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ABSTRACTWind disturbancemay significantly degrade the attitude control performance during the flight of
quadrotor vehicles. In order to meet the requirement of high-precision attitude control, a generalized extend
state observer (GESO)-based disturbance and uncertainty estimation and attenuation control strategy is
proposed in this paper. First, the disturbances are considered as a time polynomial function, and the nth order
model of disturbances are augmented into the quadrotor dynamics. According to the reconstructed model,
a GESO is designed and its stability is proved by the Lyapunov theory. Then, we analyze the influences of the
observer order and bandwidth on the estimation accuracy in detail and give the gain tuning guidelines for
GESO. Second, we design an attitude tracking controller based on the backstepping method and discuss the
stability of the entire system. Finally, the numerical simulations and real-time experiments are carried out
to evaluate the performance of the proposed controller with the GESO of different orders. Our results show
that the proposed method can achieve precise attitude tracking for a quadrotor subject to wind disturbance.
Furthermore, when the bandwidth of the GESO is fixed, the performance of the proposed controller improves
with the increases of the GESO order.

INDEX TERMS Quadrotor, high precision, GESO, wind disturbance, attitude control.

I. INTRODUCTION
In recent years, the research on the quadrotor vehicles attracts
great interest due to the wide range of civil and military appli-
cations, and a lot of achievements have been made [1]–[3].
As a new kind of unmanned aerial vehicle (UAV), quadrotor
is a small rotorcraft with four propellers driven by four
direct current (DC) motors respectively [4]. Compared with
traditional helicopters, the structure of quadrotor is simpler
and more efficient, and has significant advantages in precise
hovering, aggressive maneuver, vertical take-off and landing
(VTOL) [5], [6], etc.

In order to meet the mission requirements of the quadrotor,
high precision attitude control is essential. However, when
operating in outdoor environments, quadrotors would be
easily affected by wind field [7], which is a component
of external disturbances, during the course of flight. More-
over, the quadrotor is an underactuated and nonlinear coupled
system [8]. Therefore, it is difficult for the traditional linear
controllers [9]–[11] to achieve the high precision control

under the influence of disturbances. To solve these problems,
many approaches have been proposed in literatures. Robust
adaptive controller can effectively eliminate the influence of
system model uncertainties [12], except that it is too conser-
vative in control performance. Sliding mode method is used
to control the inner loop of the aircraft, and ensured good
attitude tracking performance [13], [14]. However, chattering
is inevitable in this method.

Alternatively, the disturbances can be accurately estimated
and attenuated in the feedforward loop [15]. The distur-
bance and uncertainty estimation and attenuation (DUEA)
strategy would be a potential solution. Those methods have
been widely explored and used in recent years [16], [17].
The DUEA framework can be divided into two parts,
namely, a disturbance and uncertainty estimator (DUE)
and a feedback controller (FC). In the first part, DUE
is designed to estimate the disturbances so that they
could be compensated in the feedforward loop. Then the
FC in the second part is designed to guarantee fast
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convergence of the closed-loop system. Under the frame-
work of DUEA strategy, the DUE plays a very important
role, because the performance of the closed-loop system
is largely determined by the estimate from the DUE.
A series of observers have been proposed as the DUE so
far, such as disturbance observer (DO) [18], [19], extended
state observer (ESO) [20]–[22] and proportional integral
observer (PIO) [23], [24] etc. By the appropriate use of the
observer, disturbance rejection performance and robust-
ness of the existing control system could be significantly
improved.

Consequently, a lot of improvements on the DUE are made
in literatures. Slidingmode technology is a good choice due to
its attractive properties such as its insensitivity with respect
to unknown inputs and finite time convergence to the exact
values of the state vectors. In [25], a sliding model distur-
bance observer (SMDO) was used to estimate the quadrotor
velocities, the external disturbances such as wind and param-
eter uncertainties, and achieves good results, while chattering
was serious. To solve this problem, higher order sliding mode
differentiation was used in [26], resulting in less chattering.
Except for sliding mode technologies, high order method is
also used in design of the DUE. In [27], the extended distur-
bance observer (EDO) was proposed to handle a larger class
of mismatched uncertainties. Higher order EDO was applied
for attitude stabilization of flexible spacecrafts, and the efforts
of different orders on the performance of EDO were inves-
tigated [28]. In [29], a generalized proportional integral
observer (GPIO) was designed to estimate the time varying
disturbances which were approximated by a Taylor poly-
nomial, and showed a better disturbance rejection property
compared with DOB and PIO. In [30], the generalized ESO
with high order was investigated. It is shown that if the
chosen observer bandwidth is much larger than the frequency
of the disturbance, the proposed ESO would offer better state
estimation accuracy in comparison with the conventional first
order ESO, when dealing with the fast varying sinusoidal
disturbances. Moreover, in [31], an enhanced generalized
ESO was designed by introducing the equivalent distur-
bance model so that the perturbation terms of the observer
can be decreased, and achieved a good estimation accuracy.
However, it is difficult to get the accurate model of distur-
bance in some applications, which will have certain effect
on the robustness of the system.

In this paper, ESO method is adopted because of its less
dependence on model information [32], [33]. As the distur-
bances acting on the quadrotor are time varying, stochastic
and nonlinear, we generally approximate them as a form of
time polynomials and then develop a GESO, instead of the
traditional one, to address this problem. The main contribu-
tion of this work is threefold:
(1) Design and implementation of a GESO for the

high precision attitude control of quadrotor vehicles
based on the augmented dynamic model, and the
stability analysis of the entire system including DUE
and FC.

(2) Analysis of the influences of the observer order and
bandwidth on the estimation accuracy, and the gain
tuning guidelines for GESO.

(3) From a practical perspective, proposal for the observer
order and bandwidth combination of the GESO that
works well on real systems according to our experi-
ments.

The outline of this work is as follows: Some preliminaries
are presented in Section II. The mathematical model and the
control problems of quadrotor are formulated in Section III.
A GESO is designed in Section IV, as well as the proof
of stability and the gain tuning guidelines are also given
in this section. In section V, an attitude tracking controller is
designed via the backstepping method. Numerical simulation
and real time experimental results are presented in SectionVI,
and the conclusions are summarized in Section VII.

II. PRELIMINARIES
A. NOTATIONS
Throughout this paper, the following notations will be used.
R is the set of real numbers. Let ‖·‖ denote the 2-norm of a
vector or amatrix. For a given vector v = [v1, . . . , vn]T ∈ Rn,
||v|| =

√
vT v, and for a given matrix A ∈ Rn×n, ||A|| =√

λmax
(
ATA

)
, where λmax(·) is themaximal eigenvalue of the

matrix. In addition, the operator S(·) maps a vector x =
[ x1 x2 x3 ]T to a skew symmetric matrix as:

S (x) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 (1)

When one says that vector function f (x) ∈ Rn is Lipschitz
continuous, it means that each element of f (x), i.e., fi(x) is
Lipschitz continuous.

B. QUATERNION OPERATIONS
In order to avoid the singularity problem of trigonometric
functions, unit quaternion q =

[
q0 qTv

]T
∈ R4, ‖q‖ = 1 is

used to represent rotation [34]. Following are the operations
we used.

The quaternion multiplication is:

q1 ⊗ q2 =
[

q01q02 − qTv1qv2
q01qv2 + q02qv1 − S(qv2)qv1

]
(2)

The relationship between rotationmatrixCB
A and q is calcu-

lated as:

CB
A = (q20 − q

T
v qv)I3 + 2qvq

T
v + 2q0S(qv) (3)

Ċ
B
A = −S(ω)C

B
A (4)

The derivative of a quaternion is given by the quaternion
multiplication of the quaternion q and the angular velocity
of the system ω:

q̇ =
[
q̇0
q̇v

]
=

1
2
q⊗

[
0
ω

]
=

1
2

[
−qTv

S(qv)+ q0I3

]
ω (5)
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The quaternion error qe is given as the quaternion multi-
plication of the conjugate of the actual quaternion q and the
desired quaternion qd :

qe = q∗d ⊗ q =
[
q0e
qve

]
=

[
q0q0d + qTv qvd

q0dqv − q0qvd + S(qv)qvd

]
(6)

III. MATHEMATICAL MODEL AND
PROBLEM FORMULATION
A. KINEMATICS AND DYNAMICS OF QUADROTOR
In this section, the kinematic and dynamic differential equa-
tions of the quadrotor are established. The quadrotor can be
considered as a rigid cross frame attached with four rotors,
and the center of gravity coincides with the body-fixed frame
origin. The simplified model of the quadrotor is presented
in Figure 1, rotors R1 and R3 rotate counterclockwise, and
rotors R2 and R4 rotate clockwise, each propeller rotates
at the angular speed �i and produces a force Fi (i =
1, 2, 3, 4) along the negative z-direction relative to the body
frame [34], [35]:

Fi = −kT�2
i (7)

where kT > 0 denotes the aerodynamic coefficient which
consists formed of the atmospheric density ρ, the radius of the
propeller r , and the thrust coefficient cT . In addition, due
to the spinning of the rotors, a reaction torque Mi (i =
1, 2, 3, 4) is generated on the quadrotor body by each rotor:

Mi = (−1)i+1kD�2
i (8)

where kD > 0 denotes the drag coefficient of the rotor, which
depends on the same factors as kT .

FIGURE 1. Coordinate systems of the quadrotor.

In the mathematical model of quadrotor, three coordinate
frames are considered: the non-moving inertial frame EI :
{oI , xI , yI , zI }, the body-fixed frame EB : {oB, xB, yB, zB}
and the desired frame ED : {oD, xD, yD, zD} to represent the
actual attitude and desired attitude of quadrotor respectively.
Note that NED coordinates are used to define all frames.
Attitude angle and angular velocities of the body-fixed frame
EB with respect to the inertial frame EI are written as

2 =
[
φ θ ψ

]T and ω = [ωx ωy ωz ]T respectively, and the
quaternion expression of the attitude is q = [ q0 qv ]

T .
The variation of the orientation is achieved by varying the

angular speed of a specific rotor. The torque created around a
particular axis with respect to the body-fixed frame is defined
as follows:

u =

 τφτθ
τψ

 =
 0 −lkT 0 lkT
lkT 0 −lkT 0
−kD kD −kD kD



�2

1

�2
2

�2
3

�2
4


(9)

where u represents the control signal to be designed.
Assuming a symmetric mass distribution of the quadrotor,

the nominal inertia matrix J = diag(Jx , Jy, Jz) is diagonal,
and there exist some errors between actual inertia and J .
With the disturbances d = [ dx dy dz ]T into consideration,
the attitude dynamic model of the quadrotor can be obtained
as the following differential equations: Jx ω̇xJyω̇y

Jzω̇z

+
 (Jz − Jy)ωyωz
(Jx − Jz)ωxωz
(Jy − Jz)ωxωy

 =
 τφτθ
τψ

+
 dxdy
dz

 (10)

According to (6), we summarized the mathematical model
of the quadrotor as:q̇ =

1
2
q⊗ [0 ω]T

ω̇ = −J−1S (ω) Jω + J−1u+ J−1d
(11)

In practice, we can use micro electro mechanical
system (MEMS) inertial measurement unit (IMU) to
measure the attitude information ω and q.

B. DISTURBANCES
In this article, a Dryden wind gust model is introduced to the
system [36]. We assume that the disturbance caused by wind
field is proportional to the wind speed, therefore, dw can be
described based on the random theory [37] and defined as a
summation of sinusoidal excitations:

dw,k (t) = d0w,k +
nk∑
i=1

ak,i sin($k,it + ϕk,i) (12)

where dw,k (t) is a time-dependent description of the wind
disturbance in k = φ, θ , ψ channel in a given time t . $k,i
and ϕk,i are randomly selected frequencies and phase shifts,
nk is the number of sinusoids, ak,i is the amplitude of the
sinusoid, and d0w,k is the static wind disturbance.
Except for wind disturbance, there still exist some model

uncertainties in the system. Among them, errors in inertia is
relatively large. Define 1J as the errors in inertia matrix,
we can obtain the disturbance as:

dI = S(ω)1Jω −1Jω̇ (13)

In summary, we can see that the disturbances acting on
quadrotor are high-order, non-Gaussian, furthermore, their
randomness and nonlinearity are very strong.
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C. PROBLEM FORMULATION
In order to study the transient and steady-state character-
istics of the quadrotor, the dynamics of attitude error are
introduced. We use ωd = [ωd,x ωd,y ωd,z ]T and qd =
[ q0d qvd ]

T to denote the desired angular velocities and atti-
tude respectively, thus:

ωe = ω − Cb
dωd (14)

where ωe = [ωe,x ωe,y ωe,z ]T is the tracking error vector
of the angular velocities. Then, we can obtain the dynamics
of ωe according to (4), (11), and (14):

ω̇e = S(ωe)Cb
dωd − C

b
d ω̇d − J

−1S(ω)Jω + J−1u+ J−1d

(15)

where Cb
d can be calculated according to (3) and (6). And

according to (5), (6), and (14), we can obtain the kinematics
of attitude tracking error:

q̇e =
1
2
qe ⊗

[
0 ωe

]T
=

1
2

[
−qTve

S(qve)+ q0eI3

]
ωe (16)

The problem we try to tackle in this work is to design a
continuous control law u using only the measurable system
output ω and q such that the error of attitude ωe (15) and
qe (16) converge to zero in presence of the disturbance.
In order to achieve the high precision attitude tracking result,
the DUEA strategy is necessary.

Figure 2 illustrates the control structure that we designed.
Based on the DUEA control methodology, the attitude
tracking problem for quadrotor can be divided into two
components: design the feedforward loop so that the unmea-
surable disturbances are estimated by GESO and compen-
sated this way; and design the feedback loop that regulates the
orientation to track the desired attitude produced by the
commander timely. Therefore, the control signal u contains
two parts as:

u = uN + uE (17)

where uN is the nominal control input vector and uE is the
disturbances attenuation input vector.

IV. DESIGN AND ANALYSIS OF GESO
In this section, the design of GESO, which provides the
disturbance estimate for the controller, is described in detail.
As for the DUEA control methodology, the control perfor-
mance of closed loop systemwill be largely determined by the

FIGURE 2. Block diagram of the proposed control scheme.

observation performance. However, the disturbances acting
on quadrotor are time varying, which cannot be accurately
estimated by traditional ESO thoroughly [31]. So in order to
enhance the performance of feedback controller, a GESO is
designed to estimate the unmeasurable disturbances, and the
performance analysis is carried out afterwards.

A. DESIGN OF GESO
According to the analysis of the disturbances in previous
section, we can conclude that the accurate model of d is diffi-
cult to obtain in this application. In which case, we generally
approximate d as a form of time polynomials [38] such as:

d = b0 + b1t + b2t2 + · · · + bn−1tn−1 +1(t) (18)

where bi ∈ R3, i ∈ {0, 1, 2, . . . , n − 1} are constant coeffi-
cients, the values of which are unknown, 1(t) represents the
residual error. Suppose that the (n − 1)-order derivative of d
is a Lipschitz continuous time signal with a known Lipschitz
constant Li, i.e.

∣∣∣d (n)i

∣∣∣ < Li, (i = x, y, z). So that we

can extend the variables d, d (1), . . . , dn−1 as states of the
observer:

ξ = [d d (1) · · · d (n−1)]T (19)

Consider the dynamics equations of quadrotor (10), as the
angular velocities ω can be measured by the MEMS gyro-
scope, feedback linearization method is introduced so that the
nonlinear part of the control system can be compensated
by the input u = u∗ + S(ω)Jω. Therefore, the linearized
model of the quadrotor is given by Jω̇ = u∗ + d , it can be
written in the form of a state space system:

ẋ0 = B0u∗ + B0dd (20)

where B0 = B0d = I . Define x = [ (Jω̇)T ξT ]T as the new
state vector, the augmented system can be written as:{

ẋ = Ax+ Bdd (n) + Bu∗

y = Cx
(21)

where

A =


03 I3 · · · 03 03

03 · · · 03 03
. . .

...
...

03 I3
03

, B =


I3
03
...

03
03

,

Bd =


03
03
...

03
I3

, C =


I3
03
...

03
03

, A ∈ R3(n+1)×3(n+1)
;

B,Bd ,C ∈ R3(n+1)×3, I3 and 03

denote identity and zero matrices with dimensions of 3 × 3
respectively.
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Note that in the augmented model of quadrotor, it can be
verified that the pair (A,C) is observable. Then, consider x̂
as the estimate of x, ŷ = Cx̂ as the estimate of the output y,
GESO can be designed as follows:{

˙̂x = Ax̂+ Bu∗ + LC
(
x− x̂

)
ŷ = Cx̂

(22)

where L = [l0I3 l1I3 l2I3 · · · lnI3]T is the observer gain
matrices to be designed.

Define the estimation errors as x̃ = x − x̂, we get the
following error dynamics:

˙̃x = (A− LC)x̃+ Bdd (n) (23)

B. STABILITY ANALYSIS OF GESO
Define the Lyapunov candidate function V0 as:

V0 = x̃TPx̃ (24)

Its time derivative is written as:

V̇0 = x̃T ((A− LC)TP + P(A− LC))x̃+ 2x̃TPBdd (n)

(25)

Consider the time derivative ofV0. Under the condition that
A− LC is Hurwitz and for any k0 > 0, there exists a positive
definite symmetric matrix P satisfying:

(A− LC)TP + P(A− LC) = −k0I3 (26)

Substituting (26) into (25), we can get:

V̇0 = −k0x̃T x̃+ 2x̃TPBdd (n)

≤ −‖x̃‖
(
‖x̃‖ k0 − 2 ‖PBd‖

∥∥∥d (n)∥∥∥)
≤ −‖x̃‖ (‖x̃‖ k0 − 2γ λ1) (27)

where d (n) is bounded with
∥∥d (n)∥∥ ≤ √L2x + L2y + L3z = γ ,

and λ1 is the 2-norm of ‖PBd‖. It is obvious that V̇0 < 0
whenever ‖x̃‖ > 2γ λ1k

−1
0 . Therefore, the upper bound for

estimation error ‖x̃‖ will be constrained by the bounded ball
Br =

{
r| ‖r‖ ≤ 2γ λ1k

−1
0

}
and the disturbances attenuation

inputs uE can be select as:

uE = −ξ̂1 (28)

C. GAIN TUNING GUIDELINES FOR GESO
In this section, we use frequency response analysis to
discuss the gain tuning guidelines of GESO [30], [39]. To this
end, the relationship between d and d̃ should be obtained.
According to (23), we have:

d̃ = ˙̃x0 + l0x̃0 (29)

d (n) = lnx̃0 + ln−1 ˙̃x0 + · · · + l0x̃
(n)
0 + x̃

(n+1)
0 (30)

where d̃ = ξ̃1 is the disturbance estimation error. Under
zero initial condition, the s-domain expressions of the former
equation are:

d̃ = sx̃0 + l0x̃0 (31)

snd =
(
sn+1 + l0sn + · · · + ln

)
x̃0 (32)

We can get relationship between the estimation error of the
disturbance d̃ and the disturbance input d according to the
former equation:

d̃(s) =
sn(s+ l0)

sn+1 + l0sn + l1sn−1 + · · · + ln
d = G(s)d(s)

(33)

From (33), we can conclude that for a given input of
disturbances d , the response of estimation error d̃ depends
on the observer gains l0, l1, . . . , ln. Once the bandwidth ωb
and the order n are chosen, we can obtain the observer gains
by evaluating:

sn+1 + l0sn + l1sn−1 + · · · + ln−1s+ ln = (s+ ωb)n+1

(34)

Thus, the observer gain L = [l0I3 l1I3 l2I3 · · · lnI3]T is
calculated as: 

l0 = C1
n+1ωb

...

li = C i+1
n+1ω

i+1
b

...

ln = Cn+1
n+1ω

n+1
b

(35)

Then, we study the influence of the observer bandwidth
ωb and the order of GESO n on the estimation accuracy of
GESO [30]. For a given ωb and n, G(s) can be written as:

G(s) =
sn(s+ (n+ 1)ωb)

(s+ ωb)n+1
(36)

The frequency response of (36) is analyzed. In Fig.3 (a),
the magnitude plots for the first-, second-, and third-order
GESO are shown when the bandwidth of GESO ωb is fixed
at 20rad/s. It can be seen that as the order of the ESO
increases, the attenuation for the low-frequency components
improves, resulting in reduction in the disturbance estimation
error. In Fig.3 (b), the magnitude plots for the third-order
GESO are shown on condition that the bandwidths ωb of
GESO are chosen as 10rad/s 20rad/s and 40rad/s respectively.
It is obvious that for a given order of the GESO, the attenua-
tion for the low-frequency components improves as the band-
width of GESO is increased, thus the estimation accuracy of
multiple disturbances is increased.

FIGURE 3. Bode plots for G(s); (a) Different order with fixed bandwidth
ωb = 20rad/s; (b) Different bandwidth with fixed order n = 3.
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The expressions for magnitudes ofG(s) can be obtained as:

|G(jω)| = κn

√√√√κ2 + (n+ 1)2(
κ2 + 1

)n+1 (37)

where κ = ω−1b ω and if ω � ωb, (37) can be simplified as:

|G(jω)| ≈ (n+ 1) κn (38)

From (38), we can conclude that as n and ωb increases,
the peak magnitudes of G(s) decreases. But a larger GESO
order can also increase the computational burden, and a
larger bandwidth will also lead to a larger observer gain,
which in turn amplifies the effect of sensor noise. Therefore,
the choice of n and ωb is a compromise between the estima-
tion accuracy and computational efficiency.

V. DESIGN OF ATTITUDE TRACKING CONTROLLER
In this section, the main procedures of attitude tracking
controller integrated with GESO are presented for effectively
handling disturbances existed in the quadrotor to achieve
highly precise attitude tracking. The quadrotor UAV is an
underactuated system with six DOF and four control inputs.
In order to derive its model, backstepping method is used
in the design of attitude tracking controller.
Step 1: Design the control strategy to ensure that qe(t)

converges to zero.
According to the attitude error kinematics subsystem (16),

we select the candidate Lyapunov function as:

V1 = qTe qe + (1− q0e)2 > 0 (39)

Take the time derivative of V1:

V̇1 = 2qTveq̇ve − 2(1− q0e)q̇0e
= (qTveS(qve)+ q0eq

T
veI3 + (1− q0e)qTve)ωe

= qTveωe (40)

Then we design a virtual control scheme as:

ωed = −K1qe (41)

where K1 is the gain matrix of the controller, which is diag-
onal positive definite. If the angular velocity tracking error
ωe is equal to the virtual control input ωed , V̇1 is negative
semidefinite definite:

V̇1 = −qTe K1qe (42)

According to the Lyapunov stability theorem, we can
conclude that qe converges to zero, under the condition
that the virtual control ωe converges to −K1qe.
Step 2: Design the control signal u to ensure that ωe

track the desired virtual control input ωed .
We define the error between ωe and ωed as:

ω̃e = ωe + K1qe (43)

In order to discuss the stability of the entire system
including DUE and FC, we define the following candidate
Lyapunov function V2 as:

V2 = V0 + V1 +
1
2
ω̃Te Jω̃e

=

[
qTe qe + (1− q0e)2

]
+

1
2
ω̃Te Jω̃e + x̃

TPx̃ (44)

Take the time derivative of V2, and substitute (15), (40),
and (42) into V̇2:

V̇2 = qTveω̃e − q
T
veK1qve + ω̃

T
e (Jω̇e + JK1q̇ve)+ V̇0

= −qTveK1qve + ω̃
T
e (u+ d + N)+ V̇0 (45)

whereN = J(S(ωe)Cb
dωd−C

b
d ω̇d )−S(ω)Jω+JK1q̇ve+qve.

We define uN = −N−K2ω̃e, and plug (27) and (28) into (45):

V̇2 = −qTveK1qve − k0x̃
T x̃− ω̃Te K2ω̃e+ω̃

T
e d̃ + 2x̃TPBdd (n)

≤ −λ2
∥∥qve∥∥2 − λ3 ‖ω̃e‖2 − k0 ‖x̃‖2 + ‖ω̃e‖ ∥∥∥d̃∥∥∥

+ 2λ1γ ‖x̃‖

≤ −λ2
∥∥qve∥∥2 − λ3 ‖ω̃e‖2 − k0 ‖x̃‖2 + ‖ω̃e‖ ‖x̃‖

+ 2λ1γ ‖x̃‖

≤ −λ2
∥∥qve∥∥2 − (λ3 − 1

2

)
‖ω̃e‖

2
−

(
k0 −

1
2

)
‖x̃‖2

+ 2λ1γ ‖x̃‖ (46)

where
∥∥∥d̃∥∥∥ = ∥∥∥ξ̃1∥∥∥ ≤ ‖x̃‖, λ2 and λ3 are the minimal eigen-

value of K1 and K2 respectively. Define zT = (qTe , ω̃
T
e , x̃

T )
as the uniformed vector of errors, and η = min(λ2, λ3 −
1
2 , k0 −

1
2 ) > 0, then (46) can be reduced to:

V̇3 ≤ −η
(∥∥qve∥∥2 + ‖ω̃e‖2 + ‖x̃‖2)+ 2λ1γ ‖x̃‖

≤ −η ‖z‖2 + 2λ1γ ‖z‖ (47)

Thus V̇3 < 0 whenever ‖z‖ > 2λ1γ η−1. Notice that
(qe, ω̃e) is a linear diffeomorphism of (qe,ωe), hence (qe,ωe)
can converge into a compact set. We can conclude that,
the attitude error (qe,ωe), virtual control input error ω̃e
and the estimation error x̃ are uniformly ultimately bounded
and exponentially converges to the bounded ball Bz ={
z| ‖z‖ ≤ 2γ λ1η−1

}
.

In general, when we chose a larger η, the bounded ball Bz
will become smaller and consequently, ‖z‖ will also become
smaller, so a larger η is preferred. However, larger η will lead
to larger control gains which can excite the sensor noise and
undesirable high frequency dynamics of the system. Thus,
the tuning of controller parameters is a tradeoff between the
demand of performance and the real conditions.

VI. SIMULATION AND EXPERIMENTAL RESULTS
In order to evaluate the performance of the proposed GESO
with different order, simulation and real world experimental
results are presented in this section. Mainly, two performance
metrics are evaluated. One is the attitude tracking stability,
and the other is the robustness to the disturbances.
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A. SIMULATION RESULTS
We present the numerical simulations of the proposed GESO
based DUEA control strategy on a model generated by the
online toolbox of Quan and Dai [40], and the values are listed
in Table 1.

TABLE 1. Quadrotor parameters used in simulation.

In numerical simulations, the errors in inertia are 30% i.e.
1J = 0.3J . According to [41], the disturbance torque caused
by the wind field is proportional to the wind speed. Therefore,
without loss of generality, it can be assumed that the three-
axis components of dw = [ dw,φ dw,θ dw,ψ ]T are equal
dw,φ = dw,θ = dw,ψ = dw. The values of $k,i are taken
between 0.05π rad/s and 2.5π rad/s. The disturbance torque
used in numerical simulation is Eq. (48), and is visualized as
Figure 4.

dw = sin (2.5π t − 3)+ 1.5 sin (2π t + 7)

+ 2 sin (0.4π t − 9.5)+ sin (0.2π t)

+ 0.5 sin (0.08π t + 1)+ sin (0.07π t + 1.5)

+ 0.5 sin (0.05π t + 2)+ 4 (48)

FIGURE 4. Disturbance torque applied in simulation.

The values of gain parameters used in our controller are
given as K1 = 11.5I3 and K2 = 16.2I3, and the observer
gains of GESO-i are illustrated in Table 2, where i is the order
of GESO.

TABLE 2. Observer gains with different order.

1) CASE 1 (COMPARISON IN ATTITUDE
STABILIZATION PERFORMANCE)
This part involves attitude stabilization control in the pres-
ence of disturbances. We select the desired attitude signal as
follows:

2d =
[
30 15 25

]T deg (49)

Four comparative simulations were conducted, and the
performances of the proposed controller with different order
GESOs are compared in each channel. Figures 5-7 show the
response curves of the vehicle’s attitude angles during its
flight. We can see that although the proposed controller
(without GESO) was able to ensure the stabilization of the
attitude angles, the control accuracy was reduced under the
influence of the disturbances. When we introduced GESO
as the DUE, the performances of the proposed controller were
improved, and the performance increases with the increase
of the order of the GESO. Moreover, Figure 8 shows the
disturbance estimation error of GESO with different orders.
Obviously, we can see that the estimation error decreases
with the increase of the observer order when the bandwidth
of the GESO ωb was fixed at 20rad/s.

2) CASE 2 (COMPARISON OF ATTITUDE
TRACKING PERFORMANCE)
In this case, the numerical simulation demonstrates the effec-
tiveness of the proposed control scheme for attitude tracking.

FIGURE 5. Simulation curves of 8 in Case 1. (a) Without ESO. (b) GESO-1.
(c) GESO-2. (d) GESO-3.
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FIGURE 6. Simulation curves of θ in Case 1. (a) Without ESO. (b) GESO-1.
(c) GESO-2. (d) GESO-3.

FIGURE 7. Simulation curves of ψ in Case 1. (a) Without ESO. (b) GESO-1.
(c) GESO-2. (d) GESO-3.

We chose desired attitude signal as follows:

2d =

 φdθd
ψd

 =
 15 sin (0.4π t)

15 sin (0.4π t + 0.5π)
25 sin (0.4π t + 0.25π)

 deg (50)

The attitude tracking performances of the proposed
controller with different order GESOs are illustrated
in Figures 9-11. We can see that although the proposed
controller alone was able to ensure the tracking of the
desired attitude angles, the control accuracy was reduced
under the influence of the disturbances. When we intro-
duced GESO as the DUE, the performances of the proposed
controller were improved, and the simulation results show
that with the increase of the observer order, the speed
of convergence and the tracking accuracy are improved.

FIGURE 8. Disturbance estimation error of GESO with different order
in case 1.

FIGURE 9. Simulation curves of 8 in Case 2. (a) Without ESO. (b) GESO-1.
(c) GESO-2. (d) GESO-3.

Moreover, as shown in Figure 12, the accuracy of distur-
bances estimation increases with the observer order when the
bandwidth of the GESO ωb is fixed at 20rad/s.

B. EXPERIMENTAL RESULTS
We have also tested the proposed control scheme on a self-
assembled GF360 quadrotor, and PIXHAWK [42], [43] was
used as the autopilot of the quadrotor. To evaluate the stability
and robustness of the proposed control scheme, the experi-
ments were carried out as follows.

Without loss of generality, the longitudinal channel of the
system was analyzed. Since the actual aircraft is a discrete
system, both sampling frequency and control frequency will
affect the choice of bandwidth, it is difficult to calculate a
precise one. Therefore, we tested the stability of the system
with different observer bandwidths on condition that the
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FIGURE 10. Simulation curves of θ in Case 2. (a) Without ESO. (b) GESO-1.
(c) GESO-2. (d) GESO-3.

FIGURE 11. Simulation curves of ψ in Case 2. (a) Without ESO.
(b) GESO-1. (c) GESO-2. (d) GESO-3.

observer order n is fixed at 3, and the experimental curves
of the attitude are illustrated Figure 13.

From the experiment results, we can see that excessive
bandwidth will excite the sensor noise and vibration, and
then degrade the stability of the system by introducing them
into the control loop. As the result, the bandwidth of GESO
should not be too large. Limited by the sampling frequency
and noise of MEMS IMU, we chose the bandwidth of GESO
as ωb = 4rad/s based on a series of experimental tests.
Then, in order to ensure the same experimental condi-

tions, we run our experiments in a controlled indoor envi-
ronment. We used an electrical fan with adjustable wind
speed to generate the disturbance torque acting on the longi-
tudinal channel of quadrotor. The average wind speed was
around 4.5 m/s. And the controller gains were chosen as

FIGURE 12. Disturbance estimation error of GESO with different order
in case 2.

FIGURE 13. Experimental curves of the attitude with different observer
bandwidths, n = 3. (a) Attitude angle. (b) Angular velocity.

K1 = diag(7, 7, 2.8), K2 = diag(0.15, 0.15, 0.2). As shown
in Figure 14, the experiments were carried out in lab without
GPS signals, and the quadrotor was hovering in the wind
field.

Four experiments of the proposed controller with different
order GESOs are presented. Figure 15 shows the exper-
imental results of pitch rate obtained by the proposed
controller with different order GESOs in the presence of
wind field. And Figure 16 presents the history of pitch angle
tracking errors θe = θ − θd in these four cases.
It can be observed that the control performance is improved

by GESO compared with the one without GESO. In addition,
Figure 16 shows that the tracking error of pitch angle θe
decreases with the increase of the GESO order, and the root
mean square (RMS) errors of θe and ωe obtained by the
proposed controller with different order GESOs are listed
in Table 3. We can see that without the wind disturbance,
3rd order GESO can achieve 57.23% and 62.35% reduction
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FIGURE 14. Experimental setup of the quadrotor hovering in the wind
field.

FIGURE 15. Experimental curves of ωy with different order GESO.

FIGURE 16. Experimental curves of θe with different order GESO.

on the RMS error of pitch rate and pitch angle tracking
error, respectively.While with the wind disturbance, the RMS
reduction is 50.38% and 60.40% reduction, respectively.

TABLE 3. Comparison of control performance with different order GESOs
(RMS error).

VII. CONCLUSION
In this paper, the problem of high precision attitude tracking
for quadrotor in the presence of disturbances is investigated.
To tackle this problem, we developed a GESO based DUEA
control strategy and summarized the gain tuning guidelines
for GESO. From the simulation and experimental results,
we can conclude that when the bandwidth of the GESO ωb
is fixed, the performance of the proposed controller improves
with the increase of the GESO order. Taking the perfor-
mance improvements and the computational complexity into
account, we believe that the 3rd order GESO is preferred.
And in the real world experiment, we chose the observer
bandwidth ωb to be 4 rad/s, mainly due to the noise and the
sampling time of the MEMS IMU. Higher bandwidth of
GESO can be used if the measurement noise and the sampling
time of the devices are reduced, and the performance can be
further improved.
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