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ABSTRACT In this paper, a deep neural network with concatenated structure is created for the recognition of
flight targets. Compared with the traditional recognition method, the deep network model automatically gets
deeper structure information that is more useful for the classification, and the better performance of target
recognition is also obtained when using high-resolution range profile for radar automatic target recognition.
First, the framework is expanded and cascaded by multiple shallow neural sub-networks. Then, a secondary-
label coding method is proposed to solve the target-aspect angle sensitivity problem. The samples are divided
into sub-classes based on aspect angle, each of which is assigned a separate encoding bit in category label.
Finally, the recognition results of multiple samples are fused by a multi-evidence fusion strategy for the
improvement of recognition rate. Furthermore, the effectiveness of the proposed algorithm is demonstrated
on the measured and simulated data.

INDEX TERMS HRRP, deep networkmodel, concatenated network, secondary-label, multi-evidence fusion.

I. INTRODUCTION
Radar automatic target recognition (RATR) refers to extract-
ing the robust target features from the electromagnetic echo
signal which is reflected from the target and received by
the radar sensor, and utilizing the features to automatically
recognize the target types or models. As the RATR techno-
logy plays a significant role in modern warfare, it has
attracted wide researches in the past few decades [1]–[5].
Among these researches, the RATR based on high resolution
range profile (HRRP) is a promising approach.

The HRRP is the amplitude of the echo summation for
target scattering centers in each range cell of wideband
radar. It reflects the distribution of target scattering centers
along the radar line-of-sight (LOS), and contains the target
geometric structure information that facilitates classification.
Also, it has relative small dimension of data and easy to
obtain. Hence, the radar target recognition based on HRRP
has been intensively focused by RATR community [6]–[22].
Li and Yang [12] use HRRP as the feature vectors for data
representation, and establish a decision rule based on the
matching scores to identify five kinds of aircrafts. In [14],
Zhou et al. proposed a HRRP-based radar target recognition
fuzzy optimization transformation method. The goal of this
approach is to maximize the distance between classes while
maintaining the structure of the class. In [15], Fu et al. utilized

the discriminant information analysis method for radar HRRP
recognition. But the computation cost is too high, which does
not satisfy the requirements of the approximate real-time
target recognition. Zhou [17] investigated a reconstruction
discriminant dictionary learning algorithm based on sparse
representation classification criteria for radar target HRRP
identification. Extensive experimental results demonstrate
that the algorithm outperform other similar type methods like
K parameters of singular value decomposition (KSVD) and
discriminative dictionary learning (DDL). Zyweck et al. [18]
proposed some data preprocessing and subspace algorithm
on HRRP recognition. In above methods, feature extraction
is the most critical step. The air target features are more of
the domain knowledge based on the transformation of the
HRRP data, such as the subspace feature, high-order spec-
trum feature and differential power spectrum feature. These
features are abstracted by artificial rules depended much on
the practical experience and application background. As a
result, the role of these features in classification is difficult to
assess, and the recognition accuracy of the above mentioned
literatures is limited under the controlled experiment.

In recent years, with the revival of the large-scale deep neu-
ral network and the support of the high performance comput-
ing toolkits, the deep learning technique sheds a light on the
traditional RATRfield. In this case, some researchers begin to
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leverage the power of high-dimensional nonlinear computing
to pursue a higher, more accurate and robust recognition
performance [23]–[27]. Lunden and Koivunen [23] built up
a deep convolution neural network (CNN) to automatically
extract the targets’ high-order features fromHRRPs for target
recognition in multistatic radar systems. The experimental
results show that this method achieves good recognition even
at low SNR. In [24], Cui et al. proposed a hierarchical recog-
nition system (HRS) based on constrained deep information
network for SAR automatic target recognition. Experimental
results show that the performance of the HRS is superior to
some traditional pattern recognition methods. In [26], a deep
network is utilized as a novel feature extraction method for
HRRP-based RATR, and the average profile is considered for
establishing an effective loss function under the Mahalanobis
distance criterion. In summary, compared with the traditional
pattern recognition method, the deep learning method for
target recognition helps to avoid overusing hand-crafted rules
to abstract features, and the deep expression features of the
target can be automatically obtained through feature learn-
ing. The features extracted by this method are more benefi-
cial to classification. Thus, in this paper, by leveraging the
deep learning theory and the characteristics of targets HRRP
data, a concatenated deep neural networks (CDNN) model is
proposed for radar target recognition based on HRRP. The
advantages of this framework are three-fold:
• The CDNN is formed by connecting hidden layers of
multiple shallow neural sub-networks (SNSN). These
sub-networks are trained from bottom to top. On the one
hand, different from the traditional stacked deep neural
networks (sDNN), the original HRRP data is added in
the input layer of each sub-network. It as a correction to
the input of current sub-network results in better depth
features extracted by the CDNN than those extracted
by ordinary sDNN. On another hand, the initialization
parameters of the current level sub-network are trans-
ferred from the previous level, speeding up the training
of the current network and reducing the risk of the
network falling into a local optimum.

• A secondary-label coding method is proposed. In this
method, the samples of same target are divided into four
sub-classes on basis of their aspect angle, each of which
is considered as a separate category. At the same time,
the four sub-classes also belong to the same main class.
Hence, in a secondary-label, each sample has two class
tag bits, one is sub-class tag bit and another is main
class tag bit. This coding method contributes to the well
solution of target-aspect sensitivity problem for HRRP.

• The multi-evidence fusion strategy is employed to fuse
the recognition results of multiple samples in the deci-
sion level, with the aim of further improving the target’s
correct recognition rate.

The rest of the paper will be arranged as follows.
In section II, the HRRP signal model and deep neural net-
work framework will be illustrated. In section III, the exper-
iment setting for different scenarios will be introduced.

In section IV, the experiment results for each case study will
be demonstrated and finally we concluded in section V.

II. TARGET RECOGNITION SYSTEM
A. HRRPS’ SIGNAL MODEL AND PREPROCESSING
When the radial range resolution of wide-band radar is much
smaller than the target’s size, the target can be modeled
as a set of independent scattering centers. A HRRP is the
summations of the echo vectors from each scattering centers
on the target.

Consider the radar bandwidth as B, then the radar range
resolution is1r = c

2B , along the radar line of sight, the target
can be divided into many range cells of width 1r . Then the
echo of the ith cell is the echo summation of all scattering
centers within this range cell, which can be expressed as:

xi = ψi (f )

=

Ni∑
k=1

ai,k exp
(
j2π f τi,k

)
= I (i)+ jQ (i), (1)

where f is the radar center frequency. Ni is the number of
scattering centers within the ith range cell. ai,k denotes the
intensity of the k th scattering center in the ith cell, which
is related to the scattering center’s shape. τi,k is the time of
arrival (TOA) of the k th scattering center in the ith range cell.
In practice, the amplitude vector of HRRP is applied to radar
target recognition. The HRRP used in the paper is defined as:

x = [|x1| , |x2| , . . . , |xn|]T , (2)

where n is the dimension of the HRRP.
When using HRRP for radar target recognition, there are

several issues that need to be considered: time-shift sensitiv-
ity, amplitude-scale sensitivity, and target-aspect sensitivity
of HRRP.

In the measurement, a sampling window is used to extract
part of data which includes the target echo from the received
radar signal. The extracted part is HRRP data. Thus, in dif-
ferent measurements, the position of target echo in HRRP
data is not fixed, which is referred to as time-shift sensitivity.
The amplitude scale of HRRP varies with many factors, such
as measurement environment, target distance, radar working
parameters and so on. It is amplitude-scale sensitivity. In the
radar line-of-sight, with the variation of target aspect, the rel-
ative position of the target scattering centers get changed and
some scatters even move through different range cells. These
will lead to a variation of target echo waveform, which is
called target-aspect sensitivity. Therefore, to improve recog-
nition performance, the three sensitivities should be taken
into account when using HRRP for target recognition.

In preprocessing, a center alignment method is adopted for
overcoming the time-shift sensitivity. On an input original
HRRP data, the position of its maximum amplitude is set
as the center, and bM/2c sampling points are intercepted
before and after the center. When the length of the HRRP is
not enough, 0 is used to make up. So the aligned HRRP
data is recorded as x = [x1, x2, . . . , xM ]T where M is
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HRRP’s dimension. Then the energy normalization to each
aligned HRRP is adopted to resolve amplitude-scale sen-
sitivity. Finally, to respond to the target-aspect sensitivity,
a method of embedding secondary-label in depth models is
put forward, which will be described in section B_2.

B. HRRP TARGET RECOGNITION BASED ON CDNN
After the above preprocessing, the deep neural network
(DNN)model is constructed to automatically extract the high-
order abstract features of the target. The deeper the network,
the stronger the expressive ability of the features extracted
from the network is. However, the problems such as gradient
vanishing and exploding and overfitting may occur during
the training process, resulting in poor generalization of the
model. Therefore, the correct recognition rate of the whole
system cannot be improved merely by deepening the network
depth. In addition, if the parameters of the neural network
model are randomly initialized, the model may be trapped in
local optima. In this case, a novel concatenated deep neural
network structure is proposed to solve these problems.

In the CDNN, a number of independent shallow neural sub-
networks (SNSN) with same structure are established, which
is shown in Figure 1. These sub-networks are concatenated
as a deeper network to extract the deeper features from the
HRRP raw data. The input of the current sub-network is a
fusion of the original HRRP data and the sample’s depth fea-
tures extracted from the previous sub-network. The original
HRRP data is regarded as a regularization term and utilized
to correct the deviation during the training, so that the better
deep features can be obtained.

FIGURE 1. The kth Shallow Neural Sub-network’s Structure (SNSN_K).

1) FRAMEWORK OF SHALLOW NEURAL SUB-NETWORKS
We define the k th shallow neural sub-network’s structure as
SNSN_K. Each sub-network is a four-layer shallow neural
network consisting of an input layer, two hidden layers, and
an output layer, where W k1

∈ Rn1×n0 , W k2
∈ Rn2×n1 , and

W k3
∈ Rn3×n2 represent the weight matrix; bk1 , bk2, and

bk3 stand for biased vectors; the superscript k = 1, 2, . . .K
represents the index of sub-networks. The number of sub-
networks is set as 3 in this paper. n0 is the dimension of the
input layer, n1 and n2 correspond to the number of neurons in
two hidden layers. n3 is the number of node in output layers.
The input layer data is spliced by vector x and vec-

tor a(k−1)2, which is denoted as: x̄ =
[
x; a(k−1)2

]
=[

x1, x2, . . . , xM , a
(k−1)2
1 , a(k−1)22 , . . . , a(k−1)2n2

]T
∈ R1×n0 ,

where x = [x1, x2, . . . , xM ]T is the HRRP data after pre-
processed, andM is the data dimension. a(k−1)2 is the output
vector of the second hidden layer in the previous sub-network
(the (k − 1)th sub-network), and its dimension is n2 . So,
the input layer’s dimension in the sub-network is n0 = M+n2
and the output vectors of the two hidden layers are denoted
as ak1 and ak2, where

ak1 = σ
(
W k1x̄+ bk1

)
, (3)

ak2 = σ
(
W k2ak1 + bk2

)
. (4)

The rectified linear unit (ReLU) functions σ (z) =

max{0, z} is adopted as the activation function for the two
hidden layers. The output layer uses the sigmoid activation
function f (z) = 1

1+e−z , so the output vector of the output layer
nodes is:

ak3 = f
(
W k3ak2 + bk3

)
. (5)

The cross-entropy will be set up as the cost function of the
sub-network:

Cost = −
1
n

n∑
j=1

n3∑
i=1

[
yi ln ak3i +(1−yi) ln

(
1−ak3i

)]
, (6)

where y =
[
y1, y2, . . . , yn3

]T represents the expected output
vector, which is the real label of the input sample. ak3 =[
ak31 , a

k3
2 , . . . , a

k3
n3

]T
is the actual output vector of the output

layer, and n is the number of training set samples.

2) SECONDARY-LABEL DESIGN
When the traditional neural networks are used for multi-
classification problems, the number of nodes of the output
layer is generally set as the number of target categories,
and the samples’ labels are coded using one-hot encoding.
However, due to the target-aspect sensitivity of the HRRP,
the larger the span of the samples’ aspect angle, the more eas-
ily the system recognition accuracy will be reduced. There-
fore, to reduce the impact of target-aspect sensitivity on
the recognition system, a new coding method embedding
secondary-label in the output layer of neural network is
proposed.

As the target HRRP sample set is continuously sampled
during the flight of the aircraft, the target-aspect of each
HRRP sample is gradually changed. For the training sam-
ple set of the ith target, the samples are divided into four
separate subsets based on their order of sampling, each of
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which corresponds to a certain aspect range of the target.
A sample xij belongs to both its main class (the ith class ) and
subclass. Thus, each class is assigned a secondary-label with
five encoding bits. One is used to represent its main class and
the other four are to represent its four subclasses. As shown
in Figure 2, themiddle encoding position is themain-category
encoding bit.

FIGURE 2. Example of encoding a sample of the i th class using the
secondary-lable coding method.

If there are C category targets in a recognition sys-
tem, the category label of a sample consists of a series
of secondary-label of these C category targets. Hence,
the dimension of the sample’s label is C × 5. The number of
neuron nodes in the sub-network output layer is n3 = C × 5 .
In this paper, the number of target category is C = 4, so the
dimension of sample’s label is 20. For example, if a training
sample x belongs to the 4th subclass of the 2nd target, its
category label is defined as:

y = [0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

3) CONCATENATION DEEP NEURAL NETWORKS
The hidden layers of each shallow neural sub-network are
connected in turn to construct a CDNN. The number of sub-
networks in a CDNN is determined by the actual application.
By observing of the experimental results, we found that on
our dataset, the best identification performance is achieved
when the number of sub-networks is 3. Figure 3 shows the
HRRP target recognition system framework based on CDNN
network architecture that used in this paper.

The upper part of Figure 3 shows the training process of
each sub-network. Each sub-network in the CDNN network
is trained from bottom to top and step by step.

First, we train the bottom sub-network SNSN_1. The
input layer data of this sub-network is a vector concate-
nated by pre-processed HRRP data x = [x1, x2, . . . , xM ]T

and vector a02, where a02 is the random initialized
data that obey the N (0, 1) distribution. Parameter set

θ1 =
{
W 11, b11,W 12, b12,W 13, b13

}
is initialized at ran-

dom. Based on the secondary-label of the sample, we utilize
the stochastic gradient descent to optimize the parameter
set θ1.
After the training of sub-network SNSN_1, the second sub-

network SNSN_2 is trained. The input layer data of SNSN_2
is concatenated by pre-processed HRRP vector x and the
output vector a12 of the second hidden layer of SNSN_1,
that is x̄ =

[
x; a12

]
. In the process of network’s parameters

training, the idea of model parameter transfer is adopted in
the algorithm; in other words, the trained parameters of the
(m− 1)th sub-network are passed to the mth sub-network as
its initial network parameters. This process not only speeds
up the training of the current sub-network but also reduces
the risk of the entire network falling into a local optimum.
Therefore, we use the trained parameters set θ1 to initialize
the parameter set θ2 of the sub-network SNSN_2, and utilize
the stochastic gradient descent to optimize the parameter
set θ2.
The same way as mentioned above can be used to com-

plete higher-level sub-network construction and parameter
training.

The lower part of Figure 3 shows the structure of the
CDNN recognition system. the final CDNN contains six
hidden layers, and each hidden layer’s parameters derived
from three well-trained sub-networks. The output layer of
CDNN is a n3 dimensions secondary-label vector, recorded
as: ŷ =

[
ŷ1, ŷ2, . . . , ŷn3

]T . In this paper, the targets’ number
of our recognition system is C = 4 , so n3 = C × 5 = 20.
A decision layer is added at back of the secondary-label

output layer. Firstly, the decision layer normalizes the label
vector ŷ which is predicted by the output layer:

ˆ̂yi = f (ŷi) =
eŷi∑n3
i=1 e

ŷi
i = 1, 2, . . . , n3. (7)

Secondly, we sum the values of the 5 encoding bits cor-
responding to each type of target in the secondary-vector
respectively:

zj =
∑j×5

i=(j−1)×5+1
ˆ̂yi, (8)

Finally, the output vector of the decision layer is expressed
as: z =

{
zj
∣∣ j = 1, 2, . . . ,C

}
. Where, zj represents the prob-

ability that the current sample belongs to the jth target. Then
we predict the test sample as the pth class by the maximum
probability criterion, that is:

p = argmax
j
{zj}. (9)

4) TARGET RECOGNITION BASED ON MULTI-EVIDENCE
FUSION (MEF)
In practical applications, radar can continuously sample a
series of HRRP data of the target. Using CDNN, the recogni-
tion result of each HRRP sample is obtained in real time. The
accuracy of the recognition result will be further improved
when the recognition results of multiple samples are fused
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FIGURE 3. A HRRP target recognition system framework based on CDNN network architecture.

at the decision layer. For this reason, we adopt a multi-
evidence fusion strategy for the CDNN identification results
of D HRRP samples. In our experiment D = 3.
Let {x1, x2, . . . , xD} represents the D HRRP samples of

one target. Using the CDNN to identify each sample, we can
get set {z1, z2, . . . , zD} ∈ RC containing D output vectors.
Where {z1, z2, . . . , zD} are regarded as D independent evi-
dences. Then the multi-evidence fusion strategy is:

m(j) =
∑
p 6=q

D
p,q=1z

p(j) · zq(j) j = 1, 2, . . . ,C . (10)

Where, the zp(j) represents the probability of the pth sample
is judged as the jth class, m(j) represents the probability that
the test samples belongs to the jth class after fusing D piece
of evidences. The vector m = [m(1),m(2), · · · ,m(C)] is
the fusion identification result. The class corresponding to
the maximum probability value in vector m is the predicted
target category, that is:

classMEF = arg max
j=1,2,...,C

{m(j)}. (11)

III. EXPERIMENTAL DATA AND SETTING
To verify the effectiveness of the recognition system proposed
in this paper, the simulation data and measured data are used
for test. At the same time, we compare our method with some
traditional pattern recognition methods and general neural
network recognition methods.

A. DATA DESCRIPTION
The simulation data is generated by the radar target backscat-
ter simulation software [28], [29]. The parameters of 4 types
of aircraft and radar working parameters used in the simu-
lation experiment are shown in Table 1. The range of target
aspect angle is 0◦ ∼ 180◦ . HRRP data is sampled at

TABLE 1. The parameters of aircrafts and radar working in simulation
experiments.

every 0.1◦ aspect angle, and each target class contains
1800 HRRP samples. We repeat 9 time shift operations for
each sample, and the number of shifting points per time is
randomly generated between -15 and 15. So, the number of
samples for each class is extended to 18000. In the experi-
ment, 70% of the samples in each category were randomly
selected for model training, and the remaining 30% of the
samples were used for testing. Meanwhile, the Gauss white
noise with 16dB signal-to-noise ratio is added to all the
simulation data.

The measured data was acquired by a self-developed wide-
band radar system, and the radar’s bandwidth is 200MHz. The
radar is used to obtain HRRP data on four types of civilian
aircraft, and the model are: Airbus A319, A320, A321 and
Boeing B738. Each type of aircraft has five sets of flight
data sampled at different time periods, and their route are
roughly the same. In the five flight data, three sets of data
are combined to form a training dataset, and the remaining
two sets are fused together to serve as the testing dataset.
Table 2 shows the number of samples of the measured data
for each aircraft.

Figure 4 shows examples of HRRP data for simulated
aircraft targets and measured aircraft targets.
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TABLE 2. The number of samples of aircraft measured data.

FIGURE 4. The HRRP samples of measured data and simulation data.
(a) HRRP sample of measured data B738. (b) HRRP sample of simulation
data F15 with 16dB White Gaussian Noise.

B. EXPERIMENTAL METHOD
To verify the effectiveness of this recognition system, three
groups of comparative experiments are designed.
Experiment 1 (Verify the Effectiveness of Using CDNN for

Feature Extraction): In the experiment, different numbers
of SNSN are concatenated to form CDNN and the number
of SNSN changes from 1 to 3. Test these different depth
networks separately. The input data of the recognition sys-
tem is original HRRP data, and the dimension of HRRP is
M = 320. The number of nodes in the two hidden layers
of the sub-network is set to n1 = 100 and n2 = 50, thus
the number of nodes in input layer of the sub-network is
n0 = M + n2 = 370. The traditional one-hot coding method
is used to label HRRP sample. In this experiment, the number
of target category is 4, thus the number of output layer’s node
in sub-network is n3 = 4.

Moreover, the CNN andDNN recognition systems are used
for the comparison experiments. The structure and parame-
ters of CNN and DNN network are set based on Table 3. The
parameters of these networks are randomly initialized and the
learning rate is set as 0.1. The stochastic gradient descent
method is used to train the CNN and DNN.
Experiment 2 (Verify the Effect of the Secondary-Label on

Recognition Accuracy): Keep the same network structure as
in Experiment 1, and change the output layer’s label of each
SNSN network in CDNN to the proposed secondary-label.

TABLE 3. Structure parameters of neural network recognition systems.

Therefore, the number of output layer nodes in each SNSN is
n3 = C × 5 = 20. The decision layer is added to the final
layer of the system, and the entire CDNN structure is shown
in Figure 3. At the same time, the output layers of the DNN
and CNN in Experiment 1 are also altered accordingly and
the decision layer is added to the last.
Experiment 3 (Verify the Performance of Multi-Evidence

Fusion): The CDNNmodel with the secondary-label method
proposed is used to obtain the identification result of each
HRRP sample. Then the multi-evidence fusion strategy is
employed to fuse the recognition results of continuous
D samples of the same target, where D = 3.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
First of all, the above three groups of experiments are imple-
mented on the simulated HRRP data. The statistical results
of the correct recognition rate are shown in Table 4. Among
them, the ‘CDNN_1 ’, ‘CDNN_2’ and ‘CDNN_3’ repre-
sent that the number of the cascaded shallow sub-networks
is 1, 2 and 3, respectively. The ‘BL’ stands for this method
using a secondary-label, and the ‘MEF’ indicates use multi-
evidence fusion. ‘ARR’ is the average correct recognition rate
of four class targets.

We found the following results from Table 4:
1) As the number of cascaded sub-networks is added,

the correct recognition rate of the system gradually
increases. The ARR of CDNN_3 is 15.5% higher than
CDNN_1, and CDNN_3_BL is 15.3% higher than
CDNN_1_BL. It means that the CDNN structure is able

TABLE 4. The recognition accuracy on the simulation data by neural
networks with different structure (%).
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to abstract the deep distinguishing features of the target.
Comparedwith shallow features, the deep features have
more excellent classification performance.

2) The classification ability of CDNN is better than that
of an ordinary depth model with the same depth. The
CDNN_3 model has 6 hidden layers, basically the
same as the number of hidden layers in the DNN and
CNN networks used in comparison experiments. The
recognition rate of CDNN_3 is 1.6% higher than the
DNN and CNN networks at least. This result indi-
cates that compared with the ordinary deep network
structure, the proposed network structure abstracts
more effective depth distinguish features for target
recognition.

3) With the use of secondary-label method, the average
recognition accuracy of various recognition methods
increases by at least 1.5%. This demonstrates that
the secondary-label method can alleviate the impact
of HRRP aspect-sensitivity on recognition, and the
extracted features are more robust to the aspect change
of the target.

4) Using multi-evidence fusion strategy, the aver-
age correct recognition rate of CDNN_3_BL_MEF
reaches 97.5%, 1.6% higher than that of a single
sample.

To further verify the performance of the proposed algo-
rithm, the measured data is employed to repeat the above
experiments. In the mean time, the traditional pattern recog-
nition methods such as SVM, LDA and PCA are used for
comparative experiments. The correct recognition rate of all
methods is shown in Table 5.

TABLE 5. The recognition accuracy on the measured data by various
identification methods (%).

Experimental results based on measured data also reveal
that the traditional PCA, LDA and SVM pattern recognition
methods only extract the shallow features of targets, and
the best recognition accuracy of these methods is 83.5%.
On the contrary, the deeper features of the target are extracted
by deep neural network model, and the classification capa-
bility of the deep features is significantly better than that
of shallow features. As shows in Table 5, the recognition
accuracy of CDNN_3 model is 88.1%, 4.6% higher than
that of SVM method. On this basis, by using the secondary-
label and multi-evidence fusion strategy, the recognition
accuracy of the CDNN_3_BL_MEF model can be increased
to 92.5%.

V. CONCLUSION
In this paper, a novel deep neural network recognition system
is designed and used for aircraft target recognition based
on radar HRRP data. It is established by the connection of
multiple shallow neural networks. As a correction to high-
order features extracted, the original HRRP data is extended
to the input layer of every SNSN. Hence, this concatenated
deep neural network learns more effective depth features for
target recognition than normal deep networks. Furthermore,
a secondary-label coding method is put forward, in which the
target samples are divided into different aspect zones and the
samples in each zone have a separate subclass tag bit and a
public main class tag bit. Training network’s parameters by
this secondary-label helps to reduce intra-class differences
between the extracted features and increase their between-
class difference. In this way, it optimizes the target clustering
and alleviates the impact of target-aspect sensitivity on recog-
nition performance. Finally, the multi-evidence fusion strat-
egy is introduced to further improve the system recognition
rate. The experimental results on simulation and measured
airplanes HRRP data prove the effectiveness of the proposed
CDNN recognition system. In summary, using the CDNN
model proposed in this paper, we can effectively abstract the
deep features of targets, that is beneficial to the classification,
from aircraft target HRRP data. Meanwhile, better recogni-
tion performance than traditional recognition methods and
ordinary deep learning methods is achieved.
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