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ABSTRACT With emphasis on long-span bridges, the dynamic responses of bridges without considering
random traffic flows were found to be different from actual situations. The introduction of a random
traffic flow model provides a new approach for the random analysis of bridge structure responses under
vehicle loads. In this paper, the finite element and intelligent ant colony optimization-back propagation
neural network (ACO-BPNN) models were used to study the dynamic responses of long-span bridges. The
computational model was also validated by an experimental test. To confirm the validity of the proposed
ACO-BPNN model after parameter selection, it was compared with the traditional back propagation
neural network (BPNN) model and the genetic algorithm-back propagation neural network (GA-BPNN)
model. BPNN, GA-BPNN, and ACO-BPNN adopt the same network topology structure to predict the
dynamic responses of the long-span bridge. When the ACO-BPNN model conducted the iteration to the
130th generation, a training error of 0.009 was found to be smaller than the set critical error. In this manner,
the computational accuracy was increased, and the optimized time was reduced. In addition, only 0.4 hours
were spent in using the proposedACO-BPNNmodel to predict the dynamic response of the long-span bridge.
In the case of the same computer performance, it took 4.5 h to use the finite element model to predict the
dynamic response of the long-span bridge. The advantage of the proposed ACO-BPNN model in predicting
the performance of large-scale complex structures such as long-span bridges was clearly found.

INDEX TERMS Dynamic responses, long-span bridges, random traffic flow, ACO-BPNN model, finite
element model.

I. INTRODUCTION
Traffic and transportation are becoming increasingly impor-
tant with continued social development and the enhancement
of economic complementarity and interdependency, with
bridges playing a key role. While passing traffic obstacles,
including great rivers, high mountains, gorges and harbor
ports, a long-span bridge is always the preferred bridge type
because of its superiority in structural force bearing [1]–[5].
General long-span bridges crossing rivers have very large
spans. It is very important to study their responses under
various loads to ensure their safe and reliable operation.

With the increase in vehicle running speed, the dynamic
interaction problem between vehicles and a bridge becomes
more prominent, and the impacts of vehicle-bridge coupling
dynamic interactions on the bridge and vehicles become
increasingly obvious. Vehicles run at very high speeds, and
vehicle actions are always amplified under the effects of road
roughness, thereby seriously affecting bridge safety. There-
fore, it is increasingly meaningful to study dynamic prob-
lems between vehicles and bridges. On one hand, dynamic
impacts of movable vehicles on a structure could have
direct effects on working conditions and the service life of
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the structure; on the other hand, the steadiness and the safety
of vehicles running on the structure are also important factors
to assess whether dynamic design parameters of the struc-
ture are rational. At present, new bridges always have large
spans, requiring the use of many high-strength materials and
thin-walled structures. The bridge span becomes increasingly
larger, materials become increasingly lighter, and rigidity
becomes increasingly lower; as a result, the proportion occu-
pied by loads borne by the bridge structure in total loads
becomes increasingly larger, thereby intensifying interactions
between vehicles and bridges.

At present, abundant achievements have been achieved
in studies on vehicle-bridge coupling vibration [6]–[11].
Ding et al. [12] applied the d’Alembert principle and dis-
placement coordination conditions to deduce a motion equa-
tion of vehicle-bridge coupling vibration and discussed the
impacts of a single vehicle load on the vibration responses of
a long-span bridge with consideration of geometric nonlin-
earity and deck roughness factors. Pang et al. [13] applied
state space theories to establish a finite element model of
vehicle-bridge coupling vibration and studied the vehicle-
bridge coupling vibration problem of a long-span bridge
under movable vehicles. Xiao and Ren [14] conducted an
analysis and computations of vehicle-bridge coupling vibra-
tions under various working conditions, analyzed and evalu-
ated the dynamic responses of bridges and vehicles, as well
as the running safety and steadiness, obtaining some con-
clusions with engineering significance. Aiming at numerical
analysis of the vehicle-bridge coupling vibration of a compli-
cated bridge, Shi et al. [15] proposed a method for computing
the vehicle-bridge coupling vibration of complicated bridges
on highways using the finite element software ANSYS.
Ye et al. [16] took the deck roughness power spectral density
as the input to establish a vehicle-bridge coupling dynamic
analysis model and discussed the impacts of mid-span sup-
port, flexural rigidity of bridge cross section, running speed
and deck roughness on random responses of a vehicle-bridge
coupling system. Zhang et al. [17] used the finite element
software MIDAS to analyze the dynamic characteristics of
a bridge under different factors and studied the changing
rules of indices, including mid-span displacement, bending
moment impact coefficient and acceleration. Based on ran-
dom vibration theories, Zhang et al. [18] studied a bridge
dynamic response curve with vehicle-bridge coupling vibra-
tion under the effects of deterministic excitation and deck
roughness. Taking the unevenness power spectrum density
function of the surface of a deck structure as the input,
Ye et al. [19] established a coupled dynamic analysis model
with multiple movable vehicle systems and a bridge and
discussed the changing rules of mid-span displacement under
different spans, different deck grades and different vehicle
speeds.

However, the aforementioned studies are based on deter-
ministic analysis, which cannot reflect the random charac-
teristics of bridge responses. Aiming at long-span bridges,
the dynamic responses of bridges without considering

random traffic flows were found to be different from actual
situations [20]–[23].

In this paper, section 2 described the establishment of the
finite element model, section 3 analyzed and discussed the
dynamic response of the long-span bridge, and section 4
has predicted the dynamic response using the intelligent
ACO-BPNN (Ant Colony Optimization-Back Propagation
Neural Network) models, laying a foundation for dynamic
response analysis of bridges under random traffic flows.

II. ESTABLISHMENT OF THE FINITE ELEMENT
MODEL OF LONG-SPAN BRIDGES
Fig. 1 shows a long-span bridge with a simple support, where
the bridge span is arranged as a single span of 200 m, with
the total bridge length of 800 m; the center distance of the
main cable of 6 m, the width of the traffic lane is 4.5 m, and
the width of the long-span bridge is 35 m; the cable tower
has an inverse-Y structure made of solid reinforced concrete.
For convenience of modeling, the height of both the left and
right cable towers is 30 m. A geometric model of the long-
span bridge was established according to the dimensions and
layout, as shown in Fig. 2.

In this paper, the finite element software ANSYS was used
for computation. In the ANSYS model, the cross section
of the cable tower was variable; thus, BEAM44 elements,
namely, spatial cross-section-variable beam elements, were
used. The main beam adopted a traditional single-beam form.
The cross section of the main beam was basically deemed
to be unchanged along the bridge direction. BEAM4 spatial
beam elements were used. A rigid arm connection method
was used during modeling in the paper. Each node of the
element only has three degrees of freedom. Gravity rigidity
of the long-span bridge had obvious impacts on changes of
structural rigidity. Finally, the complete bridge was divided
into 5949 nodes and 10040 elements. The complete finite
element model of the long-span bridge is shown in Fig. 2.

The connection of the different structures was achieved
as follows. The CP command of the nodes in ANSYS was
used to couple three translational degrees of freedom and
three rotational degrees of freedom between two nodes.
The cable towers and piers were completely solidified, and
the degrees of freedom in 6 directions were constrained.
The material property of the long-span bridge is as follows:
the elastic modulus of main towers is 3.65e10 N/m2, the
density of main towers is 2600 kg/m3, the elastic modulus
of main beams is 4.0e10 N/m2, the density of main beams
is 2600 kg/m3, the elastic modulus of cables is 1.95e11 N/m2,
and the density of cables is 7850 kg/m3. Finally, the vibration
shapes at the top 10 orders of the long-span bridge could
be computed. The frequencies of each order of vibration
shapes were 0.51 Hz, 0.67 Hz, 0.76 Hz, 0.85 Hz, 0.96 Hz,
1.06 Hz, 1.12 Hz, 1.21 Hz, 1.34 Hz and 1.56 Hz. Clearly,
the frequency distribution was very dense and could satisfy
the dense distribution characteristic of natural frequencies of
large infrastructures. Some of the vibration shapes extracted
are shown in Fig. 3. In addition, the figure shows that the
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FIGURE 1. Two-dimensional model and dimensions of a long-span bridge. (a) Complete model. (b) Box girder model.

FIGURE 2. Complete finite element model of the long-span bridge.

first-order vibration shape was mainly reflected by bending
vibration of cable towers and piers. The second-order vibra-
tion shape was reflected by the first-order bending vibra-
tion of the box girder. The third-order vibration shape was
reflected by the second-order bending vibration of the box
girder. The fourth-order vibration mode was reflected by the
torsional vibration of the box girder. The fifth-order vibra-
tion shape was reflected by bending and torsional coupling
vibration of the box girder. The vibration shapes were mainly
reflected by bending and torsional vibration of the box girder
and the cable towers. Therefore, the vibration shapes of the
long-span bridge were not purely torsional or bending vibra-
tion; sometimes, they referred to overlaying of the two types
of vibration.

III. ANALYSIS AND DISCUSSION OF THE DYNAMIC
RESPONSES OF LONG-SPAN BRIDGES
A. NUMERICAL COMPUTATION OF THE BRIDGE DYNAMIC
RESPONSES UNDER RANDOM TRAFFIC FLOW
A time-domain model of vehicles was established. In the
model, random traffic flows are generated in the time domain

according to the following steps. First, the vehicle running
flow rate is monitored based on WIM (dynamic weighing
system), and a random vehicle flow database is established;
Monte Carlo sampling is used on the MATLAB platform
to generate random traffic flow samples. The random vehi-
cles mainly have 4 random parameters: vehicle type, vehicle
speed, mass and vehicle distance. The vehicle types gener-
ally obey a uniform distribution. The studied results of [24]
showed that the vehicle distances obey a Gamma distribu-
tion. Highway bridge vehicles have very high randomness
and basically satisfy the characteristic of high randomness
of the MATLAB program. By virtue of the advantage that
the program can call various random functions and could
randomly generate various types of data samples according
to the requirements, in this paper, a simulation program of
random traffic flows was compiled. Next, a random traffic
flow document was generated and input into the vehicle-
bridge coupling analysis program to study the bridge dynamic
responses. The specific steps are as follows. First, a random
traffic flow document was generated; the vehicle distances
were converted into a finite element nodematrix of the bridge,
and the vehicle loading positions were recognized according
to the vehicle distances. Conversion of the vehicle distances
into bridge node matrices is a key step. The vehicle distances
were added to determine the position matrix of each vehicle
in the traffic flow, and then, the position matrices were con-
verted into nodematrices according to vehicle speeds; with an
increase of the transient analysis step length, the node matrix
of the vehicle was checked to determine whether an initial
bridge node was reached, and whether the front vehicles
already passed the bridge was recognized. The vehicles were
loaded or canceled, and thus, transient analysis could be
conducted.
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FIGURE 3. Natural vibration shapes of the long-span bridge. (a) First
order vibration shape. (b) Second order vibration shape. (c) Third order
vibration shape. (d) Fourth order vibration shape. (e) Fifth order
vibration shape.

As mentioned, through combining ANSYS with
MATLAB, co-simulation was conducted and bridge dynamic
responses under the random traffic flow were obtained.

Fig. 4 and Fig. 5 show vibration displacement and accelera-
tion response curves of the bridge, respectively. It is shown in
the figure that the responses at different positions of the long-
span bridge were different. (1) The results of vibration dis-
placement and acceleration of the bridge fluctuated around 0.
(2) The displacement response peak at the L/4 position of
the long-span bridge was −80 mm. (3) The displacement
response peak at the L/2 position of the long-span bridge
was −70 mm, and the displacement response peak value at
the L/4 position was approximately 1.14 times comparedwith
the displacement response peak at the L/2 position. (4) The
displacement response mean at the L/4 position of the long-
span bridge was 25 mm; the response means at the position of
L/2 was 33mm; the response means at the position of L/4 was
approximately 0.76 times compared with that of the position
of L/2. The vibration displacement and acceleration of the
bridge were large because the vehicle loads acting on the
bridge were large. Vibration displacements and accelerations
at the position of L/4 clearly exceeded those at the position of
L/2 because new vehicles ran onto the bridge continuously.
The L/4 position was first affected by these vehicle loads.

FIGURE 4. Vibration displacement of the long-span bridge.
(a) Position = L/4. (b) Position = L/2.

B. EXPERIMENTAL VERIFICATION OF BRIDGE
DYNAMIC RESPONSES
Such a complicated computation model of long-span bridges
is affected by many parameters. Therefore, the correct-
ness of the model should be verified by experimental tests.
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FIGURE 5. Vibration acceleration of the long-span bridge.
(a) Position = L/4. (b) Position = L/2.

With numerical simulation as the reference, single-way
servo acceleration sensors [25]–[30] with sampling frequency
of 100 Hz were arranged, with a pair of sensors at each
the positions of L/4, L/2 and 3L/4 of the long-span bridge,
as shown in Fig. 6. Therefore, there were six sensors on the
bridge, and the average value of each pair of sensors was
that of the final results. When vehicles ran on the bridge
normally, the data of the acceleration sensors was recorded
and input into Pulse software for post-processing. Time-
domain vibration displacement measurements were obtained
and compared with the computational results of the numerical
simulation, as shown in Fig. 7. Fig. 7 reveals that the experi-
mental results were well consistent with the numerical simu-
lation results. Under most cases, the experimental test results
were slightly larger than the numerical simulation results; the
numerical simulation considers an ideal boundary condition,
whereas the experimental boundary conditions are relatively
complicated. Therefore, complete consistency could not be
achieved. In addition, the experimental results were also
affected by crosswind. Numerical simulation could consider
vehicle-bridge coupling. However, as a whole, the numeri-
cal simulation computation model proposed by the paper is
reliable.

Experimental testing results showed that the numerical
computation model proposed by the paper is reliable. There-
fore, the root-mean-square values of vibration displacements

at each position of the bridge were computed based on the
numerical model, as shown in Fig. 8. The figure indicates that
root-mean-square values of the bridge vibration displacement
were basically symmetric relative to the mid-span position.
Within 0-L/4, the root-mean-square values of vibration dis-
placement sharply increased to the maximum value and then
decreased slowly. The maximum root-mean-square values of
the vibration displacement were approximately at the posi-
tions of L/4 and 3L/4 of the bridge. The valley values of the
root-mean-square curve were located at the bridge mid-span
position.

IV. DYNAMIC RESPONSE ANALYSIS ON BRIDGES BASED
ON THE aco-bpnn METHOD
As mentioned, co-simulation was conducted on the vehicle-
bridge coupling vibration responses based on ANSYS and
MATLAB. However, the computation was too complicated,
and the computational time was too long. Therefore, in this
paper, an intelligent algorithm was used to compute dynamic
responses of the bridge under random traffic flows. Neural
network is a widely applied intelligent algorithm [31]–[37].
The topological structure is shown in Fig. 9. In this figure,
the first layer is input layer, the second and third layers are
hidden layer, the last layer is output layer. A multi-layer
feed-forward neural network model (BPNN) is widely used
in the neural network. BPNN has features of clear concepts
and simple computation. Because of the rigorous derivation
and high universality, BPNN is widely applied. However, the
BPNN algorithm is essentially a local search algorithm and
cannot be used to search global extremes of multi-peak func-
tions. BPNN also has defects, such as long convergence time
and easy appearance of local extremes. For these reasons,
many improved algorithms have been proposed, with the
BPNN algorithm with a momentum item being the simplest
one that can be achieved easily. Nevertheless, BPNN is still a
local search algorithm; therefore, essentially speaking, it still
cannot get rid of the possibility of falling into local minimum
points.

Once proposed, the Ant Colony Optimization (ACO) algo-
rithm has become a popular topic of discussion and study in
the field of intelligent optimization and evolutionary fields.
Through many years of development, scholars have per-
formed careful research studies on the ACO algorithm. The
algorithm has obtained great improvements and is widely
applied in fields such as the solution of cooperative problems,
data analysis, water conservancy, electric power, construction
and transportation. The ACO algorithm has drawn the atten-
tion of scholars in related fields because the solution model
could rationally combine the rapidness of problem solution
and global optimization characteristics. Thus, rapidness of
optimization is ensured by forward-feedback information
transmission and accumulation. Premature convergence of
the algorithm could be avoided by the characteristic of dis-
tributed computation. Moreover, an ant colony system with
a greedy heuristic search characteristic could find acceptable
solutions at earlier stages of the search. Therefore, the paper
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FIGURE 6. Experimental test of the vibration displacement of the long-span bridge.

FIGURE 7. Experimental and simulation comparison of the vibration
displacement of the long-span bridge. (a) Position = L/4.
(b) Position = L/2.

introduced the ACO algorithm into optimization training
of the BPNN model. A forward-feedback neural network
training model based on the ACO algorithm (ACO-BPNN)
was established, as shown in Fig. 10. The basic idea of the
ACO-BP algorithm is that a certain weight value scope is
searched roughly by the ACO algorithm; the weight obtained
at this moment is taken as the initial weight value of
BPNNmodel; in this manner, the defects of the BPNNmodel,
including falling into local minimum, slow convergence and
oscillation effects could be improved.

The process of realization of the ACO-BPNN algorithm
proposed in the paper is shown in Fig. 11. Specific details
of the process are given as follows. 1) According to equal
segments, all the weight candidate points of BPNN model
are listed, the equal information initial values are assigned to

FIGURE 8. Vibration displacement and acceleration RMS at different
positions of the bridge. (a) Vibration displacement. (b) Vibration
acceleration.

FIGURE 9. Topological structure of the neural network model.

each candidate point, and a nerve cell threshold value is set as
a constant. 2) Artificial ants are randomly distributed to each
candidate point of the weight, and these ants randomly select
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FIGURE 10. Construction of the proposed ACO-BPNN model.

a candidate point that does not pass the weight according to
pheromones until completion of traversal of all the weights.
It is assumed that M weights are going to be optimized. Each
weight candidate point set is I . For antm, the probability for it
to select the jth candidate point of the next weight is P. 3) All
the weight combinations are recorded; they are input into the
BPNN model. Learning samples and each network parame-
ter are used to compute the network output deviation value

corresponding to the combination. If the deviation value
reaches a level that is slightly looser than the final neural net-
work output required by the ACO algorithm, then the combi-
nation is taken as the optimal weight combination searched by
the ant colony and assignedwith the BPNNmodel; otherwise,
the pheromone distribution is updated according to the devi-
ation value, and the ant colony screening is repeated until the
optimal combination is found or the ant colony iteration time
reaches an upper limit. 4) The weight combination searched
by the ant colony is taken as an initial value. The BPNN
algorithm is used to learn samples repeatedly. Amendment of
the weights and threshold values is continued until the final
accuracy requirements are satisfied.

In this paper, a BPNN model with only one hidden layer
was used to predict dynamic responses of the long-span
bridge. The initial hidden layer node number was set to
be 10. After the ACO algorithm was trained, it was found
that performance of the neural network was not ideal. Thus,
hidden layer nodes were added gradually. When the hidden
layer node number increased to 20, the training was already
conducted many times, the mean square errors were still
large, and the performance of the neural network was still

FIGURE 11. Flow chart of the improved BPNN model by the ant colony optimization algorithm.
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TABLE 1. Training errors of three types of neural network models.

FIGURE 12. Training of the vibration displacement using the ACO-BPNN.
(a) Position = L/4. (b) Position = L/2.

unsatisfactory. Therefore, the BPNN model with two hidden
layers was used, as shown in Fig. 9. To determine the node
number of the first hidden layer and that of the second hidden
layer, the paper set the node number scope of the first hidden
layer to be [5] and [15] and set the node number scope of
the second hidden layer to be [1] and [5]. Next, the corre-
sponding neural networks were established. The mean square
error values of each neural network with the same train-
ing times were compared to select a relatively better neu-
ral network. To reduce the effects caused by randomness,
under each case, the average value of 10 cycles was taken
as the final value under the case. The critical error was 0.01.
To further confirm the validity of the ACO-BPNN model
after parameter selection, it was compared with the tra-
ditional BPNN model and the GA-BPNN model. BPNN,
GA-BPNN and ACO-BPNN adopt the same network topol-
ogy structure to predict dynamic responses of the long-span
bridge. The training errors of the three types of models are
shown in Table 1. The termination condition of the iteration

FIGURE 13. Predicted results of the vibration displacement using the
ACO-BPNN. (a) Position = L/4. (b) Position = L/2.

of the three types of models is when the set iteration gen-
eration number reaches 600. It is shown in Table. 1 that the
training errors were 0.155, 0.120 and 0.055 when the BPNN,
GA-BPNN and ACO-BPNNmodels, respectively, conducted
an iteration to the 80th generation, where all the values
exceeded the set critical error value. When the iteration
was conducted to the 130th generation, the training error
of the ACO-BPNN model was 0.009, which is less than
the set critical error value of 0.01. When the iteration was
conducted to the 315th generation, the GA-BPNN model
achieved convergence, and the error was 0.0095 and less than
the set critical error. When the iteration was conducted to the
600th generation, the training error of the BPNN model
was 0.0026, which is still larger than the critical error,
and the model did not achieve convergence. When the
ACO-BPNN model conducted the iteration to the 130th gen-
eration, the training error was 0.009, which is less than the set
critical error. In this manner, the computational accuracy was
increased, and the optimized time was reduced.

The analysis above shows that the ACO-BPNNmodel pro-
posed by the paper has prominent advantages; thus, the model
was used to predict dynamic responses of the long-span
bridge. First, the first 30 min of vibration displacement of
the long-span bridge was extracted as the training data to
train the ACO-BPNN model. The training data were com-
pared with real data, as shown in Fig. 12. It is shown in
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the figure that the training data and actual data could coin-
cide well and that the peak and valley points were consis-
tent. The result indicates that the ACO-BPNN model was
well trained and had good performance. The last 30 min of
data of the vibration displacement of the long-span bridge
were taken as the predicted data. The trained ACO-BPNN
model was used to predict the vibration displacement of
the long-span bridge. The predicted results were compared
with the actual values, as shown in Fig. 13. Fig. 13 shows
that the predicted values and the actual values coincided
well and that the peak and valley points were kept con-
sistent. The result shows that the ACO-BPNN model pro-
posed in this paper has high reliability in predicting dynamic
responses of the long-span bridge. In addition, the proposed
ACO-BPNN model only required 0.4 hours to predict the
dynamic response of the long-span bridge. In the case of
the same computer performance, the finite element required
4.5 hours to predict the dynamic response of the long-span
bridge. The advantages of the proposedACO-BPNNmodel in
predicting the performance of large-scale complex structures
such as a long-span bridge were clearly found.

V. CONCLUSIONS
1) The vibration shapes at the top 10 orders of the long-span
bridge were extracted. The frequencies of each order of vibra-
tion shapes were 0.51 Hz, 0.67 Hz, 0.76 Hz, 0.85 Hz, 0.96 Hz,
1.06 Hz, 1.12 Hz, 1.21 Hz, 1.34 Hz and 1.56 Hz. Clearly,
the observed very dense frequency distribution was found to
satisfy the dense distribution characteristic of natural frequen-
cies of large infrastructures. Vibration shapes of the long-
span bridge were not found to be purely torsional or bending
vibration; sometimes, they referred to overlaying of the two
types of vibration.

2) The responses at different positions of the long-
span bridge were found to be different. The displacement
response peak value at the L/4 position was approximately
1.14 times compared with the displacement response peak at
the L/2 position.

3) The experimental testing results showed that the numer-
ical computation model proposed by the paper is reliable.
Therefore, the root-mean-square values of the vibration dis-
placements at each position of the bridge were computed
based on the numerical model. The root-mean-square values
of the bridge vibration displacement were basically symmet-
rical relative to the mid-span position. Within 0-L/4, the root-
mean-square values of the vibration displacement sharply
increased to the maximum value and then decreased slowly.
The maximum root-mean-square values of the vibration dis-
placement were approximately at the positions of L/4 and
3L/4 of the bridge. The valley values of the root-mean-square
curve were located at the bridge mid-span position.

4) BPNN, GA-BPNN and ACO-BPNN adopted the same
network topology structure to predict the dynamic responses
of the long-span bridge. When the ACO-BPNN model con-
ducted the iteration to the 130th generation, the training error
of 0.009 was smaller than the set critical error. Only 0.4 hours

were spent in using the proposed ACO-BPNN model to pre-
dict the dynamic response of the long-span bridge. In the case
of the same computer performance, 4.5 hours were required
for the finite element to predict the dynamic response
of the long-span bridge. The advantages of the proposed
ACO-BPNN model in predicting the performance of large-
scale complex structures such as a long-span bridge were
clearly found.
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