data, and routing notifications
and subscriptions. Note that the notations stated in Section IV
are very useful in reading either Fig. 17 or Fig. 18.

B. SEQUENCE OF OPERATING MODES
In each of its operating modes, X2CBBR may perform mul-
tiple tasks concurrently in addition to the sequential tasks.
It monitors the arrival of new subscriptions and publications,
measures the increasing capacity of its memory resources
that hold publications and subscriptions being processed, and
updates its operating mode accordingly.

Initially, X2CBBR is in its ‘‘no operation’’ mode (state
NOP in Fig. 17). Once the ‘‘reset’’ signal is released, the tran-
sition to a new operating mode only takes place when at least
one subscription becomes available in the SPU of the broker
(i.e. Sa 6= ∅). Meeting this condition, the broker undertakes
a cycle of operating modes starting at the (nP, nS) mode.
Reaching the end of the cycle at the (oP, nS) mode, the broker
becomes ready to step to a new cycle starting again at the
(nP, nS) mode. It never goes back to its initial NOP mode
unless a ‘‘reset’’ signal is applied.

In the (nP, nS) mode (state nPnS in Fig. 17), multiple
tasks/algorithms may run in parallel (lines 3 to 9 in Fig. 18):

• The SPU continues to receive and buffer new subscrip-
tions upon their arrival, and updates the set Sa.
• The broker runs the Subscription Registering Algo-
rithm (Fig. 7). In the case that commonalities exist in
many subscriptions, the algorithm reports the High Com-
monality Degree (HCD) signal.
• The broker runs the ‘‘Smax DA’’ (Fig. 16).
• The XML parser receives, buffers, and parses one new
XML publication (i.e. P = 1). Concurrently with parsing
this publication, X2CBBR may buffer - without parsing -
a second XML publication (if it is available). Moreover,

VOLUME 6, 2018 31881



F. T. El-Hassan, D. Ionescu: Design and Implementation of a Hardware Versatile Publish-Subscribe Architecture for the Internet of Things

FIGURE 18. Pseudo-code for top-level algorithm.

the broker monitors and updates P and Pmax . However,
no matching of parsed publication data against subscrip-
tion filters would take place.
X2CBBR may remain in its same (nP, nS) mode as far

as S < Smax and Sa 6= ∅ (Fig. 17)). Otherwise (i.e. when
no more new subscriptions exist in the SPU or S reaches
Smax), X2CBBR steps to the (nP, oS) mode (state nPoS
in Fig. 17), where the matching process immediately takes
place.

In this mode, no new subscriptions can be registered even
if Sa becomes non-null (The ‘‘Subscription Buffer’’ can still

store subsequent subscriptions in its other dual-port memory
as shown in Fig. 10). Instead, the broker buffers, parses, and
matches as many XML publications as possible against reg-
istered subscriptions. While the broker reads parsed data of a
publication Pi and matches such data against filters of regis-
tered subscriptions, it concurrently buffers a publicationPi+1.
Andwhile the broker matches the parsedPi+1, it concurrently
buffers Pi+2, and so on. Accordingly, lines 10 to 35 in Fig. 18
state three ‘‘for loops’’ that run in parallel with synchronizing
signals. The (nP, oS) mode stays into effect as far as P <

Pmax and no timeout occurs. Therefore, in thismode, the same
registered subscriptions have the chance of matching as many
available publications as possible. Meanwhile, Sm and Su are
computed according to the matching results.

X2CBBR undertakes another major task during this mode,
which is issuing and routing out relevant notifications accord-
ing to the computed Sm. Even though lines 28 to 32 of Fig. 18
point to two separate notification algorithms for the sake of
clarity, there is actually one combined algorithm (Fig. 14) for
both local and remote notifications.

The (oP, oS) mode ((lines 36 to 45 in Fig. 18)) illustrates
a sort of ‘‘saturation’’ status, where all the available pub/sub
data has been processed and compared. The broker stays in
this mode as far as P = Pmax and Sa = ∅, even if timeout has
occurred. In the event that Sa 6= ∅, the broker steps up to the
(oP, nS) mode. Otherwise, it may switch back to the (nP, oS)
mode in the event of a newly-arrived publication determined
by P < Pmax . The main task of the broker during this mode
is to route out mismatched subscriptions (Fig. 9), referring
to the computed Su. In the case that Su is dense (i.e. there
is a high number of mismatched subscriptions – typically at
least 31 subscriptions) and the signal of High Commonality
Degree (HCD) is reported by the Subscription Registering
Algorithm, X2CBBR only forwards a single mismatched
subscription to a neighboring broker (lines 37 and 38) as
discussed in Section III-G1.

In the (oP, nS) mode (lines 46 to 55 in Fig. 18), the broker
clears the sets S, Sm, and P. In the case that the subscription
routing process is still on-going, the broker waits until the
end of the routing task prior to clearing Su (lines 51 and 52 in
Fig. 18). However, the broker does not clear Sa and Pmax
because it needs them in the new cycle of operating modes
starting from the (nP, nS) mode. The complete removal of Sa
and Pmax may only occur in the NOPmode that becomes into
effect upon the application of a ‘‘reset’’ signal.

C. DISCUSSION
From the aforementioned description, the sequence of the
operating modes [(nP, nS),(nP, oS),(oP, nS)] is likely to hap-
pen when the publication traffic is so intense to the extent that
P never reaches Pmax until old subscriptions expire. A short
duration of the (nP, oS) mode indicates a short configured
timeout and relatively frequent subscription traffic, while a
long duration of the (nP, oS) mode reveals frequent publica-
tion traffic and either a long configured timeout or relatively
infrequent subscription traffic.

31882 VOLUME 6, 2018



F. T. El-Hassan, D. Ionescu: Design and Implementation of a Hardware Versatile Publish-Subscribe Architecture for the Internet of Things

The sequence of the operating modes [(nP, nS),(nP, oS),
(oP, oS),(oP, nS)], with a short duration of the (nP, oS) and
(oP, oS) modes, is likely to happen when the subscription
traffic is much more intense than the publication traffic.
However, a long duration of the (oP, oS) mode may hap-
pen when both the subscriptions and publications are not so
intense to the extent that P quickly reaches Pmax , with no
new publications and subscriptions have arrived or are to be
processed.

VI. RESULTS
A. EXPERIMENTAL SETUP
The experiments examine the functionality and perfor-
mance of the X2CBBR using either a sole hardware inter-
face or a software/hardware interface, while operating and
routing algorithms are into effect. Both the X2CBBR and
its hardware interface are implemented on Altera’s Cyclone
IV E FPGA device [39] located on the Terasic DE2-
115 FPGA board [40]. The broker’s hardware interface emu-
lates the Avalon bus specification [41] in hardware, while the
software/hardware interface makes use of C-programs care-
fully developed to drive the X2CBBR along with its hard-
ware interface through the Avalon bus. Running separate
experiments using each of these two interfaces allows for an
insightful comparison of the resulting performance.

FIGURE 19. Broker’s hardware interface.

1) HARDWARE INTERFACE (XAVI)
The broker’s hardware interface, named XML/XPath AValon
Interface (XAVI), takes the Avalon inputs from a Verilog-
based test bench and drives the X2CBBR, as illustrated
in Fig. 19. Accordingly, the X2CBBR returns output data to
the test bench. The list of Avalon inputs includes: address,
read, write, writedata, begintransfer, and chipselect, while the
returned outputs are: waitrequest and readdata.

The hardware driving tasks include initializing X2CBBR’s
memory resources, configuring the SCBXP’s CAM with an
XML skeleton, loading the SCBXP’s memory with XML
publications, loading the SPU’s buffer with XPath sub-
scriptions, and performing various control and management
activities.

The broker sends back to XAVI the relevant notifications
as well as the data read from the broker’s memory resources.

FIGURE 20. Broker’s software/hardware interface.

2) SOFTWARE/HARDWARE INTERFACE
The software/hardware interface (Fig. 20) consists of the
hardware interface XAVI and the C-programs that we have
developed in the software environment of Altera’s Nios II
embedded processor [42]. The X2CBBR and XAVI together
represent the slave module that is implemented on Altera’s
FPGA Cyclone IV E device. This module, whose name
is Broker_Top in Fig. 20, is the top level implemented
design. The C-programs drive this module via the Avalon bus
master/slave ports.

Altera provides a System-On-a-Programmable-Chip
(SOPC) builder tool (affiliated to its Quartus II design tool)
that can build the Avalon interconnect fabric interacting with
the Nios II embedded processor and its peripherals [43], [44].

3) SOFTWARE/HARDWARE INTERFACE WITH
CONTENT-BASED ROUTING
Even though X2CBBRs can efficiently intercommunicate
using sole hardware interfaces, while content-based routing is
into effect, the aim of this section is to use software/hardware
interfaces with a standard medium of intercommunication.
To communicate with producers, consumers, or other bro-
kers (content-based routers), the X2CBBR needs a stan-
dard communication medium naturally available on the
DE2-115 board. That standard is the Ethernet. The software
programs drive the broker using the Nichestack TCP/IP
operating over Ethernet provided as a configurable IP (Intel-
lectual Property) core by Altera. This IP core, named Triple-
Speed Ethernet (TSE) MegaCore, complies with the IEEE
802.3 standard and possesses the features of a 10/100/
1000-Mbps Ethernet Media Access Controller
(MAC) [45], [46].

A method of connecting a broker to another broker is
illustrated in Fig. 21, where Ethernet packets can be collected
through a linux-based socket programs running in a computer
and interfacing the Nios II environment of another broker.
This method allows for the measurement of the reception rate
before the received data actually reaches the other broker.

4) SUBSCRIPTION SETS
There are three sets of XPath subscriptions under consid-
eration: XPath Set1, XPath Set2, and XPath Set3. Each set
comprises almost 1 KB of data. Each XPath subscription is

VOLUME 6, 2018 31883



F. T. El-Hassan, D. Ionescu: Design and Implementation of a Hardware Versatile Publish-Subscribe Architecture for the Internet of Things

FIGURE 21. Alternative method of broker to broker connectivity.

made of just one filter for simplicity, besides the 20-byte
overhead, where the filter consists of 4 ASCII characters
(32 bits). Thus, with a size of 192 bits per subscription, each
of the three sets contains 42 raw subscriptions. To test the
broker with up to almost 255 subscriptions, the interface
gradually loads six sets of 42 subscriptions via one port of
the buffer’s memory.

In XPath Set1, all subscriptions have common filters that
match an available publication. As a result, local notification
delivery to all relevant subscribers takes place. In XPath
Set2, three subscriptions do not match any publication that
is available in the local broker. Local notification delivery
takes place for the matched subscriptions, while mismatched-
subscription routing followed by notification routing must
take place for each mismatched subscription prior to deliver-
ing the final notification to the relevant subscribers. In XPath
Set3, all subscriptions have identical filters but they do
not match any available publications in their local broker.
Therefore, single-subscription routing followed by publica-
tion routing must take place prior to the final matching and
notifying processes.

Three different groups of tests are to be performed with
either XPath Set1, XPath Set2, or XPath Set3:

• Case I utilizes the hardware interface XAVI described in
Section VI-A1, only employing XPath Set1. Six sets of
XPath Set1 are gradually included in the test, where a reset
signal resets the broker after matching each additional set.
• Case II utilizes the software/hardware interface described
in Section VI-A2. As in Case I, XPath Set1 is the sole set
employed, with the same gradual inclusion of six sets and
the reset application after matching each additional set.
• Case III utilizes the software/hardware interface with
content-based routing (Section VI-A3). This case employs
both XPath Set2 and XPath Set3.

FIGURE 22. Test cases.

Figure 22 summarizes the testing strategy for the afore-
mentioned three cases.

B. CASE I: TESTING THROUGH HARDWARE
INTERFACE XAVI
The aim of this test is to measure the performance of the
X2CBBR solely driven through the XAVI hardware inter-
face, using the ModelSim simulator [47]. A 50-MHz clock
drives the XAVI as well as the SCBXP (the XML parser),
while a 150-MHz PLL-generated clock drives the core of the
X2CBBR.

This clocking strategy allows the broker to achieve its high
performance in its core, while the interface and the SCBXP
remain error-free and well-synchronized. The SCBXP writes
its parsed data output into the dual-port memory of its reading
stage (Fig. 5) via one port using the 50-MHz clock, and this
data is later accessed by the broker via the other port using
the 150-MHz clock. This memory is the only module, within
the broker, that must handle two different clock frequencies.

The results of Case I represent three operational cases: The
worst-case scenario that occurs in the initial operation of the
broker, then the regular-case and the best-case scenarios.

1) WORST-CASE SCENARIO
First, the X2CBBR initializes its memory resources in about
17.7 µs. Then, it sequentially receives data through XAVI.
The main sequential broker tasks are as follows: (1) SCBXP’s
CAM configuration with an appropriate XML skeleton,
(2) SCBXP’s loading with one XML publication of ≈1KB,
(3) SCBXP’s XML parsing, (4) Buffering the 42 XPath sub-
scriptions of XPath Set1 having a total volume of ≈1KB,
(5) XPath subscription mapping in the SMT and registration
in the CRT (the volume of the total filter data for XPath
Set1 that has to be registered is 168 Bytes, since there are four
Bytes of filter data in each subscription), and (6) Initiating
the matching process that involves one publication versus the
registered filters of 42 subscriptions.

X2CBBR transits from the (NOP) mode to the (nP,nS)
mode and stays there up to Smax , then steps to the (nP,oS)
mode (see Section V-B). Therefore, the first five sequential
tasks occur in the (nP,nS) mode, while the matching process
occurs in the (nP,oS) mode. To still emulate the worst-case,
X2CBBR has to step back to the (NOP) mode by means of
an applied reset signal after the matching process of the first
set of XPath Set1 completes, and the resulting performance is
measured. Then, the broker follows the same procedure after
loading and matching two series of XPath Set1 subscriptions,
and so on up to a total of 252 subscriptions (six loads of XPath
Set1). The SCBXP only parses one XML publication in the
(nP,nS) mode. Table 1 illustrates the corresponding worst-
case results delivered by X2CBBR interfaced with XAVI.

These results show that even though more subscrip-
tions consume more processing time, the overall throughput
improves. In the case that 252 subscriptions are to be pro-
cessed and matched against one XML publication, the broker
completes its tasks in 460.37 µs (including 123.20 µs for
XML parsing) with a total of 122.61 Mbps of throughput.
However, the internal tasks of the broker that do not make

31884 VOLUME 6, 2018



F. T. El-Hassan, D. Ionescu: Design and Implementation of a Hardware Versatile Publish-Subscribe Architecture for the Internet of Things

TABLE 1. Worst-case results of the broker with hardware interface: first
Pub. vs. Subseq. Subs. (up to 252).

any communication via the interface achieve higher perfor-
mance than those that depend on the data passing through
the interface. For example, the actual XML parsing that does
not make any interface communication is just 10.54 µs. Sim-
ilarly, the actual matching of one XML publication against all
252 registered subscription filters takes just 28.47 µs.

TABLE 2. Regular-case results of the broker with hardware interface:
each new subsequent publication with a new Skeleton vs.
252 already-registered Subs.

2) REGULAR-CASE SCENARIO
The experiment continues with sending a new XML publi-
cation (and a relevant skeleton) at a time to the X2CBBR
through XAVI, while the broker processes this publication
and matches it against the 252 already-registered subscrip-
tions. Therefore, either re-loading or re-registering of these
subscriptions is not needed, and thus does not take part of
the processing time. However, the processing time of each
new subsequent XML publication as well as the match-
ing process duration remain into effect. Table 2 shows the

corresponding results. In this regular case, the broker operates
in its (nP,oS) mode (Section V-B), and completes its tasks in
just 151.67 µs. (including 123.20 µs. for XML parsing) with
a total of 372.17 Mbps. of throughput.

3) BEST-CASE SCENARIO
In this case, a new XML publication and its skeleton are
both assumed to be already stored and ready for parsing,
since X2CBBR supports two dedicated links for loading
publications and configuring skeletons. The broker processes
this new publication and matches it against the 252 already-
registered subscriptions. Therefore, the processing time does
not include neither the SCBXP’s CAM configuration and
publication loading time nor the loading and registration time
of the subscriptions. Table 3 shows the corresponding results.
The broker completes its tasks in just 39.01 µs. with a total
of 1447 Mbps. of throughput. However, this case cannot hold
continuously when X2CBBR needs to constantly load new
publications.

TABLE 3. Best-case results of the broker with hardware interface
XAVI: a new Pub. and its Skeleton already-stored vs. 252
already-registered subscriptions.

4) SCALABILITY
An interesting goal is to have insights about the scalability
degree of X2CBBR when it is overwhelmed with only sub-
scriptions, only publications, or with both subscriptions and
publications.

Receiving one million subscriptions ('24 MB.) with only
one available publication (Pmax = 1), X2CBBR pro-
cesses each six sets of subscriptions (252 subs.) according
to Table 1, with 460.37µs. Since P = Pmax , the bro-
ker quickly completes the cycle of operation modes and
reverts to its (nP,nS) mode. Subsequently, X2CBBR pro-
cesses the next six sets but it does not need to load nor
parse a new publication. Therefore, it saves the SCBXP time
of 123.20µs. Thus, the processing time of each subsequent
six sets is 460.37–123.20=337.17µs. Since the subscription
buffer consists of two memories, this buffer may already
contain some or many new subscriptions. Thus, the buffering
time needed in Table 1 would then be reduced. Providing
that the buffer has already stored new 252 subscriptions,
the buffering time 276.60µs in Table 1 completely vanishes.
Accordingly, the processing time of the next six sets may
become 337.17–276.60=60.57µs. For one publication versus
one million subscriptions, X2CBBR completes all tasks in
a duration that ranges from 0.24 sec to 1.34 sec. The corre-
sponding throughput ranges from 143.4Mbps to 797.7Mbps.

Receiving one million publications ('1 GB.) with only
252 (six sets) subscriptions can become time-consuming,

VOLUME 6, 2018 31885



F. T. El-Hassan, D. Ionescu: Design and Implementation of a Hardware Versatile Publish-Subscribe Architecture for the Internet of Things

FIGURE 23. Processing time in the worst, regular, and best cases.

FIGURE 24. Throughput in the worst, regular, and best cases.

FIGURE 25. Scalability for the first 2000 subs.

since each publication needs to be sequentially matched
against subscriptions. X2CBBR processes these subscrip-
tions and matching them against the first publication accord-
ing to Table 1, with 460.37µs. However, X2CBBR processes
the next publication versus these already-registered subscrip-
tions according to Table 2, with 151.67µs. For one million
publications versus 252 subscriptions, X2CBBR completes
all tasks in '2.53 minutes. However, when a publication
and its skeleton are already loaded, X2CBBR processes such
publication according to Table 3, with only 39.01µs. In this

FIGURE 26. Scalability for one million subs.

case, X2CBBR can complete all tasks in a duration that
ranges from'39.01 sec to'2.53minutes. The corresponding
throughput ranges from 53.1 Mbps to 206.7 Mbps (average
'130 Mbps).
When facedwith a high number of subscriptions, X2CBBR

limits the value of Pmax for publications to avoid the scenario
of dealing with two growing scalability factors - a matter
that may lead to a scalability problem. Therefore, when
overwhelmed with subscriptions, the broker may enforce
Pmax = 1 to fall into the throughput range of 43.4 Mbps
to 797.7 Mbps. Alternatively, it allows Pmax to grow while
limiting the number of subscriptions, so that the average
throughput can be within the range of '130 Mbps.

C. CASE II: TESTING THROUGH THE
SOFTWARE/HARDWARE INTERFACE
When a software interface is involved in driving X2CBBR,
some concurrency features have the potential to diminish.
The experiments of Case II use the software/hardware inter-
face described in SectionVI-A2 and emulate the same scenar-
ios done in Case I. This emulation allows for the comparison
of the performance results collected when either interface
drives the broker. The first experiment represents the worst-
case scenario, while subsequent experiments represent the
regular-case and best-case scenarios. In the software test envi-
ronment of Altera’s Nios II [42], C-programs first initialize
the broker’s memory resources. Then, the programs sequen-
tially send data to the broker, through the software/hardware
interface.

To emulate Case I, the software first executes 10000 times
each main task intended to be taken into account, while it
only executes in one loop iteration a task that should be
marginalized. Then, the processing time for one loop iteration
is computed by dividing the total processing time by the
number of loop iterations (i.e. 10000).

For the worst-case, all tasks are sequentially executed in
each loop iteration. In the regular-case, the subscriptions are
already registered. Thus, the registration must be marginal-
ized, where the tasks of loading and processing 252 subscrip-
tions are only executed in the first iteration. All other tasks are

31886 VOLUME 6, 2018



F. T. El-Hassan, D. Ionescu: Design and Implementation of a Hardware Versatile Publish-Subscribe Architecture for the Internet of Things

executed in all loop iterations. In the best-case, XML parsing
and XML/XPath matching are executed 10000 times, but all
other tasks are only executed in the first loop iteration.

In Case II, six series of XPath Set1 subscriptions (252 subs.
consisting of ≈6KB) are involved in all test cases.

TABLE 4. Worst-case results of the broker with software/hardware
interface: first Pub. vs. 252 Subs.

1) WORST-CASE SCENARIO
Table 4 shows the worst-case results. This table indicates
around 95% of reduction in performance in comparison with
the results of XAVI’s worst-case stated in Table 1. How-
ever, achieving a worst-case performance of 10.5 ms using
a software/hardware interface and the Cyclone IV E FPGA is
interesting to highlight.

TABLE 5. Regular-case results with software/hardware interface: each
new subsequent publication with a new Skeleton versus
252 already-registered Subs.

2) REGULAR-CASE SCENARIO
This test can be compared with the regular-case of Case I.
Table 5 shows the corresponding results. This table indicates
around 92% of reduction in performance, in comparison
with XAVI’s regular-case results stated in Table 2. However,
the performance is around 82% higher than the worst-case
of Case II (Table 4), since the processing time drops from
10.5ms to just 1.9ms.

TABLE 6. Best-case results of the broker with software/hardware
interface: a new Pub. and its Skeleton already-stored vs.
252 already-registered Subs.

3) BEST-CASE SCENARIO
This test can be compared with the best-case of Case I.
Table 6 shows the corresponding results, where around 92%

of reduction in performance is measured in comparison with
XAVI’s best-case results stated in Table 3. However, in com-
parison with the worst-case of Case II (Table 4), the pro-
cessing time drops from 10.5ms to just 1.2ms, which means
that the performance is more than 88% higher. With regards
of the comparison with the regular-case of Case II (Table 5),
the processing time drops from 1.9ms to 1.2ms, which means
that the performance is more than 36% higher.

D. CASE III: TESTING THROUGH THE SOFTWARE/
HARDWARE INTERFACE WITH CONTENT-BASED
ROUTING AND WORST-CASE LINK MANAGEMENT
In the experiments of Case III, the software/hardware inter-
face is still on use with the focus on the content-based
routing of either subscriptions or publications. The Ether-
net connectivity is provided according to the description of
Section VI-A3.

The first experiment utilizes six sets of XPath Set2 fea-
turing a total of ≈6 KB of 252 subscriptions. With only
3 mismatched subscriptions per set, a total of 18 mismatched
ones exist therein. In this experiment, routing of each mis-
matched subscription to another broker occurs (lines 40 to 42
in Fig. 18). The second broker processes the received sub-
scriptions, then issues and routes relevant notifications back
to the first broker that has to locally deliver them.

The second experiment utilizes six sets of XPath Set3 sub-
scriptions that entirely do not match any publication that is
available to the first X2CBBR. Thus, a single mismatched
subscription is routed to another X2CBBR on behalf of all
mismatched subscriptions (lines 37-38 in Fig. 18). The sec-
ond X2CBBR processes the received subscription and finds
a matched publication. Consequently, it routes this publica-
tion to the first broker where re-matching takes place (lines
13 to 17 in Fig. 14). Since now all subscriptions match
this publication, the first broker locally delivers the relevant
notifications.

In both experiments, there is only one link between all sub-
scribers and the first X2CBBR, and there is only one link as
well between both X2CBBRs. Therefore, subscriptions reach
the first X2CBBR in sequence, routed subscriptions and noti-
fications parade between both X2CBBRs in sequence, and
the relevant notifications arrive to subscribers in sequence.
Accordingly, the results of both experiments represent the
worst-case in terms of link management.

The next sections discuss the results of both experiments.

TABLE 7. Results of the broker with software/hardware interface and
Sub./Notif. routing.

1) FIRST EXPERIMENT RESULTS
Table 7 shows the routing duration of each mismatched
subscription as well as that of each corresponding

VOLUME 6, 2018 31887



F. T. El-Hassan, D. Ionescu: Design and Implementation of a Hardware Versatile Publish-Subscribe Architecture for the Internet of Things

notification. The routing duration of a single subscription
(1.02 ms) applies for either the subscribing action or the
subscription forwarding to another broker. The routing dura-
tion of a single notification (43.47 ms) applies for either the
forwarding action or the notification delivery. The end-to-end
duration from the subscriber site until reception of a relevant
notification is therefore 2*(1.02 ms) + 2*(43.47 ms) + the
processing time in each of the two brokers.

Thus, with the processing time of 1.9 ms in each bro-
ker (from the regular-case scenario of Case II experiments
(Table 5)), the minimum end-to-end path duration minT1(s)
for a subscription that visits two brokers: minT1(s) =
2*1.02 + 2*1.9 + 2*43.47 = 92.78 ms. Even though the
size of the subscription is different from that of a notification,
the throughput for both is almost the same (' 188 Kbps).
The routing time of the notification is 43.47 ms per 1KB.,
which is equivalent to ' 1.02 ms per 24 bytes - the routing
time of the subscription. Therefore, the routing time indicates
the timing per unit-size of either a subscribing action from a
subscriber to the local broker or a notification delivery from
the local broker to the subscriber. Thus,minT1(s)= 2*1.02+
2 *1.90+ 2*1.02= 7.88ms if the size of the subscription was
close to that of the notification.

With the processing time of 10.5 ms in each broker (from
the worst-case scenario of Case II experiments (Table 4)),
the maximum end-to-end path duration maxT1(s) for a sub-
scription that visits two brokers: maxT1(s) = 2 ∗ 1.02 + 2 ∗
10.5+ 2 ∗ 43.47 = 109.38 ms; or maxT1(s) = 2 ∗ 1.02+ 2 ∗
10.5+2∗1.02 = 25.08 ms if the size of the subscription was
close to that of the notification.

For each subscription successfully matched in the first
broker, no routing to another broker takes place. Therefore,
the minimum end-to-end path duration minT2(s) for a sub-
scription that visits one broker: minT2(s) = 1 ∗ 1.02 + 1 ∗
1.9 + 1 ∗ 43.47 = 46.39 ms; or minT2(s) = 1 ∗ 1.02 + 1 ∗
1.90+ 1 ∗ 1.02 = 3.94 ms if the size of the subscription was
close to that of the notification.

The maximum end-to-end path consumption time
maxT2(s) for such a subscription is:maxT2(s) = 1.02+10.5+
43.47 = 54.99 ms; or maxT2(s) = 1.02 + 10.5 + 1.02 =
12.54 ms if the size of the subscription was close to that of
the notification.

TABLE 8. Results of the broker with software/hardware interface and
subscription/publication routing.

2) SECOND EXPERIMENT RESULTS
Table 8 shows the routing duration of the mismatched sub-
scription as well as that of the corresponding publication.
The routing results in this table for either a subscription or a
notification/publication are very similar to those of Table 7.

However, a single mismatched subscription is only routed to
another broker.

The minimum end-to-end path duration minT (s) for a sub-
scription of XPath Set3 is as follows: minT (s) = (1.02 +
1.90+1.02)B1+(1.90+43.47)B2+(1.90+43.47)B1 = 94.68
ms; orminT (s) = (1.02+1.90+1.02)B1+(1.90+43.47)B2+
(1.90+1.02)B1 = 52.23 ms if the size of the subscription was
close to that of the notification.

The maximum end-to-end path duration maxT (s) for a
subscription of XPath Set3 is as follows: maxT (s) = (1.02+
10.5+1.02)B1+(10.5+43.47)B2+(1.90+43.47)B1 = 111.88
ms; orminT (s) = (1.02+10.5+1.02)B1+(10.5+43.47)B2+
(1.90+1.02)B1 = 69.43 ms if the size of the subscription was
close to that of the notification.

TABLE 9. Minimum time consumed for a subscriber to send a
subscription and receive a notification in the first and the second
experiments of Case III.

3) COMPARISON BETWEEN FIRST AND
SECOND EXPERIMENTS
Referring to the results of both experiments of Case III,
Table 9 provides the minimum waiting time for a subscriber
who sends a subscription up to the reception of the corre-
sponding notification in the first and second experiments.
Two cases appear in the table for each experiment: (a) When
the notification size is '1KB., which is much greater than
that of a subscription (24 bytes), and (2)When the notification
size is very close to that of a subscription (24 bytes). In both
(a) and (b) the publication size is 1KB. The results in this table
confirm that a subscriber whose subscription visits more than
a broker must wait longer to receive the relevant notification.

TABLE 10. Maximum time consumed for a subscriber to send a
subscription and receive a notification in the first and the second
experiments of Case III.

Table 10 provides the maximum waiting time for a sub-
scriber who sends a subscription up to the reception of the cor-
responding notification in the first and second experiments.
This table shows that the difference in the maximum duration
is much closer than that of the minimum duration of Table 9.

The overall performance is the overall accumulated time
for all 252 subscriptions to travel to the first broker until all
relevant notifications reach corresponding subscribers. In the
presence of only one link, sequential transmission of data
occurs where all the traffic is queued. In the first experiment,
there are 18 mismatched subscriptions that must be queued

31888 VOLUME 6, 2018



F. T. El-Hassan, D. Ionescu: Design and Implementation of a Hardware Versatile Publish-Subscribe Architecture for the Internet of Things

TABLE 11. Overall performance comparison between the first and
the second experiments of Case III, with sequential data transmission on
a single link.

and routed and 18 relevant notifications are to be queued
and routed as well. In the second experiment, only a single
mismatched subscription and a single publication are routed.
In the case that sequential transmission and queuing are into
effect for all 252 subscriptions, Table 11 compares between
the overall performance computed in both experiments. This
table indicates the waiting time for 252 subscribers from
the starting point of the first subscription issued by the first
subscriber up to the delivery of the last notification to the last
subscriber.

While the maximum waiting time in the first experiment is
12.5 sec for a subscriber to receive a notification, a subscriber
in the second experiment may never wait more than 12 sec
to receive a notification, even though all subscriptions of
the second experiment have not originally matched any pub-
lication. These results prove the effectiveness of the routing
algorithms that avoid redundant subscription and notification
traffic. When the notification size is close to the subscription
size, the maximum waiting time in the second experiment
(1.3 sec) is slightly greater than that of the first experiment
(1.06 sec), even though that the matching process runs twice
in the first broker. This overall performance also reflects
the efficiency of the X2CBBR in processing and matching
subscriptions against publications.

The subsequent transmission of data in the last two exper-
iments leads to these worst-case results in terms of link man-
agement. However, X2CBBR has the ability of concurrently
managing six external links to highly improve performance.

VII. CONCLUSION AND RECOMMENDATIONS
X2CBBR is a versatile XML/XPath Content-Based Bro-
ker/Router that provides high performance for content-based
publish/subscribe systems, and can be well-integrated with
IoT. It’s hardware implementation on an FPGA device repre-
sents a prototype that has been tested with different interface
options. The embedded hardware mechanisms yield versatil-
ity features that include the ability of both avoiding redundant
traffic and coping with different pub/sub systems.

When the sole hardware interface is used with the Avalon
bus, X2CBBR can regularly achieve 372 Mbps of throughput
and even 1447 Mbps of throughput for the best case. How-
ever, when the software/hardware interface is used, the per-
formance significantly drops, especially when sequential
content-based routing through a single link takes place.

To better achieve higher performance, the X2CBBRwould
need to be interfaced with a bus more sophisticated than
Avalon. For example, a hardware interface utilizing the PCIe
bus specification would be a future candidate. In addition,
implementing the X2CBBR on an ASIC chip would certainly

lead to much higher performance, taking advantage of finer
process technology and higher clock frequency. However,
the reconfigurable nature of FPGAs better suits many IoT
applications, where a new feature may be added to the broker
hardware in the future without the need to rebuild the archi-
tecture from scratch.

X2CBBR is also very useful as a pub/sub FPGA resource
in the cloud. In this case, the end-user or a ‘‘thing’’ (either
a subscriber or a publisher) communicates with the cloud
using a cloud operating system such as OpenStack [48];
and X2CBBR provides a virtualized FPGA-based pub/sub
service to the user. The overall performance in such a case
would depend on the efficiency of the cloud communication
interface. Studying such an approach would be interesting in
the future, especially that the idea of inclusion of FPGAs into
the cloud is growing in the research community [49], [50].

ACKNOWLEDGMENT
The authors would like to mention that many of the exper-
iments, simulations, and results were done at University of
Ottawa labs, and they thank all labs’ members who cooper-
ated in providing and maintaining necessary tools to achieve
their goals.

REFERENCES
[1] PURSUIT Project. Accessed: Apr. 2018. [Online]. Available:

http://www.fp7-pursuit.eu
[2] PSIRP Project. Accessed: Apr. 2018. [Online]. Available:

http://www.psirp.org
[3] N. Fotiou, P. Nikander, D. Trossen, and G. C. Polyzos, ‘‘Developing

information networking further: From PSIRP to PURSUIT,’’ in Broadband
Communications, Networks, and Systems (Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications Engi-
neering), vol. 66. Berlin, Germany: Springer, 2012, pp. 1–13.

[4] F. El-Hassan and D. Ionescu, ‘‘A hardware architecture of an XML/XPath
broker for content-based publish/subscribe systems,’’ in Proc. Int. Conf.
Reconfigurable Comput. FPGAs (ReConFig), Cancún,Mexico, Dec. 2010,
pp. 138–143.

[5] W3C. Extensible Markup Language (XML) 1.0 (Fifth Edition). Accessed:
Apr. 2018. [Online]. Available: https://www.w3.org/TR/xml/

[6] P. Saint-Andre, Extensible Messaging and Presence Protocol (XMPP):
Core, document RFC 6120, IETF, Mar. 2011.

[7] XML Path Language (XPath). Accessed: Apr. 2018. [Online]. Available:
http://www.w3.org/TR/xpath

[8] W3C. XQuery 3.1: An XML Query Language. Accessed: Apr. 2018.
[Online]. Available: http://www.w3.org/TR/xquery/

[9] MQTT Version 3.1.1. Accessed: Apr. 2018. [Online]. Available:
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

[10] OASIS Advanced Message Queuing Protocol (AMQP) Version 1.0.
Accessed: Apr. 2018. [Online]. Available: http://docs.oasis-open.org/
amqp/core/v1.0/amqp-core-complete-v1.0.pdf

[11] W3C. SPARQL Query Language for RDF. Accessed: Apr. 2018. [Online].
Available: https://www.w3.org/TR/rdf-sparql-query/

[12] Z. Shelby, K. Hartke, and C. Bormann, The Constrained Application
Protocol (CoAP), document RFC 7252, IETF, Jun. 2014.

[13] H. Wang, D. Xiong, P. Wang, and Y. Liu, ‘‘A lightweight XMPP pub-
lish/subscribe scheme for resource-constrained IoT devices,’’ IEEEAccess,
vol. 5, pp. 16393–16405, Sep. 2017.

[14] E. Onica, P. Felber, H.Mercier, and E. Rivière, ‘‘Confidentiality-preserving
publish/subscribe: A survey,’’ ACM Comput. Surv., vol. 49, no. 2, p. 27,
Nov. 2016.

[15] L. Roffia et al., ‘‘A semantic publish-subscribe architecture for the Inter-
net of Things,’’ IEEE Internet Things J., vol. 3, no. 6, pp. 1274–1296,
Dec. 2016.

VOLUME 6, 2018 31889



F. T. El-Hassan, D. Ionescu: Design and Implementation of a Hardware Versatile Publish-Subscribe Architecture for the Internet of Things

[16] A. Hakiri, P. Berthou, A. Gokhale, and S. Abdellatif, ‘‘Publish/subscribe-
enabled software defined networking for efficient and scalable IoT com-
munications,’’ IEEE Commun. Mag., vol. 53, no. 9, pp. 48–54, Sep. 2015.

[17] Object Management Group. Data Distribution Service (DDS). Accessed:
Apr. 2018. [Online]. Available: http://www.omg.org/omg-dds-portal/

[18] M. A. Triawan, H. Hindersah, D. Yolanda, and F. Hadiatna, ‘‘Internet of
Things using publish and subscribe method cloud-based application to
NFT-based hydroponic system,’’ in Proc. IEEE 6th Int. Conf. Syst. Eng.
Technol. (ICSET), Bandung, Indonesia, Oct. 2016, pp. 98–104.

[19] Ecma International. (Dec. 2017). The JSON Data Interchange Syn-
tax. [Online]. Available: https://www.ecma-international.org/publications/
standards/Ecma-404.htm

[20] M. Altinel and M. J. Franklin, ‘‘Efficient filtering of XML documents for
selective dissemination of information,’’ in Proc. 26th Int. Conf. VLDB,
Cairo, Egypt, Sep. 2000.

[21] Y. Diao, S. Rizvi, and M. J. Franklin, ‘‘Towards an Internet-scale XML
dissemination service,’’ in Proc. 30th Int. Conf. VLDB, Toronto, ON,
Canada, Aug./Sep. 2004, pp. 612–623.

[22] C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi, ‘‘Efficient filter-
ing of XML documents with XPath expressions,’’ in Proc. 18th ICDE,
San Jose, CA, USA, Feb./Mar. 2002.

[23] C.-Y. Chan and Y. Ni, ‘‘Content-based dissemination of fragmented XML
data,’’ in Proc. 26th IEEE ICDCS, Lisboa, Portugal, Jul. 2006, p. 44.

[24] R. Chand and P. Felber, ‘‘XNET: A reliable content-based pub-
lish/subscribe system,’’ in Proc. 23rd IEEE Int. Symp. Reliable Distrib.
Syst. (SRDS), Florianpolis, Brazil, Oct. 2004, pp. 264–273.

[25] R. Chand and P. Felber, ‘‘Scalable distribution of XML content with
XNet,’’ IEEE Trans. Parallel Distrib. Syst., vol. 19, no. 4, pp. 447–461,
Apr. 2008.

[26] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fischer, ‘‘Path
sharing and predicate evaluation for high-performance XML filtering,’’
ACM Trans. Database Syst., vol. 28, no. 4, pp. 467–516, Dec. 2003.

[27] Y. Sugata, T. Ohkawa, K. Ootsu, and T. Yokota, ‘‘Acceleration of pub-
lish/subscribe messaging in ROS-compliant FPGA component,’’ in Proc.
Int. Symp. Highly-Efficient Accel. Reconfigurable Technol. (HEART),
Bochum, Germany, Jun. 2017, Art. no. 13.

[28] M. Quigley, B. Gerkey, and W. D. Smart, Programming Robots With ROS,
1st ed. Newton, MA, USA: O’Reilly Media, Dec. 2015.

[29] A.Mitra, M. Vieira, P. Bakalov, V. Tsotras, andW. Najjar, ‘‘Boosting XML
filtering through a scalable FPGA-based architecture,’’ in Proc. Biennial
Conf. Innov. Data Syst. Res. (CIDR), USA, Jan. 2009.

[30] R. Moussalli, M. Salloum, W. Najjar, and V. Tsotras, ‘‘Accelerating XML
query matching through custom stack generation on FPGAs,’’ in Proc.
HiPEAC, Pisa, Italy, Jan. 2010, pp. 141–155.

[31] Y. Wang and X. Ma, ‘‘A general scalable and elastic content-based pub-
lish/subscribe service,’’ IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 8,
pp. 2100–2113, Aug. 2015.

[32] M. Diallo, V. Sourlas, P. Flegkas, S. Fdida, and L. Tassiulas, ‘‘A content-
based publish/subscribe framework for large-scale content delivery,’’
Comput. Netw., vol. 57, no. 4, pp. 924–943, Mar. 2013.

[33] G. Li, V. Muthusamy, and H.-A. Jacobsen, ‘‘Adaptive content-based rout-
ing in general overlay topologies,’’ in Proc. ACM/IFIP/USENIX 9th Int.
Middleware Conf. (Middleware), Leuven, Belgium, Dec. 2008, pp. 1–21.

[34] M. Linderman, N. Ahmed, J. Metzler, and J. Bryant, ‘‘A hybrid publish
subscribe protocol,’’ in Proc. ACM/IFIP/USENIX 9th Int. Middleware
Conf. (Middleware), Leuven, Belgium, Dec. 2008, pp. 24–29.

[35] R. Zhang and Y. C. Hu, ‘‘HYPER: A hybrid approach to efficient content-
based publish/subscribe,’’ in Proc. 25th IEEE Int. Conf. Distrib. Comput.
Syst. (ICDCS), Columbus, OH, USA, Jun. 2005, pp. 427–436.

[36] F. Cao and J. P. Singh, ‘‘MEDYM:Match-early with dynamic multicast for
content-based publish-subscribe networks,’’ in Proc. ACM/IFIP/USENIX
6th Int. Middleware Conf. (Middleware), Paris, France, Nov. 2005,
pp. 292–313.

[37] F. El-Hassan, ‘‘Hardware architecture of an XML/XPath broker/router for
content-based publish/subscribe data dissemination systems,’’ Ph.D. dis-
sertation, Dept. Elect. Comput. Eng., Univ. Ottawa, Ottawa, ON, Canada,
Feb. 2014.

[38] F. El-Hassan and D. Ionescu, ‘‘SCBXP: An efficient CAM-based XML
parsing technique in hardware environments,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 22, no. 11, pp. 1879–1887, Nov. 2011.

[39] Altera. Cyclone IV. Accessed: Apr. 2018. [Online]. Available: https://
www.altera.com/products/fpga/cyclone-series/cyclone-iv/support.html

[40] Terasic. Altera DE2-115 Development and Education Board. Accessed:
Apr. 2018. [Online]. Available: http://www.terasic.com.tw/cgi-bin/page/
archive.pl?Language=English&No=502

[41] Altera. Avalon Interface Specifications. Accessed: Apr. 2018. [Online].
Available: http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

[42] Altera. Nios II Classic Software Developer’s Handbook. Accessed:
Apr. 2018. [Online]. Available: http://www.altera.com/literature/hb/nios2/
n2sw_nii5v2.pdf

[43] Altera. Embedded Design Handbook. Accessed: Apr. 2018.
[Online]. Available: http://www.altera.com/literature/hb/nios2/edh_ed_
handbook.pdf

[44] Altera. Platform Designer (Formerly Qsys). Accessed: Apr. 2018.
[Online]. Available: https://www.altera.com/products/design-software/
fpga-design/quartus-prime/features/qts-platform-designer.html

[45] Altera. Intel FPGA Triple-Speed Ethernet IP Core User Guide.
Accessed: Apr. 2018. [Online]. Available: http://www.altera.com/
literature/ug/ug_ethernet.pdf

[46] IEEE Draft Standard for Ethernet, IEEE Standards 802.3, 2015. [Online].
Available: http://standards.ieee.org/develop/project/802.3.html

[47] Mentor Graphics. ModelSim. Accessed: Apr. 2018. [Online]. Available:
http://www.model.com/

[48] O. Sefraoui, M. Aissaoui, and M. Eleuldj, ‘‘OpenStack: Toward an open-
source solution for cloud computing,’’ Int. J. Comput. Appl., vol. 55, no. 3,
pp. 38–42, Jan. 2012.

[49] A. M. Caulfield et al., ‘‘A cloud-scale acceleration architecture,’’ in Proc.
49th Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Taipei,
Taiwan, Oct. 2016, pp. 1–13.

[50] N. Tarafdar, N. Eskandari, T. Lin, and P. Chow, ‘‘Designing for FPGAs in
the cloud,’’ IEEE Design Test, vol. 35, no. 1, pp. 23–29, Jan./Feb. 2018.

FADI T. EL-HASSAN (M’07) received the B.Sc.
degree in electrical engineering from Beirut Arab
University, Lebanon, theM.A.Sc. degree in electri-
cal engineering from Carleton University, Ottawa,
ON, Canada, and the Ph.D. degree in electrical
and computer engineering from the University of
Ottawa, Canada.

He is currently an Assistant Professor with the
College of Engineering, Al Ain University of Sci-
ence and Technology, UAE.

He has several years of working experience in the hardware design
industry. His research interests include Internet of Things, wireless sensor
networks, high-performance computing systems, hardware accelerators, net-
work security, and embedded systems.

DAN IONESCU (SM’85) received the engineering
Diploma and Ph.D. degrees in control and com-
puters from the Polytechnic Institute of Bucharest,
Romania, and the Diploma degree in mathematics
from the University of Timisoara, Romania.

He was with the Polytechnic Institute Traian
Vuia of Timisoara (currently Politehnica Univer-
sity of Timişoara) from 1973 to 1983. He has
been with the University of Ottawa, Canada, since
1985. He is currently the Director of the Network

Computing and Control Technologies Research Laboratory and also directs
the technical activity of the NGNNCIT*net2 of the National Capital Institute
for Telecommunications.

His research interests include control to real-time systems, image process-
ing, and distributed computing with applications to NGNs and services. His
research activities led to the creation of a few start-ups in the above areas.

31890 VOLUME 6, 2018


	INTRODUCTION
	RELATED WORK
	INTEROPERABILITY
	XML FILTERING WITH XPATH
	HARDWARE IMPLEMENTATIONS
	SPECIFIC SOFTWARE APPROACHES
	COMPARISON

	XML/XPATH BROKER/ROUTER ARCHITECTURE
	BASIC FUNCTIONAL OVERVIEW
	DEFINITIONS
	SUBSCRIPTION REGISTRATION ALGORITHM
	SUBSCRIPTION ROUTING ALGORITHM
	PART A: HARDWARE SPU ARCHITECTURE
	PART B: HARDWARE PMU ARCHITECTURE
	PART C: HARDWARE NPU ALGORITHMS
	PUBLICATION ROUTING
	NOTIFICATION RE-ROUTING


	NOTATIONS
	OPERATING MODE MECHANISM
	INTRODUCTION OF OPERATION MODES
	SEQUENCE OF OPERATING MODES
	DISCUSSION

	RESULTS
	EXPERIMENTAL SETUP
	HARDWARE INTERFACE (XAVI)
	SOFTWARE/HARDWARE INTERFACE
	SOFTWARE/HARDWARE INTERFACE WITH CONTENT-BASED ROUTING
	SUBSCRIPTION SETS

	CASE I: TESTING THROUGH HARDWARE INTERFACE XAVI
	WORST-CASE SCENARIO
	REGULAR-CASE SCENARIO
	BEST-CASE SCENARIO
	SCALABILITY

	CASE II: TESTING THROUGH THE SOFTWARE/HARDWARE INTERFACE
	WORST-CASE SCENARIO
	REGULAR-CASE SCENARIO
	BEST-CASE SCENARIO

	CASE III: TESTING THROUGH THE SOFTWARE/HARDWARE INTERFACE WITH CONTENT-BASED ROUTING AND WORST-CASE LINK MANAGEMENT
	FIRST EXPERIMENT RESULTS
	SECOND EXPERIMENT RESULTS
	COMPARISON BETWEEN FIRST AND SECOND EXPERIMENTS


	CONCLUSION AND RECOMMENDATIONS
	REFERENCES
	Biographies
	FADI T. EL-HASSAN
	DAN IONESCU


