
Received April 7, 2018, accepted May 21, 2018, date of publication May 31, 2018, date of current version June 29, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2842469

Nash Equilibrium-Based Asymptotic Stability
Analysis of Multi-Group Asymmetric Evolutionary
Games in Typical Scenario of Electricity Market
LEFENG CHENG , (Student Member, IEEE), AND TAO YU , (Member, IEEE)
1School of Electric Power, South China University of Technology, Guangzhou 510641, China
2Guangdong Key Laboratory of Clean Energy Technology, South China University of Technology, Guangzhou 510641, China

Corresponding authors: Lefeng Cheng (chenglf_scut@163.com) and Tao Yu (taoyu1@scut.edu.cn)

This work was supported in part by the National Science Foundation of China under Grant 51777078 and Grant 51177055, and in part by
the Key Science and Technology Projects of China Southern Power Grid under Grant CSGTRC [2015] K1528B03.

ABSTRACT This paper introduces new theoretical insights into Nash equilibrium-based asymptotic
stability (NEAS) of two-group and three-group asymmetric evolutionary games in typical scenarios of
electricity market (EM). EM competition has become a complex dynamic evolution process accom-
plished by more complex characteristics of market economy behavior. Replicator dynamics in evolutionary
game theory, as well as Lyapunov stability theory, are employed to solve incomplete-information and
bounded-rationality game issues in EM, so as to overcome theoretical demerits of classical game theory
in solving multi-group games in EM. First, the NEAS of a unilateral two-group asymmetric evolutionary
game (AEG) is investigated. Then, this is expanded to a complicated 2× 2× 2 trilateral multi-group AEG,
and the NEAS of it under different game situations in EM is thoroughly discussed. Finally, a practical case
study is conducted for verification. The case illustrates how the factors affect the payoff matrix which will
change ultimate evolutionary stable state of the multi-group AEG in EM. One main finding demonstrates
the complete dynamics behavior and multi-group evolutionary stable strategy (MESS) of the AEG system
in 3-D mixed strategy space. The other one reveals that EM policies formulated by government and other
factors can gradually influence the MESS via changing the payoff distribution matrix.

INDEX TERMS Electricity market, asymmetric evolutionary game, Nash equilibrium, multi-group
evolutionary stable strategy, asymptotic stability.

I. INTRODUCTION
With continuously increasing energy consumption world-
wide, future energy resource utilization will be confronted
with a tough challenge. Hence, J. Rifkin first propounded
Energy Internet [1], which involves the interconnection and
coordination of the power networks over a wide area, the
transformation and integration of multiple energy forms, the
interconnection and management of a massive distributed
power supply, and the use of energy related equipment based
on Internet technologies. Under this background, a huge
challenge is presented in optimal strategy determination for
each decision-making body so as to balance and optimize the
interests of all parties.

Moreover, with a very tight coupling between energy
Internet and various distributed forms of new energy, the
ever-growing electricity market (EM) is gradually opening to

participants for which energy trading is becoming increas-
ingly sophisticated. These include the original state grid
corporations (SGCs), the power suppliers, the electricity
consumer (EC), as well as a large number of emerging
stakeholders, e.g., distributed power supply, energy storage,
controllable loads, electric vehicle (EV) and new power
supply entity (NPSE). In China NPSE is mainly repre-
sented by electricity retailers in EM, who produce elec-
tricity from various electricity resources and then sell it
to customers [2]. Besides, they can provide value-added
services such as contract energy management, comprehen-
sive energy conservation and power utilization consulta-
tion. NPSEs are numerous in EM and mostly composed of
emerging electricity retailer and load aggregator (LA). Here,
LA is a new business model and firstly emerged in developed
countries as a specialized demand response provider [3]–[6].
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From above descriptions, it finds that the development
of EM is affected by these stakeholders in varying degrees,
which has directly led to a very complex and multifarious
electricity price trading behavior in EM.

To address this issue, game theory has been proposed
to solve the complex economic behavior issues of different
stakeholders [7]. Generally speaking, in the EM, game theory
is used to determine the bidding strategies for power suppliers
and build EM models. Based on documentary analysis and
survey research, the game models in EM are briefly summa-
rized as follows.

Apart from the supply function equilibrium model that
is widely used in the competitive EM, the other game
models that are widely applied in EM, particularly the
generation-side EM, can be divided into three major cate-
gories, i.e., the Cournot model [8], [9], the Bertrand
model [10], and the Stackelberg model [11], [12], which
are all geared to the field of classical game theory. Among
these models, the Cournot model, Bertrand model and
supply function equilibrium model are three main equi-
librium models that are widely used in an oligopolistic
EM. Some examples are as follows: Aliabadi et al. devel-
oped an agent-based simulation game model to simulate
GenCos behavior in EM under different market clearing
mechanisms [13]; Manbachi et al. [14] proposed a Monte-
Carlo simulation based dynamic game model in order to
achieve generation expansion planning of distributed gener-
ation sources in an energy market; an equilibrium game
model [15] has been applied in Polish wholesale EM for
estimating the impacts on electricity prices and generation
levels, and a Stackelberg game model [11] has been devel-
oped to investigate the transmission capacities and competi-
tion in Western European EM; in addition, the game theory
have been employed to investigate carbon emission trading
in EM [16], demonstrate usefulness and proficiency of EM
participants [17], coordinate generation and transmission
expansion planning in EM [18], and reveal multi-agent
competitive bidding strategies in EM [19], etc.

However, most of these investigations above are carried
out based on classical game theory, thus some theoretical
demerits are unavoidable in them, e.g., the perfect rationality
is a concept that is not strictly defined; the solution of the
Nash equilibrium (which is the key to solving a static game)
is a very challenging problem; the formulation of the Nash
equilibrium is not given, thus the issues of multiple equilib-
riums cannot be solved well.

In view of this situation, evolutionary game theory is
gradually concerned by scholars for solving incomplete-
information and bounded-rationality game issues, which
has been employed to simulate EM participant’s behavior
for determining their bidding strategies and to regulate the
market rules [20], or to achieve equilibrium calculations in
EM [21].

Evolutionary game theory is originally proposed by
Maynard Smith and Price [22]. Subsequently, a well-known
RD model [23] is put forward to investigate the evolution of

ecologies, which has become an extensively used dynamic
equation for mechanism selection. After that, the concept of
evolutionary stable strategy (ESS) is proposed [24]. As stated
earlier, the players in classical game theory are perfect
rational, resulting in the game scenario to be inconsistent
with the actual situation and the solving of Nash equi-
librium is extremely challenging. To address it, we intro-
duce evolutionary game theory into multi-group games in
EM via investigating the Nash equilibrium-based asymp-
totic stability (NEAS) of unilateral two-group asymmetric
evolutionary game (UT-AEG) and trilateral multi-groupAEG
(TM-AEG) based on the typical scenarios of generation-side
EM and demand-side EM, respectively.

We employ evolutionary game theory to discuss the games
in typical sentences of the EM. On one hand, this is because
evolutionary game theory is very suitable for addressing
the incomplete-information and bounded-rationality game
issues, which are accordance with actual situations of the EM.
On the other hand, the market competition involving multiple
interest groups, who belong to the same party/different
parties, in EM has become a complex process of dynamic
evolution accomplished by more complex characteristics
of market economy behavior. Therefore, it is essential
to combine the theoretical analysis of multi-group game
behavior with its complex dynamic evolution process based
on the evolutionary game theory, so that the game behavior
of unilateral/multilateral group stakeholders in electricity
pricing competition can be investigated in detail.

One of our main findings is that the payoff distribution
parameters evidently affect the number of Nash equilibrium
states in whatever UT-AEG and TM-AEG in the typical
scenarios of generation-side EM and demand-side EM. The
other one of our main findings is that the policies for the
EM issued by the government can, to some extent, affect the
NEAS of the multi-group AEG through changing distribution
parameters of the payoff matrix, thus effective interventions
implemented by the government can enhance electricity price
stability of the EM and promote the energy internetworking
to perform a more significant role in resource integration.

The major contribution of this paper can be summarized as
follows: the NEAS of the multi-group AEGs in the typical
scenarios of an ever-growing and open EM that possesses
characteristics of energy Internet are thoroughly investigated
based on the novel concept of Replicator Dynamics (RD) in
the evolutionary game theory, which can perfectly describe
how a population of pure strategies, or replicators, evolve
through time [25]–[27], as well as the Lyapunov stability
theory (LST), such that the dynamics behaviors and multi-
group evolutionary stable strategy (MESS) of the multi-
group AEG system are completely revealed and expanded
scope from a straightforward two-dimensional plane to an
enormously complex three-dimensional strategy combination
space.

This paper is structured as follows: we first briefly depict
related work in section II, and then we continue with
introducing essential evolutionary game theoretic concepts
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in section III. Subsequently, in section IV, we present themain
contributions and we illustrate the strengths of the evolu-
tionary game theory by carrying out a concise two-group
evolutionary analysis and a thorough trilateral multi-group
evolutionary analysis on typical scenarios of electricity
trading in generation-side and demand-side EM, respectively.
Moreover, we demonstrate a practical application analysis
in order to verify the conclusions drawn in this paper in
section V. In section VI, we discuss the implications of EM
policy formulated by the government and provide a deeper
understanding of the theoretical results. Finally, section VII
concludes this paper.

II. RELATED WORK
Evolutionary game theory is originated from biological
chemistry and initially employed to reveal the phenomenon
of competition in the process of biological evolution [22].
However, few investigations are conducted currently on
asymmetric game behavior characteristics of multi-group
stakeholders in EM trading, which, as previously noted,
is becoming more complex and diverse in the circumstances
of energy Internet. We deem that evolutionary game theory
is suitable for solving issues of dynamic game in complex
networks during the modelling. In net groups, dissemination
of information and strategy selecting in evolutionary game
can both be seen dynamics behavior that obeys some laws
in networks. Hence, how to reveal these dynamics behaviors
and find out mechanisms of them have been concerned by
scholars [20], [21], [28]–[32].

Currently, in the field of power system, investigations of
evolutionary game theory are mostly focused on [33]–[36]
behavioral analysis of games in EM, demand side manage-
ment, electricity pricing and investing, and other electric
power economy fields. We also find that some amalgamating
complex network theory and evolutionary game can solve
some engineering problems that are difficult to be solved
via many conventional analytical mathematical methods.
However, on the whole, current investigations are focused
much more on searching for appropriate evolution rules and
topological structure of networks in order to facilitate emer-
gence of collaboration. In addition, the game agents, gener-
ally, are simple bilateral game issues. On the contrast, more
and more complex agents will emerge, such as trilateral game
and even multiple gaming, in EM with dynamic evolution
game structure. Hence, their deep evolution game mecha-
nisms, paths and laws are extremely challenging.

The asymptotic stability investigation of this paper is
reflected in a deterministic evolutionary game, in which the
group game strategy is determined by the properties of an
individual, so that the dominant or successful strategy will
be spread throughout the population due to a high payoff of
it. In contrast with other stochastic processes which are used
to describe the update rules of individual strategy, such as
the Pairwise Comparison Process [37], Moran Process [38],
Fermi Process [39], and Wright-Fisher Process [40], the RD
equation has superior mathematical properties for solving the

equilibrium strategy of a deterministic evolutionary game.
When the evolution of individual strategy occurs in the space,
the partial differential equations are used to describe the RD
model. Foster andYoung [41] introduced randomness into the
RDmodel in 1990, in which a stochastic differential equation
is employed to describe the strategy evolution. Sequentially,
Cressman and Vickers [42] developed a partial differential
equation model in which a one-dimensional spatial vari-
able is adopted to model the ESS of a 2×2 symmetric
game. Subsequently, different forms of stochastic noises have
been introduced in various stochastic differential equation
based dynamic models [43]–[45]. In addition, other forms of
dynamics are gradually developed as the differential equation
based evolutionary mechanisms, e.g., Smith dynamics [46],
Best-response dynamics [47], Logit dynamics [48], and
Brown-von Neumann-Nash dynamics [49]. In fact, the theo-
retical growth of the proportion of players who select each
strategy of a group can be calculated via the RD equation.
Hence, the RD equation can be used to describe a deter-
ministic evolutionary game, in which the variation of the
share of each strategy with time in a population of infinite
size without obvious structures can be revealed. That is why
the RD equation model is appropriate to be chosen as a
mathematical tool for the NEAS analysis of the multi-group
AEG system in the typical scenarios of EM in this paper.

Our primary motivation is to enable RD theory in evolu-
tionary game and LST for bilateral asymmetric games.
However, we do this just in a two-dimensional strategy
plane which is relatively simple when the number of game
populations is two. Therefore, when the game populations
are expanded in categories in a competitive EM, the corre-
sponding strategy space will be expanded to an extremely
complex three-dimensional strategy space as well. The clas-
sical game theory cannot perfectly deal with such complex
strategy combination issues in evolutionary game situa-
tions. Consequently, we consider the original RD equations
as well as LST, and derive new strategy space mappings
for the complex electricity trading behaviors in the typical
scenarios of EM.

III. PRELIMINARIES AND METHODS
In this section we concisely outline evolutionary game
theoretic concepts which are necessary to understand the
remainder of the paper. We first briefly specify definitions
of solution concepts of normal-form game such as Nash
equilibrium. Then, we introduce the MESS, RD, and asymp-
totically stable equilibrium point (ASEP) for UT-AEG and
TM-AEG at full length, and moreover, we briefly discuss
the concept of evolutionary stable equilibrium (ESE). Finally,
we briefly introduce the LST that plays an important role in
asymmetrical stability analysis in this paper.

A. NASH EQUILIBRIUM OF NORMAL-FORM GAME
Nash equilibrium is the most important basic concept in
game theory. For a normal-form game 0 =< N , S,U >,
composed of three basic elements [7]: a) the game player set
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N ={1, 2,· · · , N}, b) each player’s strategy Si and strategic
space Si, among which si ∈ Si, i = 1, 2, · · · ,N , and c) each
player’s payoff function or utility function Ui, namely Ui(s):
Si→ R, i = 1, 2, · · · ,N . Hence, a normal-form game is also
called a strategic-form game, which is generally described via
the matrix. According to this, the definition of Nash equilib-
rium is given as follows. We call a mixed strategy combina-
tion, υ∗i , is a Nash equilibrium, when it meets the following
inequality constraints [7]: Ui(υ∗i , υ

∗
−i) ≥ Ui(si, υ∗−i),

∀si ∈ Si, ∀i, where Ui(υ∗i , υ
∗
−i) is the payoff function of

player iwhen it selects a mixed strategy υ∗i while others select
υ∗
−i. When this strategy υ∗i is a pure strategy, we call it is

a pure strategy Nash equilibrium υ∗. Obviously, the mixed
strategy Nash equilibrium is a more general definition, thus
we can treat the pure strategy as a particular form of mixed
strategy. The Nash equilibrium has properties of strategically
stable and self-reinforcement. In fact, according to the defini-
tion of Nash equilibrium, if each player in the game reaches a
Nash equilibrium, then any of the players has no motivation
to deviate from this equilibrium, thus one who unilaterally
selects any other strategy beyond Nash equilibrium cannot
get any extra benefit.

B. MESS
Suppose that the number of groups is n, and the strategies of
all the groups constitute a multi-group strategy combination
�group in a multi-group AEG. Among these the strategy set
X = {X1,X2, · · · ,Xn} ∈ �group is assumed as an evolu-
tionary stable strategy combination. Then if, any mutation
strategy combination Y = {Y1,Y2, · · · ,Ym} ∈ �group meets
the condition Y 6= X , there is an ω where 0 < ω < 1, and
for any $ that meets 0 < $ < ω, there is an S equal to
S = $Y + (1 −$ )X , then the X is called a MESS if there
is a strategy Xi that allows X to meet the inequality criteria
in (1) as follows:

E(Xi, S−i) > E(Yi, S−i) i = 1, 2, · · · , n (1)

where S−i is the strategy combination adopted by groups
other than group i and which meets S−i ∈ S. Due to the
constraints on Y , ω and $ , it is obtained that ∀S−i 6= X ;
E(Xi, S−i) is the expected payoff for the group i that selects
strategyXi, meanwhile the other groups select S−i, simultane-
ously, under the same condition, except that the group i selects
strategy Yi, then the expected payoff for the group i is denoted
as E(Yi, S−i).

C. RD
Replicator Dynamics (RD) is used to simulate the dynamic
adjustment process of the strategies to characterize the
response speed of the population in adjusting its size through
imitation and learning [25]–[27]. In this process, the effect
of selection is highlighted and the evolution law of the
number/proportion of the population can be revealed. In other
words, when the expected payoff or fitness of a pure
strategyXi, denoted byE(Xi), is higher than the group average
payoff or fitness Ē(Xi), even if it is not necessarily a global

optimum, the growth rate of the proportion or share (denoted
as ρi) of the individuals that select strategy Xi in the popula-
tion will be increased. Hence, this scenario can be described
by a dynamic differential equation (i.e., dρi

dt = 0) of the
probability/frequency (ρi) of strategy Xi being adopted in
population, called an RD equations, where dρi

dt is proportional
to ρi, as well as to the difference between E(Xi) and Ē(Xi),
thus the RD equation of the group i is described as

dρi
dt
= ρi[E(Xi)− Ē(Xi)] (2)

where i = 1, 2, . . . , n, which means the number of the groups
in the population. The (2) shows the continuous case. For the
discrete case, the RD equation of the group i is described as

ρi(t + 1) =
1+ E(Xi)

1+ Ē(Xi)
ρi(t) (3)

D. ASEP
Suppose ϑ , ϑ∗ ∈ �group (a strategy set) are mixed strategies
in an evolutionary game, where ϑ∗ is an ESS which meets
two conditions demonstrated in (4), i.e., i) is an equilibrium
condition and ii) is a stability condition, thus the group
state p∗ = ϑ∗ is called an ASEP. The two conditions are
described as

i) : E(ϑ, ϑ∗) ≤ E(ϑ∗, ϑ∗), ∀ϑ ∈ �group

ii) : E(ϑ, ϑ) < E(ϑ∗, ϑ), ∀ϑ 6= ϑ∗,
E(ϑ, ϑ∗) = E(ϑ∗, ϑ∗)

(4)

where E(ϑ , ϑ), E(ϑ , ϑ∗), E(ϑ∗, ϑ) and E(ϑ∗, ϑ∗) are the
payoffs or fitness functions under different strategy combi-
nations or game situations.

E. ESE
The ASEP can be considered as an evolutionary equilib-
rium point of the RD equations shown in (2) or (3), which
corresponds to a mixed strategy of a specific population.
ESE can be used to describe such a type of strategy, under
which, the intrusion of any type of variation will be resisted,
i.e., no mutant strategies can invade such a population in
which each individual chooses an ESS. Hence, ESE is a
dynamic equilibrium under which no individual strategy
will be changed unilaterally. It further concludes that ESE
must be Nash equilibrium, but the converse is not neces-
sarily true, thus ESE is a type of refinement of Nash
equilibrium.

F. LST
LST is used to determine the asymptotic stability of the
equilibrium points which are solved via the RD equations.
In this paper, we assume that the number of RD equations
of an evolutionary game is nRD, i.e., the number of popu-
lations involved in the evolutionary game system is nRD
(nRD = 2 or 3). We deem that when nRD = 2, the game is a
UT-AEG; and nRD = 3 represents a TM-AEG. Then, for each
equilibrium point obtained via the RD equation in (2) or (3),
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the corresponding Jacobian matrix of RD equation can be
obtained, which is an n-th-order square matrix, thus we can
obtain that the number of eigenvalues for this matrix is no
more than n, and they are denoted by λi, i = 1, 2, · · · , n.
Then, the real part of the eigenvalue λi is represented by
Rei, where i = 1, 2, · · · , n. Accordingly, the asymptotic
stability of system is determined via analyzing whether the
equilibrium point of RD equation is an unstable evolutionary
equilibrium point (UEEP) or an ASEP as follows:{

an UEEP if ∃i, making Rei ≥ 0 i = 1, 2, · · · , n
an ASEP if ∀i, making Rei < 0 i = 1, 2, · · · , n

(5)

IV. EXPERIMENTAL ILLUSTRATION
In this section, based on the definitions and concepts intro-
duced preciously, a flow chart of the integration process
is given as graphically in Figure 1, in order to effec-
tively demonstrate the theoretical framework with NEAS
of multi-group AEG, including UT-AEG and TM-AEG,
proposed in section III. Based on this integration process,
we investigate the asymptotical stability of UT-AEG in a
typical scenario of the generation-side EM. Then, we expand
the strategy combination space from two-dimensional plane
to a complex three-dimensional space, where we investigate
the asymptotical stability of TM-AEG in a typical scenario of
the demand-side EM.

A. UT-AEG IN THE TYPICAL SCENARIO OF
GENERATION-SIDE EM
In the generation-side EM, the profit of each generation
corporation (GenCo) is not only determined by their own
quotations, but also the quotations from other generation
corporations (GenCos), thereby forming a multi-group game
issue. Hence, we consider generation-side electricity price
bidding as a typical scenario of EM. In this scenario,
the feasible pricing set of each GenCo is called a strategy set,
and the game can be divided into two categories, i.e., non-
cooperative bidding and cooperative bidding. The former
means that the quoted prices are offered independently by the
GenCos for maximizing their profits. The latter implies that
GenCos cooperate with each other to form a pricing alliance,
including differential price bidding and unified price bidding.

1) STRATEGY DESCRIPTION
We consider a typical scenario wheremultiple GenCos partic-
ipate in electricity price bidding in generation-side EM as
a UT-AEG model for NEAS analysis, in which situation
two types of GenCo groups are selected as game objects.
These are small-sized GenCo groups (SSGC) and large-sized
GenCo groups (LSGC). Each type of them is considered
to own two bidding strategies that can be implemented,
i.e., a high quotation strategy Shigh, and a basic quota-
tion strategy Sbasic which is quoted in full accordance with
the production costs. In this typical scenario, the payoff
distribution of SSGC and LSGC under different strategy
combinations is shown in Table 1. These payoff distribution

FIGURE 1. A flow chart of the integration process to effectively
demonstrate the proposed theoretical framework with NEAS of
multi-group AEG, including UT-AEG and TM-AEG.

TABLE 1. The payoff distribution of SSGC and LSGC in the assumed
typical scenario of UT-AEG in generation-side EM.

parameters are chosen taking into consideration some
previous asymmetric evolutionary games.

The specific meaning of the payoff distribution parameters
shown in Table 1 is briefly interpreted as follows. Assume that
the quantity of power generation of individual i (i.e, the power
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generation enterprise i) in the SSGC and LSGC is qi. Then its
payoff function ui(qi) is defined as ui(qi) = qi · f (Qtotal) −
Ci(qi), where f (Qtotal) is the power demand function of users,
i.e., the market-clearing price, which can be simplified as a
linear demand function, that is, f (Qtotal) = Pmax−KQ ·Qtotal.
Among this function, Pmaxis the electricity price cap. Hence,
if the power demand function is higher than Pmax, then no
users will use the electricity. Here, KQ is a constant coeffi-
cient, and KQ = Pmax/Qtotal−max, where Qtotal and Qtotal−max
are the sum of on-grid power generation of all generating
companies (i.e., the total quantity of power supply of the
market) and the sum of maximum power provided by all
power generating companies (i.e., the maximum total power
supply of the market).

Therefore, when Qtotal is reached to Qtotal−max, we obtain
f (Qtotal) = Pmax − (Pmax/Qtotal−max) ·Qtotal−max = 0, which
indicates that the market-clearing price is zero. In the payoff
function, Ci(qi) is the actual power generation cost function
of generating company i, which is usually expressed as a
quadratic function of its power generation qi, i.e., Ci(qi) =
αi + βi · qi + 0.5χi · q2i , where αi, βi and χi are the no-load
operating cost, the intercept of the marginal cost curve, and
the slope of the marginal cost curve, respectively. They are
all positive constants. For the power generating company i,
its marginal cost curve and average cost curve are depicted as
MCi(qi) = βi + χi · qi and ACi(qi) = αi/qi + βi + 0.5χi ·
qi, respectively. The relationship between the two curves is
described as MCi(qi) = ACi(qi) + qi ·

dACi(qi)
dqi

. As a result,
for a single power generating unit, the minimum value of
its average cost curve MCi(qi) can be taken at the point of
economic load.

Based on the above specific definition of the payoff distri-
bution parameters in Table 1, when the Sbasic is selected by
SSGC and LSGC, their payoffs are pay1 and pay2, respec-
tively; when the Shigh and Sbasic are adopted by SSGC and
LSGC respectively, LSGC’s revenue increased by pay3, and
correspondingly SSGC’s revenue decreased by pay3; in the
reverse case, when the Shigh and Sbasic are implemented by
LSGC and SSGC respectively, SSGC’s revenue increased
by pay4, and LSGC’s revenue decreased by pay4; lastly,
when they both select Shigh, they can both earn an additional
profit of pay5. Obviously, when they both chose Shigh, they
can maximize their benefits, as shown in Table 1. However,
whether they will both select the high quotation strategy,
i.e., whether this strategy combination {Shigh, Shigh} will be
involved into a MESS in the actual bidding process needs to
be further discussed.

2) RD EQUATIONS
Assume that the Shigh is selected at ratios of p and q in SSGC
and LSGC, respectively, and then the Sbasic is selected at
ratios of 1 − p and 1 − q in SSGC and LSGC respectively.
Here, 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1, thus the points of (p, q)
within the region [0,1]×[0,1] can be employed to describe
the evolutionary dynamics of the game system. Based on (2),

we can obtain the RD equations and the corresponding Jaco-
bian matrix Jpq as presented in (6) and (7), respectively,{

dp/dt = p(1− p)(q · pay3 + q · pay5 − pay3)
dq/dt = q(1− q)(p · pay4 + p · pay5 − pay4)

(6)

Jpq =


∂(dp/dt)
∂p

∂(dp/dt)
∂q

∂(dq/dt)
∂p

∂(dq/dt)
∂q



=


(1− 2p)(q · pay3
+q · pay5 − pay3)

p(1− p)(pay3 + pay5)

q(1− q)(pay4 + pay5)
(1− 2q)(p · pay4
+p · pay5 − pay4)


(7)

where dp/dt and dq/dt are the growth rates of the
ratio or frequency of selecting strategy Shigh in SSGC and
LSGC, respectively. Then, make dp/dt = 0 and dq/dt = 0
respectively, which obtains (p, q) = {(0, pay3/(pay3+pay5)),
(1, pay3/(pay3+pay5))} and (p, q) = {(pay4/(pay4+pay5), 0),
(pay4/(pay4 + pay5), 1)} respectively, representing the ratios
of selecting Shigh in SSGC and LSGC are asymptotically
stable, respectively.

Hence, a total of five equilibrium points for RD equations
in (6) can be solved, i.e., (p, q) = {(pay4/(pay4 + pay5),
pay3/(pay3 + pay5)), (0, 0), (1, 0), (0, 1), (1, 1)}. As stated
earlier, the LST can be used to decide the MESS. Addressed
concretely, the five equilibrium points are sequentially substi-
tuted into the Jpq shown in (7), such that the real part of
the eigenvalues of Jpq can be determined, and the asymp-
totic stabilities of this UT-AEG system can be achieved,
which are shown in Table 2, where 1 = (

√
pay3 · pay4 ·

pay5)/(
√
pay3+pay5 ·

√
pay4+pay5), and payJ > 0, J =

1, 2, · · · , 5. Table 2 indicates that two ASEPs, two UEEPs,
and one saddle point (which is also regarded as an UEEP) are
obtained in this UT-AEG system.

3) NEAS ANALYSIS
Based on Table 2, the dynamic adjustment of strategy is
shown in Figure 2, where the blue point denotes an UEEP,

TABLE 2. The local asymptotic stabilities of SSGC and LSGC at all
equilibrium points.
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FIGURE 2. Dynamic adjustment process and evolution convergence direction of bidding strategy combination in SSGC and LSGC, where
(a), (b) and (c) demonstrate different sizes of domain of convergence SCD1 and SCD2 and different coordinates of the saddle point
(psp, qsp), and (d) shows that only one ASEP obtained in (0, 0) and other three UEEPs obtained in (0, 1), (1, 1) and (1, 0).

the red point refers to an ASEP, the purple point represents a
saddle point (also an UEEP): (psp, qsp) = (pay4/(pay4+pay5,
pay3/(pay3 + pay5)), the solid arrows in blue and purple
indicate the dynamic adjustment directions of strategy combi-
nation in the convergence domain, i.e., the trajectories of
system evolution, and the dashed arrows in green reflect the
dynamic adjustment direction of convergence domain.

As shown in Figure 2(a), the MESS is obtained at (0, 0)
and (1, 1), which means SSGC and LSGC will both select
Sbasic and Shigh, respectively. In other words, the optimal
offers or bids at Nash equilibrium for generators can be
achieved at equilibrium points of (0, 0) and (1, 1). Hence,
when SSGC and LSGC select Shigh or Sbasic simultaneously,
they will reach an evolutionary stable state and have Nash
equilibrium solutions. Moreover, Figure 2(b) and (c) show
that the position of the saddle point will be changedwith pay3,
pay4 and pay5, however this will always be located in the
region [0,1]×[0,1]. In other words, the size of system conver-
gence domains which are constituted by regions (a) and (b),
expressed by SCD1, and regions (c) and (d), expressed by
SCD2, respectively, will be changed. Hence, in a long-term
evolution, the probability of this UT-AEG system converging
to the two quite different asymptotically stable bidding
modes will be changed with the position of the saddle point
(psp, qsp). Among these, one is a reasonable quotation (Sbasic)
that tends to be expected; the other is an unconventional
quotation (Shigh) that tends not to be seen. Nevertheless,
the two cases are both evolutionary stable states, which one
the system will be eventually converged to depends on the
initial conditions of the evolution (i.e., the conditions of
the payoff parameters payJ , J = 1, 2, · · · , 5) is located in
SCD1 or SCD2.
Therefore, the payoff parameters payJ , such as pay3, pay4

and pay5 can be adjusted to change the position of the saddle
point shown in Figure 2, such that the convergence domains
SCD1 and SCD2 are manipulated to make the evolutionary
trajectory of the system tend to the desired reasonable equi-
librium point set. For example, change the parameter pay5,
which means the additional profits of SSGC and LSGC
will be decreased when they both select Shigh, such that the

probability of selecting Shigh by both of them will be reduced
significantly; while and that of selecting Sbasic is increased.
This parameter adjustment corresponds to the government
supervision of the bidding market, i.e., the government deter-
mines the upper and lower limits of the online electricity
price for the GenCos based on economic analysis. On one
hand to ensure that the GenCos have appropriate profits and
development opportunities. On the other hand, the profits
of the GenCos (especially the LSGC) are limited when
they adopt Shigh. Therefore, through government supervision,
the appropriate adjustments to the payoff parameters payJ
(J = 1, 2, · · · , 5) can be implemented to change the payoff
matrix in the UT-AEG (see Table 1), so that the decision-
making of price bidding for all groups will be more rational
and in line with the actual demand of EM.

In addition, if the government, through its supervision,
stipulates that when the GenCos both take the high quota-
tion strategy Shigh simultaneously, they not only cannot gain
additional profits pay5, but are also given some penalties, that
means pay5 < 0, then the equilibrium point (1, 1) will be
transformed from an ASEP into an UEEP, such that an evolu-
tionary stable state cannot be achieved for the game system
at this point. Moreover, since pay3 > 0, pay4 > 0, when
pay4 + pay5 < 0 or pay3 + pay5 < 0, the saddle point (psp,
qsp) will disappear. Then the number of system equilibrium
points is decreased to 4 and the asymptotic stability can be
achieved for the system only if it evolves at (0, 0), as shown
in Figure 2(d). From this we draw a conclusion that only
when SSGC and LSGC both implement the basic quotation
strategy Sbasic, can an evolutionary stable state be reached
and a MESS be formed for this UT-AEG system regardless
of the initial states, representing {Shigh, Shigh} is not a stable
strategy combination. Hence, the MESS has a strong feature
of expelling intruders, such that unstable strategies will be
expelled and eventually eliminated in the process of system
evolution. Hence, it can be seen that in the long-term evolu-
tion of the system, a more beneficial and rational online elec-
tricity pricemechanismwill tend to be formed for the GenCos
through the establishment of reasonable bidding rules that are
in line with the actual economic operation of the EM.
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B. TM-AEG IN THE TYPICAL SCENARIO
OF DEMAND-SIDE EM
Based on the NEAS analysis of the UT-AEG model in
a typical scenario of generation-side EM, the convergent
domain of the multi-group AEG system is extended from
a two-dimensional plane to a three-dimensional space.
Concretely speaking, we take the demand-side EM as a
typical scenario of gaming, where the aforementioned power
grid enterprise (PGE), new power supply entity (NPSE) and
electricity consumers (ECS) are treated as three parties of
game players participating in the game of time-of-use (TOU)
electricity pricing and electricity trading. In this typical
scenario, we thoroughly investigate the equilibrium stability
issues of a more complex TM-AEG as follows.

1) STRATEGY DESCRIPTION
For convenience, the groups of power grid enterprises, new
power supply entities and electricity consumers in the above
typical scenario are represented by PGE, NPSE and ECS,
respectively. Here, the number of individuals may be very
large. Suppose that all three parties have two pure strategies,
i.e., the executable strategies of PGE, NPSE and ECS are
{SPG1, SPG2}, {SNP1, SNP2} and {SEC1, SEC2}, respectively.

For the group of PGE, its strategy SPG1 chosen at a prob-
ability of x means that PGE cooperates with NPSE, and
provides a TOU price PTOU1 enabling NPSE to be more
profitable. Accordingly, SPG2 (probability 1 − x) means that
PGE cooperates with ECS, and provides a TOU price PTOU2
to ECS for their own advantage.

For the group of NPSE, including all kinds of newly-
emerging small-scale electricity retailers, LAs, distributed
electricity suppliers, emerging production and marketing
collectives, and the direct electricity providers of large
GenCos, the strategy SNP1 chosen at a probability of y indi-
cates cooperation with PGE, under which the electricity sales
of NPSE in valley of electricity consumption are reduced and
a TOU price PTOU3 that benefits PGE more is provided to
encourage consumers to purchase more electricity prices of
PGE such that the valley can be filled. Correspondingly, SNP2
(probability 1 − y) means non-cooperation with PGE, under
which some measures will be taken to attract more ECS to
purchase electricity at peak times, so that electricity sales will
be increased and a TOU price PTOU4 that benefits ECS more
is provided with a purpose of peak shaving.

For the group of ECS, represented by single-load user
groups, the strategy SEC1 (chosen at a probability of z) indi-
cates that ECS select TOU prices (PTOU1 or PTOU2) provided
by PGE to arrange electricity use at different times in order
to maximize their interests based on actual demands. SEC2
(probability 1− z) means choosing the TOU prices provided
by NPSE (PTOU3 or PTOU4) at different times for the purpose
of maximizing the benefits.

Therefore, based on the strategy definitions for each stake-
holder, we can obtain a trilateral payoff distribution matrix is
shown in Table 3, where a to h in alphabetical order are

TABLE 3. The payoff distribution of the TM-AEG for the PGE, NPSE and
ECS in the typical scenario of demand-side EM.

the payoff distribution parameters, and = 1, 2, 3. These
payoff distribution parameters are chosen partially taking
into consideration some previous asymmetric evolutionary
games. An example is taken to elaborate the concrete mean-
ings of these parameters as follows.

For the group of ECS, the payment of them is the sum of
the product of the respective electricity consumption of all
types of electricity load in all electricity consumption periods
and the electricity price of the corresponding time period
during a certain electricity cycle (which can be assumed as
one day). We assume that the number of ECS is nec(nec ≥ 1),
the electricity utilization cycle is one day which is divided
into θ periods, thus the time interval is 1t = tθ − tθ−1,
the electricity time set is T = {t1, t2, · · · , tθ }. The total
electricity consumption of all types of electricity loads own
by the kth consumer during the time period tθ is denoted
as Qθ,k . Here, k = {1, 2, · · · , nec}. For example, for the
consumer numbered nec, its total electricity consumption is
represented as Qθ,nec. Hence, the electricity consumption
distribution matrix of the group of ECS can be obtained,
which is denoted by Qusers and it is a nec × θ matrix as

Qusers =


Q1,1 Q1,2 · · · Q1,θ
Q2,1 Q2,2 · · · Q2,θ
...

...
. . .

...

Qnec,1 Qnec,2 · · · Qnec,θ

,
whereQnec,θ refers to the total amount of electricity consump-
tion of the consumer numbered nec during the θ th time period.
In addition, we assume that the electricity price of PGE

in each above time period constitutes a price vector as
PPG = [PPG−1, PPG−2, · · · ,PPG−θ ]. We also assume that
the number of NPSE is nnp(nnp ≥ 1). Corresponding
to PPG, the electricity price vector of the lth NPSE is
PNP−l = [Pl−1,Pl−2, · · · ,Pl−θ ], for example, for the
NPSE numbered nnp, its electricity price vector is represented
as PNP−nnp = [Pnnp−1, Pnnp−2, · · · ,Pnnp−θ ], here l =
{1, 2, · · · , nnp}. The group of ECS can select the NPSE based
on the NPSE’s electricity price vector and geographical loca-
tion. Thereby, we introduce 1Pl to represent the unit power
policy subsidy that is obtained by the group of ECS when
they select the lth NPSE. For example, the electricity price
selection of the consumer nec in the θ th time period is denoted
as ϑnec,θ , which is determined based on the level between
PPG−θ and Pnnp−θ − 1Pnnp. If the former is larger, then
ϑnec,θ = Pnnp−θ , otherwise ϑnec,θ = PPG−θ . Here, PPG−θ
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and Pnnp−θ are the electricity prices provided by the groups
of PGE and NPSE during the θ th time period, respectively.
Therefore, we can obtain the payoff of the consumer nec in the
θ th time period, denoted by 8nec,θ , which is equal to the
selected electricity price of this time period multiplied by
the total electricity consumption during that period, namely
8nec,θ = ϑnec,θ × Qθ,nec. Moreover, we can obtain the total
payoff of this consumer in all time periods {t1, t2, · · · , tθ}
as 8nec, as well as the user utility Unec in an electricity
utilization cycle T . Hence, we can use the payment to subtract
the utility to obtain this consumer’s total income Rnec in that
time cycle T , namely Rnec = Unec −8nec.
Based on the above description, for the group of PGE

(maybe we can assume that there is only one PGE), its
individual income includes electricity fee charged to the ECS
and a certain percentage of network transmission fees charged
to the NPSE. Therefore, based on the matrices of quantity
distribution and payoff distribution of the ECS described
above, we can easily obtain the income distribution matrix
of the PGE, yPG, which is an 1 × θ matrix, namely yPG =
[yPG−1, yPG−2, · · · , yPG−θ ], thus the total income of the PGE
in all time periods is YPG = yPG−1 + yPG−2 + · · · + yPG−θ .
Meanwhile, the cost of PGE, CPG, can be expressed as a
quadratic function of its power supply, i.e., CPG = a0 ·Q2

PG+

b0 · QPG + c0, where a0, b0 and c0 are cost coefficients of
PGE after considering all the cost factors, and they are all
non-negative numbers. Hence, the difference between income
and cost in a time cycle T can be expressed as the profit of
PGE RPG, namely RPG = YPG − CPG.
Likewise, for the group of NPSE, we have assumed that

the number of NPSE is nnp and their incomes are mainly
electricity fees charged to the ECS. Hence, according to the
Qusers, we can obtain the income distribution matrix of all
NPSEs as YNP = [YNP−1 YNP−2 · · ·YNP−nnp]T, which can
be determined by using 3 matrix multiplications YNP =
AQusersB, where A and B are nnp × nec and θ × θ matrix,
respectively, and used to calculate the user payoff belonging
to NPSE; YNP−nnp is the income distribution vector of the
NPSE numbered nnp; YNP is a nnp×θ matrix, and the element
in it on row nnp and column θ represents the income of elec-
tricity fee of the NPSE numbered nnp in the θ th time period.
Therefore, the total income of the NPSE numbered nnp in
an electricity utilization cycle T is calculated as yNP−nnp =
ynp−1 + ynp−2 + · · · + ynp−θ .

However, the cost of NPSE is different from that of PGE,
and analogously, it can also be represented by a quadratic
function of its power supply. In other words, we assume that
the quantity of power provided by the NPSE numbered nnp
is Qnnp, such that its cost Cnnp can be expressed as Cnnp =

annp ·Q2
nnp+bnnp ·Qnnp+cnnp, where annp, bnnp and cnnp are all

non-negative numbers, and they are different from the related
parameters of PGE to some degrees. Therefore, we will
finally obtain the profit function of the NPSE numbered nnp,
denoted by Rnnp, which can be derived from income minus
cost, i.e., Rnnp = YNP−nnp − Cnnp.

2) RD EQUATIONS AND ITS JACOBIAN MATRIX
For the groups of PGE, NPSE and ECS in the TM-AEG
system, it is assumed that the expected profits are obtained
EPG1, ENP1 and EEC1 when they execute the strategy
SPG1, SNP1 and SEC1 respectively. Simultaneously, when
they choose SPG2, SNP2 and SEC2, the expected profits are
expressed as EPG2, ENP2 and EEC2, respectively. Besides,
the average expected profits of PGE, NPSE and ECS are
achieved as EPGav, ENPav and EECav, respectively. For
example, EPGav here indicates that PGE select EPG1 at prob-
ability of x and EPG2 at 1 − x. Then according to previous
investigation and based on Table 3, we can obtain these profits
described above as

EPG1 = y[za1 + (1− z)b1]+ (1− y)[zc1 + (1− z)d1]
EPG2 = y[ze1 + (1− z)f1]+ (1− y)[zg1 + (1− z)h1]
ENP1 = z[xa2 + (1− x)e2]+ (1− z)[xb2 + (1− x)f2]
ENP2 = z[xc2 + (1− x)g2]+ (1− z)[xd2 + (1− x)h2]
EEC1 = x[ya3 + (1− y)c3]+ (1− x)[ye3 + (1− y)g3]
EEC2 = x[yb3 + (1− y)d3]+ (1− x)[yf3 + (1− y)h3]

(8)
EPGav = x · EPG1 + (1− x) · EPG2

ENPav = y · ENP1 + (1− y) · ENP2
EECav = z · EEC1 + (1− z) · EEC2

(9)

The six equations described in (8) demonstrate the
expected profits of PGE, NPSE, and ECS when they select
the corresponding pure strategy. The three equations in (9)
indicate the average expected profits of PGE, NPSE and ECS,
namely the average expected profits of all the individuals in
the group of PGE, NPSE, and ECS, respectively.

Next, according to (2), a set of RD equations of the
TM-AEG system can be achieved. Hence, when the groups
PGE, NPSE, and ECS select the pure strategy SPG1, SNP1 and
SEC1 at the probability of x, y, and z, respectively, the corre-
sponding rate-of-change of the proportion of individuals who
select a pure strategy with the time can be obtained, i.e., the
RD equation for the three parties in this TM-AEG system can
be obtained as follows:

fPG(x) = dx/dt = x · (EPG1 − EPGav)
fNP(y) = dy/dt = y · (ENP1 − ENPav)
fEC(z) = dz/dt = z · (EEC1 − EECav)

(10)

and then the equations (8) and (9) are substituted into (10),
after simplification, a set of newRD equations are obtained as

fPG(x) = gPG1(x) · gPG2(y, z)
fNP(y) = gNP1(y) · gNP2(z, x)
fEC(z) = gEC1(z) · gEC2(x, y)

(11)

where gPG1(x), gNP1(y) and gEC1(z) are demonstrated
in (12), and gPG2(y, z), gNP2(z, x) and gEC2(x, y) are
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presented in (13), namely
gPG1(x) = x(1− x)
gNP1(y) = y(1− y)
gEC1(z) = z(1− z)

(12)



gPG2(y, z) = (a1−b1 − c1 + d1 − e1 + f1 + g1−h1)yz
+ (b1−d1−f1+h1)y+ (c1 − d1−g1+h1)z+ d1−h1
gNP2(z, x) = (a2−b2 − c2 + d2 − e2 + f2 + g2−h2)zx
+ (e2−f2−g2 + h2)z+ (b2−d2−f2 + h2)x + f2 − h2
gEC2(x, y) = (a3 − b3−c3 + d3 − e3 + f3 + g3−h3)xy
+ (c3−d3−g3 + h3)x + (e3−f3−g3 + h3)y+ g3−h3

(13)

The Jacobian matrix of the RD equations in (10) is called
JPG−NP−EC, which is a 3×3 square matrix where its three
rows are the partial derivatives of fPG(x), fNP(y) and fEC(z) for
x, y and z, respectively. Obviously, JPG−NP−EC has no more
than three eigenvalues, which are called λ , = 1, 2, 3. For
simplicity, the transformations are implemented as follows:
a1−b1−c1+d1−e1+ f1+g1−h1 = r1, b1−d1− f1+h1 =
r2, c1−d1−g1+h1 = r3, d1−h1 = r4, a2−b2−c2+d2−e2+
f2+g2−h2 = s1, e2− f2−g2+h2 = s2, b2−d2− f2+h2 =
s3, f2 − h2 = s4, a3 − b3 − c3 + d3 − e3 + f3 + g3 − h3 =
t1, c3 − d3 − g3 + h3 = t2, e3 − f3 − g3 + h3 = t3, and
g3 − h3 = t4. After that, the Jacobian matrix JPG-NP-EC is
demonstrated as

JPG-NP-EC

=


∂fPG(x)
∂x

∂fPG(x)
∂y

∂fPG(x)
∂z

∂fNP(y)
∂x

∂fNP(y)
∂y

∂fNP(y)
∂z

∂fEC(z)
∂x

∂fEC(z)
∂y

∂fEC(z)
∂z


=

 (1−2x)σ1 x(1−x)(r1z+r2) x(1−x)(r1y+r3)
y(1−y)(s1z+s2) (1−2y)σ2 y(1−y)(s1x+s3)
z(1−z)(t1y+t3) z(1−z)(t1x+t2) (1−2z)σ3


(14)

where σ1 = r1yz+ r2y+ r3z+ r4, σ2 = s1xz+ s2x+ s3z+ s4,
σ3 = t1xy+ t2y+ t3x + t4.

3) NEAS ANALYSIS
According to the LST, the asymptotic stabilities of this
TM-AEG system at all the equilibrium points of the RD equa-
tions in (10), which constitute an equilibrium point set (EPS),
denoted by 8EPS, can be found by analyzing the eigenvalues
of the Jacobian matrix JPG−NP−EC in (14). With the aim of
solving 8EPS, a total of four cases are discussed as follows.

Case 1: We make the factors including gPG1(x), gNP1(y)
and gEC1(z) in (11) equal to 0, such that eight equilibrium
points for the RD equations can be obtained as 8EPS0 =

{(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1),
(1,1,1)}. Then each point of 8EPS0 is substituted into
JPG−NP−EC, thus the eigenvalues of it for each of the eight
equilibrium points can be solved, which are arranged in
a column of the eigenvalue matrix Jtz. Obviously, it is a
3×8 matrix and described (15), as shown at the bottom of
this page.
It can be seen from the eigenvalue matrix Jtz in (15) that

the JPG−NP−EC has three eigenvalues at each equilibrium
point of 8EPS0. Hence, when the real parts Re ( = 1,
2, 3) of all eigenvalues in a column of Jtz are negative,
the corresponding equilibrium point is an ASEP, otherwise
is an UEEP. At an ASEP, a MESS will be formed for the
three parties of PGE, NPSE and ECS, thus the TM-AEG
system can reach an evolutionary stable state after a long-term
evolution development, so that the Nash equilibrium can be
formed.While at an UEEP,MESS cannot be achieved, as well
as Nash equilibrium. The asymptotic stabilities of the game
system under the eight groups of equilibrium points in8EPS0
are shown in Table 4.

TABLE 4. The asymptotic stability conditions of the each equilibrium
point in 8EPS0 for the PGE, NPSE and ECS in the typical scenario of the
demand-side EM.

Case 2:We make any two of gPG1(x), gNP1(y) and gEC1(z)
equal to zeros and simultaneously any one of gPG2(y, z),
gNP2(z, x) and gEC2(x, y) is made to equal to 0. This gives
three feasible sets of conditions, namely (i): gPG1(x) = 0,
gNP1(y) = 0 and gEC2(x, y) = 0, (ii): gPG1(x) = 0,
gEC1(z) = 0 and gNP2(z, x) = 0, and (iii): gNP1(y) = 0,
gEC1(z) = 0 and gPG2(y, z) = 0. Now the condition (i)
is taken for an example for NEAS analysis. Four groups of
solutions under this condition can be obtained, namely (x, y,
z) = {(0, 0, z1), (0, 1, z2), (1, 0, z3), (1, 1, z4)}, and then
which of them is substituted into the JPG−NP−EC in (14).
In turn combining with gEC2(x, y) = 0, it is found that the
elements of the third column of JPG−NP−EC are all zeros,
thus the real part of the eigenvalues of JPG−NP−EC are not

J tz =

(0, 0, 0) (1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 1, 0) (1, 0, 1) (0, 1, 1) (1, 1, 1) d1 − h1 h1 − d1 b1 − f1 c1 − g1 f1 − b1 g1 − c1 a1 − e1 e1 − a1
f2 − h2 b2 − d2 h2 − f2 e2 − g2 d2 − b2 a2 − c2 g2 − e2 c2 − a2
g3 − h3 c3 − d3 e3 − f3 h3 − g3 a3 − b3 d3 − c3 f3 − e3 b3 − a3

 (15)
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all negative, which means that JPG−NP−EC must have a zero
eigenvalue, such that the game system is not asymptotically
stable and has no ASEPs under this condition. In fact, the four
groups of solutions (x, y, z) are substituted into gEC2(x, y)
sequentially, it obtains that gEC2(x, y) is equal to g3 − h3,
c3 − d3, e3 − f3, and a3 − b3, respectively. Obviously, this
is contradictory to gEC2(x, y) ≡ 0, so that the RD equations
are unsolvable under condition (i). Similarly, for condition
(ii) and (iii), the RD equations are found to be still unsolvable.
Consequently, the RD equations have no solutions (x, y, z) in
this case, which means that no ASEPs can be obtained for the
TM-AEG system.
Case 3:We make any one of gPG1(x), gNP1(y) and gEC1(z)

equal to 0 andmeanwhile any two of gPG2(y, z), gNP2(z, x) and
gEC2(x, y) are made to equal to zeros. Hence three feasible
conditions can be obtained: (i): gPG1(x) = 0, gNP2(z, x) = 0
and gEC2(x, y) = 0, (ii): gNP1(y) = 0, gPG2(y, z) = 0 and
gEC2(x, y) = 0 and (iii): gEC1(z) = 0, gPG2(y, z) = 0
and gNP2(z, x) = 0. Similarly, the condition (i) is taken
as an example for asymptotic stability analysis. Due to
gPG1(x) = 0, it obtains x0 = 0 and x1 = 1, under which,
the solutions (x, y, z) of the RD equations and its Jacobian
matrix Jx0x1, and the corresponding eigenvalues and their real
parts can be solved, as shown in Table 5, where J11, J21, J23,
J31 and J32 are shown in (16), and J ′11, J

′

21, J
′

23, J
′

31 and J ′32
are shown in (17) as follows.

J11 = r4 − (r3s4/s3)− (r2t4/t2)+ r1s4t4/s3t2
J21 = −t4(t4/t2 + 1)(s2 − s1s4/s3)/t2
J23 = −s3t4(t4/t2 + 1)/t2
J31 = −s4(s4/s3 + 1)(t3 − t1t4/t2)/s3
J32 = −s4t2(s4/s3 + 1)/s3

(16)

where J11, J21, J23, J31 and J32 shown in (16) are the
elements that are not necessarily equal to zero in the Jacobian
matrix Jx0x1, which is obtained when x = 0.

J ′11 = [11t1 +12t2 +13t3 +14t4] / [(s1 + s3)(t1+t2)]
J ′21 = t3t4(s1s4 − s2s3)(t1 + t2 + t3 + t4)

/[(s1 + s3)(t1 + t2)2]
J ′23 = −(s1 + s3)(t3 + t4)(t1 + t2 + t3 + t4)/(t1t2)

2

J ′31 = (s2 + s4)(t1t4 − t2t3)(s1 + s2 + s3 + s4)
/[(s1 + s3)2(t1 + t2)]

J ′32 = −(s2 + s4)(t1 + t2)(s1 + s2 + s3 + s4)/(s1 + s3)
2

(17)

where J ′11, J
′

21, J
′

23, J
′

31 and J
′

32 shown in (17) are the elements
that are not necessarily equal to zero in the Jacobian matrix
Jx0x1, which is obtained when x = 1; 11 = r3s2 − r4s1 +
r3s4 − r4s3, 12 = r3s2 − r4s1 + r3s4 − r4s3, 13 = r2s1 −
r1s2 − r1s4 + r2s3, and 14 = r2s1 − r1s4 + r2s3 − r1s2.
In this case, when t2 6= 0, s3 6= 0, t1 + t2 6= 0 and

s1+ s3 6= 0, we conclude from Table 5 that the RD equations
in (10) have the unique solution (x, y, z) for x = 0 and
x = 1, respectively. Addressed concretely, when x equals
0 or 1, the Jacobian matrix’s three eigenvalues (λ1, λ2, λ3)

TABLE 5. The equilibrium points of the TM-AEG system under the
conditions of x=0 and x=1.

equals (J11,
√
J23 · J32, −

√
J23 · J32) and (J ′11,

√
J ′23 · J

′

32,

−

√
J ′23 · J

′

32), respectively. Hence, λ2 + λ3 ≡ 0 and Re2 +
Re3 ≡ 0 in condition (i) are met, indicating that the three
eigenvalues’ real parts cannot be negative simultaneously.
Likewise, the same conclusion can be drawn for condition
(ii) and (iii). Therefore, the TM-AEG system has no ASEPs
in this case.
Case 4:Wemake gPG2(y, z), gNP2(z, x) and gEC2(x, y) equal

to 0, which can make the three RD equations shown in (11)
be zero simultaneously, namely

gPG2(y, z) = r1yz+ r2y+ r3z+ r4 = 0
gNP2(z, x) = s1zx + s3z+ s2x + s4 = 0
gEC2(x, y) = t1xy+ t3x + t2y+ t4 = 0

(18)

Assume that the solution of (18) is (x0, y0, z0), here
z0 is used to denote x0 and y0 because the expression of
(x0, y0, z0) is very complicated, thus it is obtained x0 =
−(s4+s3z0)/(s2+s1z0), y0 = −(r4+r3z0)/(r2+r1z0). Next,
(x0, y0, z0) is substituted into (14) to obtain a new Jacobian
matrix, denoted by Jx0y0z0. Obviously, the diagonal elements
of Jx0y0z0 contain gPG2(y, z), gNP2(z, x) and gEC2(x, y), respec-
tively, according to the structure of (14). Then, according
to (14) and (18), it obtains that these diagonal elements are
equal to 0, thus the Jacobian matrix Jx0y0z0 is obtained as

Jx0y0z0 =

 0 J ′′12 J ′′13
J ′′21 0 J ′′23
J ′′31 J ′′32 0

 (19)

where the elements J ′′12, J
′′

13, J
′′

21, J
′′

23, J
′′

31 and J
′′

32 are as

J ′′12 = x0(1− x0)(r1z0 + r2)
J ′′13 = x0(1− x0)(r1y0 + r3)
J ′′21 = y0(1− y0)(s1z0 + s2)
J ′′23 = y0(1− y0)(s1x0 + s3)
J ′′31 = z0(1− z0)(t1y0 + t3)
J ′′32 = z0(1− z0)(t1x0 + t2)

(20)

Finally, it can be obtained λ1 + λ2 + λ3 = 0 + 0 +
0 = 0 owing to the trace of Jx0y0z0 is equal to the sum
of its eigenvalues, thus their real parts cannot be negative
simultaneously, otherwise λ1 + λ2 + λ3 = 0 cannot be met.
Therefore, no ASEPs can be obtained in this case.

32074 VOLUME 6, 2018



L. Cheng, T. Yu: NEAS Analysis of Multi-Group AEGs in Typical Scenario of EM

A Summary:We conclude from case 2 to case 4 that ASEPs
cannot be obtained in the three cases for this TM-AEG system
in the typical scenario of the demand-side EM. In other
words, combined equilibrium points cannot be generated in
the cube intersection of three-party strategy space, thus Nash
equilibriums or evolutionary stable states cannot be achieved
in the long-term evolution (i.e., no MESS’s are generated),
regardless of the strategies adopted by the parties. In addition,
in the case 1, we find that, for PGE, NPSE and ECS who
participate in electricity trading in the hypothetical typical
scenario of EM, only when the payoff distribution parameters
presented in Table 3 meet the conditions in Table 4, we can
achieve eight evolutionary stable states during the long-term
evolution process. That is, the Nash equilibrium can be
achieved in this gaming, and the number of ASEPs is 8 and
they are 8EPS0 = {(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0),
(1,0,1), (0,1,1), (1,1,1)}, at each of them the MESS or ESE
can be formed. Apart from this, other equilibrium points are
revealed as UEEPs. Therefore, we can obtain a complete
summary of the NEAS for the four cases in this TM-AEG
in a typical scenario of the demand-side EM, as presented
in Table 6.

TABLE 6. A complete summary of the Nash equilibrium based asymptotic
stability analysis in the four cases in this TM-AEG.

Obviously, these eight ASEPs are not necessarily suitable
for the requirements of an actual demand-side EM. In fact,
we finally discovered that only one ASEP is what we want,
which is also commonly adopted by most individuals in each
part in the TM-AEG system. This only appropriate ASEP
is more in line with the healthy and orderly development of
an EM. The only suitable ASEP is (1, 1, 1), whichmeans PGE
and NPSE choose to cooperate with each other and provide
TOU prices that are more beneficial to them. Meanwhile,
ECS regard the two parties as integrated power suppliers and

carry out strategy SEC1 to maximize their benefits. Hence,
the optimal offers or bids at Nash equilibrium for generators
and consumers can be achieved at this point. The param-
eter conditions required to obtain this unique ASEP will be
discussed in detail in section VII.

4) NEAS ANALYSIS FOR THE PGE GROUP
As one party of the stakeholders in the TM-AEG system,
the group of PGE is considered to be a dominant party. Now,
PGE is taken as an objective to discuss the dynamic trend
and stable process of ESS for this group in all circumstances,
in which complete system dynamics behavior characteristics
of PGE will be given.

First, the RD equation of PGE (i.e., the fitness function of
PGE) who execute strategy SPG1 (proportion is x) is obtained
according to (8) ∼ (13) as

fPG(x) = dx/dt = x · (EPG1 − EPGav)

= x(1− x)(q1yz− q2y− q3z+ q4)

= gPG1(x) · gPG(y, z) (21)

where gPG1(x) = x(1−x), gPG(y, z) = q1yz−q2y−q3z+q4 =
(q1z− q2)y− (q3z− q4), q1 = a1− b1− c1+ d1− e1+ f1+
g1 − h1, q2 = d1 + f1 − h1 − b1, q3 = d1 + g1 − h1 − c1,
and q4 = d1 − h1. The RD equation in (21) indicates that the
rate of change of the proportion of the individuals who select
strategy SPG1 in the group of PGE with time is proportional
to x, 1− x, and gPG(y, z).
Second, solve the (21) (i.e., fPG(x) = 0) to obtain the

equilibrium points of the RD equation, based on which,
the dynamic adjustment trajectory of strategy evolution for
PGE in all cases can be discussed, such that its complete
system dynamics behavior characteristics can be achieved.
Besides, according to the structure of gPG1(x) and gPG(y, z),
on the premise that (q1z− q2) 6= 0, and based on whether
gPG(y, z) is equal to 0, there are a total of two situations that
need to be discussed as follows.
Situation 1: Since gPG(y, z) = (q1z− q2)y − (q3z −

q4) ≡ 0, we obtain y ≡ (q3z−q4)/(q1z− q2) ∈ [0, 1], where
z ∈ [0, 1]. Hence, fPG(x) = dx/dt = x(1−x) ·gPG(y, z) ≡ 0,
which indicates that for ∀x ∈ (0, 1), all the states of PGE
will remain stable, regardless of the probability x of selecting
SPG1 by the individuals in PGE, where the quotation of TOU
is provided as PTOU1, together with the probability (1 − x)
of selecting SPG2, where the quotation of TOU is provided
as PTOU2. Hence, for ∀x ∈ (0, 1), the expected payoff EPG1
of the individuals in PGE who select SPG1 is exactly equal to
the group average payoff EPGav. This means the proportion
of the individuals who choose SPG1 or SPG2 will remain
unchanged when the evolutionary strategy for PGE is asymp-
totically stable. This dynamic trend of strategy execution is
demonstrated in Figure 3.
Situation 2: Since gPG(y, z) 6= 0, we obtain y 6= (q3z −

q4)/(q1zq2), where y, z ∈ [0, 1]. The equilibrium points
are obtained by solving fPG(x) = 0, namely x(1 − x) ·
gPG(y, z) = 0, obviously, it obtains x0 = 0 and x1 = 1 due to
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TABLE 7. Complete system dynamics behavioral characteristics analysis for the PGE under the Situation 1 and Situation 2.

FIGURE 3. Dynamic evolution trend and stabilization process of ESS for
PGE in Situation 1.

gPG(y, z) 6= 0. This means the ESS for PGE only allows SPG1
(when x = 1) or SPG2 (when x = 0), and there are no other
mutations that enable the party PGE to reach an evolutionary
stable state. At this point, the RD equation fPG(x) in (21) is
differentiated in relation to the probability x of selecting SPG1,
namely dfPG(x)/dx = (1 − 2x) · gPG(y, z). It is calculated
that pg0 = {dfPG(x)/dx|x = x0, y ∈ [0, 1], z ∈ [0, 1]} =
(1 − 2 × 0) · gPG(y, z) = gPG(y, z), pg1 = {dfPG(x)/dx|
x = x1, y ∈ [0, 1], z ∈ [0, 1]} = (1 − 2 × 1) · gPG(y, z) =
−gPG(y, z), thus pg0 and pg1 are opposites. For convenience,
it is denoted that q3z − q4 = yfz and q1z− q2 = yfm,
then gPG(y, z) = yfmy − yfz where z ∈ [0, 1]. Owing to
y 6= (q3z − q4)/(q1z− q2), there will be only two possible
cases, namely Condition 1: y < (q3z − q4)/(q1z− q2) and
Condition 2: y > (q3z− q4)/(q1z− q2), i.e., y < yfz/yfm and
y > yfz/yfm, where y, z ∈ [0, 1]. Since yfm = q1z − q2 6= 0
is satisfied under the general constraints, the discussion just
needs to be focused on the positive (denoted with ‘+’) and
negative (denoted with ‘−’) of yfm. Owing to z ∈ [0, 1], then
the sign of yfm (i.e., + or −) is only related to q1 and q2.
Therefore, there are both four cases exist in Condition 1

and Condition 2 above, i.e., (i) q1 > 0, q2 > 0, (ii) q1 < 0,

q2 < 0, (iii) q1 < 0, q2 > 0 and (iv) q1 > 0, q2 < 0.
For these cases, based on previous discussions, complete
system dynamics behavior of the PGE can be analyzed as
demonstrated in Table 7.

TABLE 8. Six representative game situations.

Accordingly, Table 8 shows six representative game situ-
ations that are chosen from Table 7. Under these game situ-
ations, the dynamic trajectories of ESS in a long period of
systematic evolution and development for PGE are illustrated
in Figure 4, where the green surface is a spatial surface
collection of ESS that is obtained in Situation 1. Equally,
for the other two stakeholders, NPSE and ECS, similar phase
trajectory charts about the stabilization processes of ESS can
be achieved.
A Summary for All Situations: We find out from Table 7

that 12 cases can be obtained for the PGE to achieve an ESS in
Situation 2 on the premise that the payoff parameters meet the
corresponding conditions in this table. Among these cases,
the selection of the strategy SPG1 and SPG2 accounts for half
of each. When Situation 1 is counted, there will be a total
of 13 cases where an ASEP for PGE can be obtained. At each
ASEP, an ESS can be formed and an evolutionary stable
state can be achieved for PGE after a long-term evolution.
Moreover, Figure 4 shows that at these ASEPs a strong
resistance to incursion of mutant strategies into PGE will be
formed and these ESS’s will lead to dynamic equilibriums
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FIGURE 4. Dynamic evolution trend and stabilization process of ESS for
PGE under six representative scenarios presented in Table 8 in
Situation 2, where (a) shows the ultimate trend of ESS for PGE is strategy
SPG1 (x=1), (b) shows the ultimate trend of ESS for PGE is strategy SPG2
(x=0), (c) shows the ultimate trend of ESS for PGE is strategy SPG2 (x=0),
(d) shows the ultimate trend of ESS for PGE is strategy SPG1 (x=1),
(e) shows the ultimate trend of ESS for PGE is strategy SPG2 (x=0), and
(f) shows the ultimate trend of ESS for PGE is strategy SPG1 (x=1).

in system. In these equilibrium states, no individuals will be
willing to change their strategies unilaterally. Hence, they are
absolutely evolutionary equilibriums.

V. AN ACTUAL CASE FOR VERIFICATION
In this section, taking new energy accommodation for
an example, we demonstrate a practical application anal-
ysis based on a TM-AEG in a typical scenario of the
generation-side EM, in order to verify the main findings we
have achieved in previous sections. In particular, we want to
verify a finding that no more than 8 ASEPs can be achieved
in the typical scenario of TM-AEG and the MESS obtained
in the gaming shows strong properties of expelling invaders
and resistance to any variation, and besides, the evolutionary
stable equilibriums obtained during the process of system
evolution are both strict Nash equilibriums.

In this case study, the game agents are three-party enter-
prises who participate in new energy accommodating in an

ever-growing, opened and competitive generation-side EM,
and they are new energy generation enterprises (mainly wind
and photovoltaic power GenCos), traditional fossil energy
generation enterprises (mainly thermal power GenCos) and
the power grid enterprises. Here, they are denoted by NEGE,
TEGE and PGES respectively. On one hand the interests
of TEGE will be reduced when wind/photovoltaic power
(i.e. NEGE) integrated. On the other hand the safe and stable
operation of power system (i.e. PGES) will be influenced
by wind power due to its intermittency and randomness
in generation. As a result, PGES are not very positive to
participate in wind power accommodating, thus a conflict
of interest will be formed eventually between NEGE, TEGE
and PGES on the development and utilization of new
energy sources. Obviously, this is a representative multi-
group AEG issue, or called a wind/photovoltaic-thermal-
gird multi-gaming issue in detail, when the three parties are
seen as different stakeholders participating in exploration and
exploitation of new energy under which integrated.

A. STRATEGY DESCRIPTION
In this trilateral evolutionary game, two pure strategies are
formed in actual operation for each group as follows: NEGE
choose strategy SNEGE1 at a proportion/probability u and
SNEGE2 at 1 − u, implying cooperation and non-cooperation
with TEGE, respectively, and correspondingly, the new
energy generation outputs (mainly photovoltaic and wind
power) are WNEGE1 and WNEGE2, respectively. TEGE select
strategy STEGE1 at a probability v and STEGE2 at 1− v,
implying cooperation and non-cooperation with NEGE,
respectively, and accordingly, the traditional fossil energy
generation outputs (mainly thermal power) are WTEGE1 and
WTEGE2, respectively. PGES implement strategy SPGES1 at a
probability w and SPGES2 at 1−w, implying PGES positively
and negatively accommodate new energy generation, respec-
tively, and the accommodations are WPGES1 and WPGES2,
respectively. Here, u, v, and w ∈ [0, 1].

Hence, similar to Table 3, we can obtain the payoff distri-
bution matrix of this wind/photovoltaic-thermal-gird game (a
TM-AEG) system as

SNEGE1(u) SNEGE2(1−u)

SPGES1(w)

{
STEGE1(v)
STEGE2(1−v)

SPGES2(1−w)

{
STEGE1(v)
STEGE2(1−v)


(A1,A2,A3) (B1,B2,B3)
(C1,C2,C3) (D1,D2,D3)
(E1,E2,E3) (F1,F2,F3)
(G1,G2,G3) (H1,H2,H3)


(22)

where A , B , C , D , E , F , G and H are the payoff
parameters of the payoff matrix obtained in this TM-AEG
system, and = 1, 2, 3. The (22) demonstrates a payoff
distribution matrix of this TM-AEG system, in which the
group of PGES implements strategy SPGES1 at a probability
of w and SPGES2 at 1−w, the group of TEGE selects strategy
STEGE1 at a probability of v and STEGE2 at 1 − v, and the
group of NEGE chooses strategy SNEGE1 at a probability
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of u and SNEGE2 at 1 − u. Therefore, there are a total of
8 strategy combinations, and in each one the corresponding
payoff distribution parameters of the three parties are given.

Based on (22) and according to (8)∼(14), the RD equations
of this TM-AEG system can be obtained as in (23), as shown
at the bottom of this page, and the corresponding Jacobian
matrix can also be calculated as in (24), which is denoted by
JNE−TE−PG, as shown at the bottom of this page, where σ4 =
R1vw + R2v + R3w + R4, σ5 = Q1wu + Q2w + Q3u + Q4,
σ6 = T1uv+ T2u+ T3v+ T4; and RM , QM and TM , (M = 1,
2, 3, 4) are presented as R1 R2 R3 R4
Q1 Q2 Q3 Q4
T1 T2 T3 T4



=


A1−B1−C1+D1
−E1+F1+G1−H1

B1−D1
−F1+H1

C1−D1
−G1+H1

D1−H1

A2−B2−C2+D2
−E2+F2+G2−H2

E2−F2−
G2+H2

B2−D2
−F2+H2

F2−H2

A3−B3−C3+D3
−E3+F3+G3−H3

C3−D3−

G3+H3

E3−F3
−G3+H3

G3−H3


(25)

Analogously, we can conclude that the RD equations
presented in (23) only have 8 possible asymptotical stable
equilibrium points (ASEPs): (u, v, w) = {(0, 0, 0), (1, 0, 0),
(0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}.
When these equilibrium points meet the conditions similar to
Table 4, they will make this TM-AEG system evolve into an
evolutionary stable state and achieve a Nash equilibrium.

B. SCENARIO DISCUSSION
Here, we consider two scenarios as follows: one is no policy
intervention on this gaming, and the other one is policies of
EM issued by government to intervene this gaming, demon-
strated as follows.
Scenario I): No policy intervention on this game. Obvi-

ously, PGES can execute SPGES1 or SPGES2 due to no policy
intervention, under which TEGE can adopt STEGE1 or STEGE2,
at this moment NEGE will always select SNEGE2 for gaining
more advantage while the payoffs of TEGE are decreased.

This demonstrates that NEGE choose not to cooperate with
TEGE no matter what strategy they adopt, from which it
obtains B3 > A3, A2 > B2, D3 > C3 and C2 > D2. Besides,
analogous conclusions can be drawn from other cases. Hence,
the inequality constraints of the payoff parameters can be
obtained as shown by the right-hand big blue oval in Figure 5.

Moreover, owing to new energy integration, an addi-
tional cost is needed for PGES to maintain output, thus the
payoff will be increased when they choose strategy SPGES2,
compared to strategy SPGES1, from which it is obtained that
E1 > A1, G1 > C1, F1 > B1, and H1 > D1, as shown in the
left-hand small blue oval in Figure 5.

On the whole, when no policies are introduced, we find
that the payoff matrix will not be affected. Then, the MESS
that is beneficial to all parties will be achieved in such a
scenario where NEGE and TEGE are always uncoopera-
tive, while PGES perform renewable energy accommoda-
tion in a negative way, as illustrated in Figure 5, where the
up arrow (↑) means the payoff is increased after choosing
the corresponding strategy, conversely, the down arrow (↓)
implies the payoff is decreased. In this scenario, the only
ASEP is obtained at (0, 0, 0), and the Nash equilib-
rium under the MESS {SNEGE2, STEGE2, SPGES2} will be
achieved.
Scenario II): Government intervention involved in the

game. In this scenario, the payoff parameters can be regu-
lated, thereby affecting the evolution stability of system,
i.e., the selection of ASEP and MESS. Here, the policy
interventions are conducted to promote the new energy enter-
prises to participate in trading. Under such circumstances,
the policy can affect the initial state of system, and conversely,
which will determine the eventual evolutionary stable state
of this gaming system. Therefore, under policy interventions,
in order to promote the development and utilization of new
energy resources and improve the grid-connection certainty,
this TM-AEG system is expected to achieve a unique MESS
at (1, 1, 1) finally, which means that NEGE cooperate with
TEGE to output generation of WNEGE1 and WTEGE1, respec-
tively, together with PGES actively accommodate new energy
of WPGES1. At this moment the parameters in (22) will be
changed into A′ to H ′ alphabetically, where = 1, 2, 3.


fNEGE(u) = u(1− u)(R1vw+ R2v+ R3w+ R4)
fTEGE(v) = v(1− v)(Q1wu+ Q2w+ Q3u+ Q4)
fPGES(w) = w(1− w)(T1uv+ T2u+ T3v+ T4)

(23)

JNE-TE-PG =


∂fNEGE(u)

∂u
∂fNEGE(u)

∂v
∂fNEGE(u)

∂w
∂fTEGE(v)

∂u
∂fTEGE(v)

∂v
∂fTEGE(v)
∂w

∂fPGES(w)
∂u

∂fPGES(w)
∂v

∂fPGES(w)
∂w


=

 (1− 2u)σ4 u(1− u)(R1w+ R2) u(1− u)(R1v+ R3)
v(1− v)(Q1w+ Q3) (1− 2v)σ5 v(1− v)(Q1u+ Q2)
w(1− w)(T1v+ T2) w(1− w)(T1u+ T3) (1− 2w)σ6

 (24)
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FIGURE 5. Strategy selection process for the NEGE, TEGE and PGES considering no government interventions implemented in
the game system.

Therefore, we find that only these changed payoff param-
eters meet five conditions simultaneously as follows, can the
above wish be achieved. They are presented as

i) E ′1 < A′1, C
′

2 < A′2 and B
′

3 < A′3;
ii) C ′1 > G′1 or E

′

2 > G′2 or H
′

3 > G′3;
iii) B′1 > F ′1 or H

′

2 > F ′2 or E
′

3 > F ′3;
iv) H ′1 > D′1 or B

′

2 > D′2 or C
′

3 > D′3;
v) D′1 > H ′1 or F

′

2 > H ′2 or G
′

3 > H ′3.

Therefore, whenmeeting the above five conditions, an only
one MESS, namely {SNEGE1, STEGE1, SPGES1}, will be
formed via policy interventions in the gaming system, and
which will achieve an evolutionary stable state after a
long-term evolution and development. According to this
MESS, the government will be capable of formulating grid-
connection policies with lower costs for new energy enter-
prises to implement market intervention in EM, thus not only
the new energy generation enterprises (the NEGE) will be
motivated to participate in EM transaction in order to promote
their development, but also the capability of accommodating
their power generation will be improved, especially for the
photovoltaic and wind power. This also further verifies the
conclusion drawn from the analysis of multi-group AEG in
the typical scenarios of EM.

In this section, we select a representative three-party
game of photovoltaic/wind-thermal-grid as an actual case to
conduct a brief scenario discussion for verifying the main
findings made in this paper. From this case study we conclude
that the policy intervention on EM by government can regu-
late the payoff parameters of the gaming in this system, which
will finally affect the selection of ASEP and MESS, together
with the formation of Nash equilibrium and evolutionary

stable state of the AEG system in the process of long-term
evolution and development.

VI. DISCUSSION
In this section, we discuss the factors that affect the asymp-
totical stability of the evolution gaming between PGE, NPSE
and ECS. In addition, we briefly discuss the Nash equilibrium
decomposition method when solving the Nash equilibrium
solution of the three-party game system. From the discussion
we can find that multiple factors can, to some extent, influ-
ence the ultimate evolutionary stable states, and the energy
Internet can play a better role in resource integration of the
EM. Moreover, we can obtain some relevant policy implica-
tions from the discussion, which can provide reference for the
government to make policies for the EM with characteristics
of energy Internet.

Firstly, we discuss the factors that affect the asymptotic
stability. In the TM-AEG system, PGE, NPSE and ECS try
to maximize their interests in electricity trading. For PGE,
its payoffs involve the electricity charged to NPSE when
providing electricity and a transaction fee charged to ECS.
For NPSE, the main means of competition is their price of
electricity changing along with the TOU prices announced
by PGE. Their income consists essentially of the electricity
charged to ECS and is constrained by its maximum power
supply. In addition, the total cost is relatively low. For ECS,
its benefits are user utility minus user spending. The former
is the utility of various loads, and the latter is the payment
for electricity. At ASEPs, for PGE and NPSE, the main
game strategy is the TOU prices. For ECS, it is the optimal
choice of TOU prices provided by PGE and NPSE based on
the electricity demands of each type of load. Hence, in an
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FIGURE 6. Electricity trading model of an opened and competitive EM with features of energy Internet for the three
groups of PGE, NPSE and ECS.

EM with features of energy Internet, the factors that may
affect the stable equilibrium states of the game system can
be summarized, including: the level of the transaction fee
between PGE and NPSE, the number of NPSEs, the capacity
limit and cost factor of each NPSE, the way to pay the fee,
the electricity trading rules, the possession of information on
transactions and the degree of user participation, etc. This
indicates the complexity and diversity of the marketization of
electricity trading under the background of energy Internet,
as shown in Figure 6. We find that these factors above can
change the payoff parameters, thus changing the ASEPs and
the convergence domains. Here, we give two examples as
follows.

When the installed capacity of PGE is sufficient, the valley
time price under the energy Internet usually arises near the
peak load, thus at peak times, PGE will be inclined to choose
strategy SPG2 so as not to cooperate with NPSE to provide
a TOU price which can make ECS more profitable. Mean-
while, NPSE select SNP2, which is uncooperative with PGE,
to provide a TOU price that enables ECS to gain more bene-
fits. At the same time ECS execute strategy SEC1 or SEC2
according to the characteristics of their own electricity loads.
Hence, during the peak time, PGE and NPSE form an asym-
metric non-cooperative game relationship in which they both
try to attract more ECs to use electricity via competition
with the purpose of peak shaving. However, in an electricity
trough, PGE andNPSE are less involved in price competition,
thus PGE and NPSE collaborate with each other and execute

strategy SPG1 and SNP1 respectively to provide TOU prices
that benefit both parties. Meanwhile, ECS still implement
strategy SEC1 or SEC2 with the purpose of profit maximiza-
tion, so that the goal of valley filling may be accomplished.

When the number of NPSEs increases, obviously,
the impacts of the electricity price on peak shaving and
valley filling will be weakened. As a result, the fluctu-
ations in electricity price will be flattened. Hence, with
increasing numbers of ECS individuals, the electricity price
provided by each competitor at each time-period will be
fairer and more reasonable for consumers, as well as being
more stable (i.e., more closer to the rational price of this
period). Furthermore, with the increasingly opening up of
EM, the individual number and category of NPSE, especially
the addition of incremental distribution networks, will be
gradually increased. Consequently, within the larger energy
Internet, complementarity of resources and time will lead
to a more dramatic decline in electricity prices, which will
also become flatter in fluctuations. In other words, the energy
Internet will play a promising role in resource allocation of
new EM.

Secondly, we discuss the impact of policy interventions on
the TM-AEG. In order to guide the three parties, namely PGE,
NPSE, and ECS, to form an active and order participation
in the EM game, with the purpose of creating a more stable
electricity price, the PGE can be treated as one party of power
supply entities. Moreover, only one MESS, i.e., {SPG1, SNP1,
SEC1}, is expected to be achieved finally, under which PGE
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and NPSE choose to cooperate with each other and provide
TOU prices that are more beneficial to them. Meanwhile,
ECS regard the two parties as integrated power suppliers and
carry out strategy SEC1 to maximize their benefits.

Therefore, an only one ASEP {1, 1, 1} is required to be
obtained, while other ASEPs will disappear and eventually
be transformed into UEEPs during the system evolution.
This can be achieved via policy intervention implemented by
the government. Assume that the payoff parameters of the
TM-AEG in Table 3 will be changed into a′ , b′ , c′ , d ′ ,
e′ , f ′ , g′ and h′ , due to the government supervision and
intervention, where = 1, 2, 3. Hence, the new eigenvalue
matrix J ′tz is obtained as (26), as shown at the bottom of this
page, where each column represents the whole eigenvalues of
an ASEP.

TABLE 9. The conditions for the elements to be satisfied in the new
system eigenvalue matrix J′tz.

Since {SPG1, SNP1, SEC1} as the only MESS to be achieved
at (1, 1, 1), the eigenvalues in (26), will be required to meet
five conditions simultaneously, as shown in Table 9, thus
a trilateral Nash equilibrium can be achieved after a long
system evolution, and the pricing strategy of each party will
tend to be more reasonable. Moreover, EM policies issued
by the government will reduce electricity price fluctuation
and further promote market stability, and besides, the compe-
titions can be regulated more orderly and rational to all
parties. This indicates that effective supervision and control
via policy intervention contributes to form stable electricity
pricingmechanisms in EM trading, meanwhile the promotion
of peak shaving and valley filling for electric network and
resource allocation of EM can be achieved.

Lastly, we discuss a decomposition method for solution
of Nash equilibrium in practical cases. We have found that
the convergence domain of the TM-AEG in is a highly
complex three-dimensional space, which makes the Nash
equilibrium solutions are very difficult to be obtained directly.

Moreover, the electricity behaviors of ECS (e.g., the selec-
tion behavior of TOU prices and distribution of elec-
tricity consumption) are generally hard to obtain, and
sometimes even completely unknown. Hence, machine
learning approaches, such as emotional learning [50] and
reinforcement learning [51], can be introduced into the
grid-retailer-user game to simulate their trading behaviors
(i.e., the multi-agent dynamic game interactions) in order
to achieve the final optimal evolutionary stable equilib-
rium, also as Nash equilibrium, during the evolutionary
process of multi-group dynamic game in a competitive
EM. This involves game input/output, thus this grid-
retailer-user game can be decomposed into a two-layer
bilateral interactive game, i.e., PGE-NPSE game and
NPSE-ECS game, as shown in Figure 7, where the machine
learning approaches, such as the multi-agent reinforcement
learning algorithm, Q-learning, affective learning, belief-
based learning, and deep learning, can be used to search the
optimal Nash equilibrium, which is described in detail as
follows.

As illustrated in Figure 7, the groups of PGE, NPSE,
and ECS as three parties (i.e., Party-1, Party-2, and Party-
3) constitute a trilateral multi-group AEG, called grid-
retailer-user AEG, in which the system evolution stable
equilibrium can be achieved as the refinement of Nash equi-
librium. As stated earlier, it is very difficult to directly
address the issue of Nash equilibrium solving of this three-
party evolutionary game system. In Figure 7, we deem that
the reinforcement learning combining with depth percep-
tion and psychology can be employed to predict the
user’s electricity utilization behavior. This will facilitate
the demand side response. In addition, for an intelligent
community or demonstration area, since the user’s electricity
behavior is totally unknown, the machine learning methods
such as emotional learning and reinforcement learning can
be employed to simulate the electricity transaction behavior
of three parties, including grid, user, and retailer. This
behavioral process is a multi-party dynamic game interac-
tion process in the competitive circumstance of EM. There-
fore, we need to treat these three parties as different agents
and use the multi-agent reinforcement learning algorithm to
solve the optimal Nash equilibrium solution for the game
issue.

In Figure 7, we propose a scheme to decompose this grid-
retailer-user AEG into a two-layer two-two or bilateral inter-
active game in our next investigation plan. This two-layer
game can also be regarded as a Stackelberg game or a master-
slave game.

In particular, the PGE-NPSE game can be seen as a
master game or upper game, where the group of PGE is

J ′tz =

 d ′1 − h
′

1 h′1 − d
′

1 b′1 − f
′

1 c′1 − g
′

1 f ′1 − b
′

1 g′1 − c
′

1 a′1 − e
′

1 e′1 − a
′

1
f ′2 − h

′

2 b′2 − d
′

2 h′2 − f
′

2 e′2 − g
′

2 d ′2 − b
′

2 a′2 − c
′

2 g′2 − e
′

2 c′2 − a
′

2
g′3 − h

′

3 c′3 − d
′

3 e′3 − f
′

3 h′3 − g
′

3 a′3 − b
′

3 d ′3 − c
′

3 f ′3 − e
′

3 b′3 − a
′

3

 (26)
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FIGURE 7. A Nash equilibrium decomposition scheme for the TM-AEG involving the PGE, NPSE and ECS who participate in the electricity
trading of EM.

seen as a special type of electricity retailer, thus the groups
of PGE and NPSE constitute the electricity suppliers and
service operators. In addition, the NPSE-ECS game can
be treated as a slave game or lower game, in which the
electricity consumption behavior of users, including indus-
trial/commercial/residential consumers, can be simulated via
an evolutionary game model containing personal privacy.
In the upper game, the price competition among the electricity
suppliers can be simulated through a non-cooperative game
model.

Taking the intelligent community for an example, under the
premise of considering the consumer’s power consumption
privacy behavior and price competition among suppliers,
we can establish a multi-supplier and multi-home user
based master-slave game model from the perspective
of the electricity retail market to investigate the issues
of electricity demand response in the future. In this
example, the demand-responsive behavior based on price
competition between suppliers and users is conducive to
achieving a balance between power supply and demand,
so as to maintain the safe operation of the power
systems.

In the future, we can investigate the interactive game
between multiple users and suppliers in different game
situations. Thereby, two situations are considered as
follows.
Situation 1: We do not consider the participation of elec-

tricity sellers. At this time, there is only a simple interaction
game between the grid side and the user side. At this point,
we need to investigate the inputs of the game issue, that
is, the value of the objective function of the grid side and
user side under the combination of incentive and electricity
consumption plans on the obtained Pareto frontier. We also

need to investigate the outputs of the game issue, that is,
the optimal incentive pricing strategy and the electricity
consumption planning strategy in the situation where the grid
side and the user sidemeet themaximization of their expected
benefits.
Situation 2: We consider the participation of electricity

sellers, i.e., the new power supply entities (NPSEs). As shown
in Figure 7, NPSEs mainly include electricity retailer group
and load aggregator (LA) group. At this point, the TM-AEG
is divided into a two-layer bilateral interactive game, as illus-
trated in Figure 7. This two-layer bilateral interactive game
contains a PGE-NPSE game and a NPSE-ECS game, which
are introduced as follows.
• PGE-NPSE gaming: the game inputs are Pareto fron-
tier of objectives such as peak shaving and load
leveling on PGE side and electricity purchasing cost of
NPSE, together with their objective function value under
different action strategy combinations: {SPGi, SNPi}; and
the game outputs are optimal Nash equilibrium solutions
of pure strategy, including optimal electricity purchasing
price strategy and optimal electricity purchasing plan
strategy for NPSE.

• NPSE-ECS gaming: the game inputs are Pareto fron-
tier of objectives such as profit of electricity selling on
NPSE side, as well as electricity gains (i.e., the utility
of electricity minus the payment of electricity) and elec-
tricity use comfort (for residential users only) on ECS
side, together with their objective function value under
different action strategy combinations: {SNPi, SECi}; and
the game outputs are optimal Nash equilibrium solutions
of pure strategy, including optimal electricity selling
strategy for NPSE and electricity use plan strategy
for ECS.
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VII. CONCLUSION
In this paper, we investigated the Nash-equilibrium based
asymptotic stability of multi-group AEG, including UT-AEG
and TM-AEG, based onReplicator Dynamics theory and LST
for some typical scenarios in an ever-growing and opened EM
with features of energy Internet. In addition, we discussed
the impacts of EM policies introduced by the government
on the asymptotical stability of multi-group AEG in typical
scenario of the EM. The main contributions are summarized
as follows:

1) A bilateral 2×2 AEG model (i.e., the UT-AEG model)
for electricity price bidding of generation-side EM is estab-
lished, as well as a trilateral 2×2×2 AEG model (i.e., the
TM-AEG model) for electricity trading of demand-side EM,
thus the phase trajectory of AEG has been extended from
a two-dimensional surface to a three-dimensional space,
which reveals more complex dynamic processes of strategy
adjustment and more diversified MESS selection behavior of
different stakeholders.

2) The TM-AEG in the typical scenarios of EM shows that
the number of possible equilibrium states is only eight and
they are asymptotically stable when the payoff parameters
meet certain conditions. In these states, the MESS shows
strong properties of expelling invaders and resistance to any
variation, besides, the evolutionary stable equilibriums are
both strict Nash equilibriums.

3) EM policies issued by government can affect the NEAS
of multi-group AEG via changing the distribution parameters
of payoff matrix, thus effective interventions will improve the
stability of electricity prices and promote the energy Internet
to play a more significant role in resource allocation, which
means the complementarities between resources and time
flexibility will lead to a lower and stable electricity price.

Hence, we give the relevant policy implications as follows,
which may be helpful for EM policy formulating by the
relevant government departments.
• First, the policymakers should respect the interests of all
sides in the game, try to establish a reasonable profit
distribution mechanism, guide them to cooperate, and
jointly promote the healthy and orderly development of
the open and ever-growing EM.

• Second, in order to reduce the high profits from high
pricing by the GenCos, the government must take
measures to make reasonable bidding rules for the
on-grid competitive bidding of power GenCos. The goal
of government regulation is to make the power genera-
tion bid as close to its marginal cost as possible in order
to harmonize the benefits for power GenCos with the
social benefits, and finally form an efficient EM. This
principle should be reflected in the established bidding
rules.

• Third, in the TM-AEG involving the NEGE, TEGE and
PGES, especially the representative wind/photovoltaic-
thermal-gird game when considering new energy inte-
grated, if the government does not carry out policy
guidance to all parties involved in grid connection

of wind power/photovoltaic, then they cannot develop
healthfully due to their lack of market competitiveness.
However, the government could introduce relevant poli-
cies for new energy (power, photovoltaic, etc.) integra-
tion, so as to change the trilateral payoffs, such that the
new energy industry can be guided to develop healthily,
but the policies need to meet certain conditions that
have been discussed in this paper, which is of theoretical
significance and practical value for ensuring the rational
development of new energy.

Finally, we have to recognize that the discussions in this
paper on Nash-equilibrium based asymptotic stability of
multi-group AEG in typical scenarios of generation-side and
demand-side EM are not very rigorous, and moreover, it is
still a huge challenge to apply evolutionary game theory to the
evolution study of practical engineering systems, especially
the establishment of simulation systems for analysis of actual
evolution processes, which will be next research direction
of the authors. Specifically, build an engineering feasible
simulation system for studying the characteristics and regu-
larities of equilibrium stability in a long-term evolution and
development of system.

APPENDIX

0 =< N , S,U > a normal-form game
Si strategic space of paly i in a game
i the number of the players/groups/

strategies/individuals in a game
system or a population

R the real number field
�group multi-group strategy

combination
X , Y strategy set
ω,$ parameters and belong to (0, 1)
S−i strategy combination adopted by

groups other than group i
E(Xi, S−i) expected payoff for the group i

that selects strategy Xi, mean-
while the other groups select S−i

E(Yi, S−i) expected payoff for the group i
that selects strategy Yi, mean-
while the other groups select S−i

E(Xi) expected payoff or fitness of a
pure strategy Xi

Ē(Xi) group average payoff or fitness
ρi growth rate of the

proportion or share of the
individuals that select strategy Xi
in a population

ϑ , ϑ∗ mixed strategies in an evolu-
tionary game

E(ϑ , ϑ), E(ϑ , ϑ∗),
E(ϑ∗, ϑ), E(ϑ∗, ϑ∗)

payoffs or fitness functions
under different strategy
combinations or game situations

nRD number of populations involved
in an evolutionary game system

VOLUME 6, 2018 32083



L. Cheng, T. Yu: NEAS Analysis of Multi-Group AEGs in Typical Scenario of EM

Shigh a high quotation strategy
Sbasic a basic quotation strategy
payJ payoffs of SSGC and LSGC, J =

1, 2, 3, 4, 5
ui(qi) payoff function of the power

generation enterprise i
f (Qtotal) power demand function of

users or the market-clearing
price

Pmax electricity price cap
KQ a constant coefficient
Qtotal the sum of on-grid power genera-

tion of all generating companies
Qtotal−max the sum of maximum power

provided by all power generating
companies

Ci(qi) actual power generation cost
function of generating company i

αi, βi, χi the no-load operating cost,
the intercept of the marginal
cost curve, and the slope of the
marginal cost curve, respectively

MCi(qi) marginal cost curve of the power
generating company i

ACi(qi) average cost curve of the power
generating company i

tr(Jpq) trace of Jpq
SCD1, SCD2 size of system convergence

domains
(psp, qsp) a saddle point of the UT-AEG

system
the number of the payoff
distribution parameters or eigen-
values or real parts of an
eigenvalue in a TM-AEG, and
=1, 2, 3

a , b , c , d , e , f ,
g , h , A , B , C ,
D , E , F , G , H

payoff parameters of the payoff
matrix obtained in a TM-AEG
system

nec number of ECS
θ number of time periods in an

electricity utilization cycle
1t time interval
tθ time period
T electricity time set
Qθ,k total quantity of electricity

consumption of the kth
consumer’s all types of electricity
loads during the time period t

Qusers electricity consumption distribu-
tion matrix of the group of ECS

Qθ,nec total electricity consumption of
the consumer numbered nec

Qnec,θ total amount of electricity
consumed by the user nec in the
θ th time period

PPG price vector of the group of PGE
nnp number of the group of NPSE
PNP−l electricity price vector of the

lth NPSE
PNP−nnp electricity price vector of the

group of NPSE
l the number set of the group of

NPSE
1Pl unit power policy subsidy

obtained by the ECS when
selecting the lth NPSE

ϑnec,θ electricity price selection of the
consumer nec in the θ th time
period

PPG−θ , Pnnp−θ electricity price provided by the
PGE and NPSE in the θ th time
period, respectively

8nec,θ payoff of the consumer nec in the
θ th time period

8nec total payoff of this consumer in
all time periods

Unec user utility
Rnec consumer’s total income
yPG income distribution matrix of the

PGE
YPG total income of the PGE in all

time periods
CPG cost of PGE in a time cycle T
a0, b0, c0 cost coefficients of PGE after

considering all the cost factors
RPG profit of PGE in a time cycle T
YNP income distribution matrix of all

NPSEs
A, B nnp×nec and θ×θ matrix, respec-

tively, used to calculate user
payoff belonging to the group of
NPSE

YNP-nnp income distribution vector of the
NPSE numbered nnp

yNP−nnp total income of the NPSE
numbered nnp in a time cycle T

Qnnp quantity of power provided by the
NPSE numbered nnp

Cnnp cost of the NPSE numbered nnp
annp, bnnp, cnnp non-negative numbers
Rnnp profit function of the NPSE

numbered nnp
8EPS equilibrium point set
8EPS0 equilibrium point set obtained in

Case 1
Jtz, J′tz eigenvalue matrix
p, q, x, y, z, u, v, w ratio or probability of choosing a

strategy
Jpq, JPG−NP−EC,
Jx0x1, Jx0y0z0,
JNE−TE−PG

Jacobian matrices
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SPG1, SPG2 the executable strategies of PG
SNP1, SNP2 the executable strategies of NP
SEC1, SEC2 the executable strategies of EC
EPG1, ENP1, EEC1
EPG2, ENP2, EEC2

expected profits

EPGav, ENPav,
EECav

average expected profits

fPG(x), fNP(y), fEC(z) rate-of-change of the proportion
of individuals who select a pure
strategy in the group of PGE,
NPSE, and ECS with the time

gPG1(x), gNP1(y),
gEC1(z), gPG2(y, z),
gNP2(z, x), gEC2(x, y)

multiplicative factor functions
in the RD equations of the
TM-AEG system

λ the eigenvalue numbered
Re the real part of the eigenvalue

numbered
r1, r2, r3, r4, s1, s2,
s3, s4, t1, t2, t3, t4

intermediate parameters used for
simplicity

J11, J21, J23, J31, J32 elements in the Jacobian matrix
Jx0x1 which is obtained when
x = 0

J ′11, J
′

21, J
′

23, J
′

31, J
′

32 elements in the Jacobian matrix
Jx0x1 which is obtained when
x = 1

11, 12, 13, 14 parameters used for a concise
description

J ′′12, J
′′

13, J
′′

21, J
′′

23, J
′′

31,
J ′′32

elements in the Jacobian matrix
Jx0y0z0

gPG1(x), gPG(y, z) multiplicative factor functions in
the RD equation of the group of
PGE

pg0, pg1, yfz, yfm parameters calculated in situa-
tions for the group of PGE

SNEGE1, SNEGE2 the executable strategies of
NEGE

STEGE1, STEGE2 the executable strategies of
TEGE

SPGES1, SPGES2 the executable strategies of PGES
WNEGE1, WNEGE2 new energy generation outputs

(mainly photovoltaic and wind
power)

WTEGE1, WTEGE2 traditional fossil energy gener-
ation outputs (mainly thermal
power)

WPGES1, WPGES2 accommodations of new energy
generation by the power grid
enterprises

fNEGE(u), fTEGE(v),
fPGES(w)

rate-of-change of the proportion
of individuals who select a pure
strategy in the group of NEGE,
TEGE, and PGES with the time

σ4, σ5, σ6, RM , QM ,
TM

intermediate parameters used for
simplicity

a′ , b′ , c′ , d ′ , e′ , f ′ ,
g′ , h′ , A′ , B′ , C ′ ,
D′ , E ′ , F ′ , G′ , H ′

new payoff parameters of the
payoff matrix obtained in a
TM-AEG system

NEAS Nash equilibrium-based asymp-
totic stability

AEGs asymmetric evolutionary games
EM electricity market
MESS multi-group evolutionary stable

strategy
SGCs state grid corporations
EC electricity consumer
EV electric vehicle
NPSE new power supply entity
PGE power grid enterprise
ECS electricity consumers
LA load aggregator
UT-AEG unilateral two-group asymmetric

evolutionary game
TM-AEG trilateral multi-group asymmetric

evolutionary game
RD replicator dynamics
LST Lyapunov stability theory
ASEP asymptotically stable equil-

ibrium point
ESE evolutionary stable equilibrium

UEEP unstable evolutionary equili-
brium point

GenCo generation corporation
GenCos generation corporations
SSGC small-sized GenCo groups
LSGC large-sized GenCo groups
NEGE individual sets of new energy

generation enterprises
TEGE the individual sets of traditional

fossil energy generation
enterprises

PGES the individual sets of power grid
enterprises

ESS evolutionary stable strategy
TOU time-of-use
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