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ABSTRACT The issue of selecting the optimal defense strategy in the dynamic adversarial network is
difficult. To solve this problem, we start from the realistic bounded rationality of both the attacker and the
defender. First, we build the Bayesian attack–defense evolutionary game model combining with incomplete
information game scenario. Specifically, we convert the uncertainty of the strategy payoffs of attackers and
defenders to the uncertainty of their related types. Meanwhile, both the set of player types and the set
of game strategies can be expanded to n in our model. Furthermore, we improve the replicator dynamics
equation by adding the selecting intensity factor to depict the noise effect. This reflects the randomness
of decision making for players due to their bounded learning capacities. In this way, the static analysis
in the traditional game is extended as a dynamic process. On this basis, we summarize the evolutions of
different player types with different strategies. Finally, by calculating the evolutionary stable equilibrium,
we give the algorithm of selecting optimal defense strategy and depict the evolutionary track of this strategy
selected by the defender with time going by. Our method provides decision support for the network proactive
defense toward moderate security. Moreover, the dynamic analysis efficiency of defense decision making
is improved, and the predicting ability of the defense situation is enhanced. Experimental results verify the
scientificity and availability of the proposed model and method.

INDEX TERMS Network attack-defense, incomplete information, bounded rationality, evolutionary game,
optimal defense strategy.

I. INTRODUCTION
With the complexity of large-scale network information sys-
tem, security attacks become more and more diversified.
Therefore, it is urgent to analyze and predict the attack-
defense behavior of the network, and then implement proac-
tive defense. Game theory is a decision-making theory for
studying the direct interaction between decision-making enti-
ties. It has the characteristics of objective opposition, non-
cooperative and strategic dependence, all of which are in line
with the basic characteristics of network attack and defense.
Therefore, applying the game theory to model and analyze
network attack-defense processes has become a hot research
issue in recent years [1].

This paper aims at the security issue of defense strategies
selection in the network attack-defense environment. Based
on the bounded rationality of both attack-defense players,
this paper formulates Bayesian evolutionary game model in
the incomplete information scenario. Meanwhile, we expand
the capability of player types set and strategies set to any n.
We treat the uncertainty of attack-defense strategies as the
uncertainty of player’s type. Moreover, we expand the static
analysis of Nash equilibrium to the dynamic and evolving
process. Based on this, we explore the replicated dynamic
equations to describe the attack-defense behaviors, summa-
rize the evolutionary processes of different strategies with dif-
ferent player types, and give the optimal defense strategy by
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calculating the evolutionary stable equilibrium. Afterwards,
we describe the evolutionary track of the final selection of
players to provide dynamic decision-making for network
proactive defense.

The main contributions of this paper are
1) The evolutionary game model of incomplete informa-

tion on network security attack-defense is developed. Our
model transforms the uncertainty of the game characteristics
between both sides of attacker and defender to the uncertainty
of each other’s type, which is consistent with the fact of
incomplete information scenario.

2) The stochastic replicator dynamic equations for
decision-making of both sides of attacker and defender are
constructed. By bringing in the selecting intensity factor to
reflect the noise effect, we improve the replicator dynamic
equations to describe the evolutionary track of strategy more
accurately.

3) The selection algorithm of optimal defense strategy is
designed. It provides support of decision-making for net-
work proactive defense under moderate security. Moreover,
the proposed algorithm is more practical, since it allows the
defender to consistently update his strategy on his opponent’s
strategy as the game evolves.

II. RELATED WORKS
In the study of network security using game theory, the accu-
racy and scientificity of the gamemodel are limited to two key
hypothesizes: 1) whether the game information is incomplete
for both sides of attacker and defender and 2) whether the
game players are bounded rationality.

According to whether the game information is open or not,
existing researches can be categorized as the complete infor-
mation game and the incomplete information game, the infor-
mation is the knowledge about the game features such as
the strategy set and the payoff function of each other in
both sides of attack-defense. The complete information game
means that each player has the accurate knowledge of other
players’ knowledge. For example, Jiang et al. [2], [3] handled
the network attack-defense as the zero-sum game process,
in which both players have complete information and take
actions at the same time. On this basis, they established non-
cooperation static game model and stochastic game model
to implement network security evaluation [2] and defensive
strategy selection [3] respectively. In practical applications,
for example, for the security issue of sensor networks, imple-
menting replicating node attack may increase the attack cost,
to analyze the optimal attack strategy, Li et al. [4] established
a complete information game model between attacker and
sensor trust node, further by calculating the Nash equilib-
rium, the optimal solution is provided. Agah and Das [5]
developed the complete information repeated game model
between the intrusion detection system and the wireless sen-
sor nodes, and then analyzed the retransmission strategies of
the node packets. Considering that smart grid is vulnerable
to malicious SQL injection attacks, Esmalifalak et al. [6]
considered the action times of attack-defense as the basic

strategies and established a two-person zero-sum complete
information game model by using the increase/decrease on
power prices as the payoff function, and verified the pro-
posed model in Electricity Market. Wu et al. [7] further
used the reinforcement-learning algorithm to solve the Nash
equilibrium and achieved the assessment and prediction of
the security situation of the grid system. Serra et al. [8] used
Pareto algorithm to optimize the solving procedure of Nash
equilibrium, which reduces the computational complexity.
Wang et al. [9] combined Petri nets with the stochastic game
model for minimizing attack benefit. They established a zero-
sum game model under the condition of complete informa-
tion, and then evaluated the network security quantitatively.
To sum up, it is easy to find that the above models all adopt
the complete information hypothesis, which is hard to be
implemented in realistic attack-defense adversarial network.
Since the strategies’ payoffs are the private information for
the game players, the attack-defense information of the actual
network is asymmetric and intimate.

To break the limitation of complete information,
Liu et al. [10] analyzed the impacts of the changes of strate-
gies on attack-defense performance in the scenario of worm
attack. Based on incomplete information conditions and with
the Bayesian game model, they considered the cases of three
different types of attacker. However, they mainly focused on
the Nash equilibrium of pure strategy. From the perspective of
dynamic resist and incomplete information, Zhang et al. [11]
and Liu et al. [12] handled the defender as the sender of
the signal and the attacker as the receiver of the signal.
During the game process, the attacker identifies the type of
defender based on the defense signal. Such studies include the
single stage [11] and the multi-stage incomplete information
attack-defense signal game model [12], which gives the
calculating method of optimal defense strategy and enhances
the accuracy and dynamics of strategy decision-making.
Patcha and Park [13] built a signal game model for individual
node of network, and analyzed the optimal response strategy
of the intrusion detection system. However, all of the above
investigations are based on the hypothesis that both sides
of attacker and defender are completely rational and know
how to realize the maximization of their payoff. Moreover,
they will choose strategies earning maximum payoffs at the
same time. In fact, it is hard for the attack-defense behaviors
of the network to be completely rational. The environment
and personal interests may affect the players. In general, they
are bounded rationality agents. Ignoring the precondition of
bounded rationality, it may lead to deviation for the modeling
and analyzing of attack-defense behaviors and impact the
scientific and guidance of the selection method for optimal
defense strategy. Therefore, the application of bounded ratio-
nality in the game analysis of network security is significant
and has practical significance [14].

In recent years, some scholars try to use the evolution-
ary game model to describe the evolutionary process of
network adversarial behaviors. The evolutionary game ben-
efits from the idea of biological evolution. Based on the
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bounded rationality of game players, they consider that the
game players improve their strategy choices by combining
with historical experience. The network gradually evolves
to a stable state through the learning and improving mech-
anism, through which one can effectively improve the reli-
ability and accuracy of the analysis of game behaviors.
Liu et al. [15] proposed a game-theoretic approach to achieve
an energy-efficient cooperative defense scheme. Specifically,
to increase security of data in the sensor-cloud, a two-layer
gateway-assisted detection and defense decision problem
involving multiple intrusion detection systems using an evo-
lutionary game is formulated, which optimizes the detec-
tion strategy for lowering energy consumption and reducing
alert messages. Zhu et al. [16] used the system dynamics to
model the evolutionary process of attack-defense game, and
developed the economic cost model under the condition of
complete information. The proposed model benefits the gov-
ernance of network security. However, it only abstracts two
kinds of attack-defense strategies from a global perspective,
namely, attack/no attack and defense increase/not decrease.
Therefore, the analysis of generalized game structure is not
given. Taking into account that the randomness of attack-
defense methods will inevitably lead to the state transition
for the game system, in order to analyze the system stable
equilibrium in different system states. Huang et al. [17] ana-
lyzed the optimal defense strategy in different security states
with Markov decision process, and used linear programming
algorithm to calculate the optimal solution, but Huang et al.
treated the attack-defense strategies and payoffs as public
knowledge, and there is only one type for the attacker/
defender respectively. In essence, it still belongs to the
category of complete information game. Based on the
non-cooperative game theory, Huang et al. [18] furthered
constructed an attack-defense evolutionary game model and
studied the replicator dynamics and evolutionary stable
strategy of both sides of attacker and defender. However,
the model is still limited to the hypothesis of incomplete
information and mainly analyzes the deterministic evolution-
ary behavior. To analyze the strategy selection of whether
or not to adopt the antivirus software to against the mal-
ware, Hayel and Zhu [19] established an evolutionary Pois-
son game framework and designed mechanisms to control
software users’ behaviors to achieve a system-wide objec-
tive. Chen and Yeh [20] investigated the game strategies of
how to select some beneficial genetic variations for non-
cooperative and cooperative evolutionary game. His research
focus on the analysis of how the non-cooperative strategy
can be converted to an equivalent multi-objective optimiza-
tion (MOEA) problem and a MOEA-based searching algo-
rithm was designed to solve the problem. For evaluating the
quality of an optimal evolution solution, Liu and Liu [21]
explained that the robustness is an important index and stud-
ied the robustness of the coevolution rules against attacks for
cooperation game. However, the information requirement in
the above researches is still limited to the complete infor-
mation, which requires that individual player always prefers

high-payoff strategy during the process of selection. In fact,
since different players have different cognize abilities and
asymmetric information, the process of strategy improvement
will inevitably be lack of far-sight. Therefore, the local short-
sighted strategy has its own rationality. It is of great sig-
nificance to explore non-deterministic strategy evolutionary
analysis.

In recent years, the range and application range of evo-
lutionary game research is expanding. Such as the social
network modeling, to explore the effect of users’ decisions,
actions, personal interests, and socio-economic interactions
on the scientific problem related with the social network
population, Du et al. [22] explored the community-structured
evolutionary game for privacy protection in social networks,
which can promote the spreading of privacy protection behav-
ior throughout the network. The dynamics of information dif-
fusion process over social networks using evolutionary game
theoretic framework was formulated by Jiang et al. [23], [24],
which highlighted the correspondence between the evolution-
ary game theory and information diffusion. Wang et al. [25]
gave the analysis of population behavior of social networks
by employing the evolutionary game, but did not give a
detailed solution of how to calculate the solution of equilib-
rium. By combing the above researches, we can derive that
evolutionary game theory has been successfully applied in
some related fields and gained some outstanding achieve-
ments, which provide a significant reference for exploring
the game law in the field of network security. However,
the investigations in the direction of network security are not
many, and its research in the network security is still in its
infancy.

In terms of information requirements, the current
researches only consider the complete information condi-
tion. They require players to master adversary’s informa-
tion accurately. However, the information is asymmetric
and the complete information reduces the operability of
the model. For game type and game structure, existing
approaches requires that the attack-defense players have fixed
kinds of type, and analyze the simple structure containing
two independent strategies. In the future study, we should
consider the generalized game structures. In terms of evo-
lutionary behavior, existing researches mainly explore the
deterministic strategy, but do not consider nondeterministic
strategy caused by the incomplete information. Therefore,
studying the stochastic evolutionary strategy is closer to the
practical application. In terms of the equilibrium solution,
the current researches calculate the equilibrium by forming
payoff matrices and focus on how to optimize the calculation
process, but do not deeply summarize the dynamic process of
strategy evolution. Promising directions lay in the analysis
of strategy selection varies with time. In terms of appli-
cation scenarios, no matter the behavior analysis of social
network or the dynamics research of security governance,
they in essence base on the strategies selections, so that
the researches on the issue of strategy selection is more
general.
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III. INCOMPLETE INFROMATION ATTACK-DEFENSE
EVOLUTIONARY GAME MODEL
In this section, we first give the motivations of this paper, and
then construct the attack-defense evolutionary game model
under the condition of incomplete information. Finally,
we develop the evolutionary equations of strategy selection.

A. MOTIVATION ANALYSIS
Network attack-defense has the characteristics such as non-
cooperation, incomplete information and limited rationality,
etc. Based on this, the motivations are as follows.

1) Attack-defense incomplete information. In view of the
incomplete information game scenario, by borrowing the
Hessian transformation [26], the paper converts the uncer-
tainty of attack-defense strategy payoff to the uncertainty of
attack-defense player’s type. We first assign each player with
a unique type related to its strategy and payoff. The type is the
private knowledge of the player. It determines the occurrence
probability of each type. The probability distribution of the
types is a public knowledge that all players can calculate
through historical statistics data. From this aim, we convert
the probability calculations of player types to that of players’
strategies.

2) Attack-defense bounded rationality. During the process
of network adversary, different attackers and defenders have
different abilities of cognizance, which is influenced by their
own interests such as safety knowledge, skill level, expe-
rience, etc. Therefore, the selections of strategies affected
by various uncertain factors lead to the bounded ratio-
nal repeated game. With time going by, the payoff differ-
ences between different strategies populations will change.
By studying and modifying the strategy selection of other
populations, under the driving of this evolutionary mecha-
nism, low-payoff populations continue to follow the strate-
gies of high-payoff populations in order to improve their
own strategy. Starting from the sets of attack-defense strate-
gies, this paper develops the evolutionary game model to
explore the tracks of the attack-defense strategy dynamic
evolutions.

B. INCOMPLETE INFORMATION ATTACK-DEFENSE
EVOLUTIONARY GAME MODEL
Based on the analysis in Section III-A, we give the
definition of the evolutionary game model of network
attack-defense by referring to the basic two-player game
model [27], [28], which includes five basic elements: attack-
defense players set, player types set, probability distribution
set of player types, attack-defense strategies set and payoff
function set.
Definition 1:Attack-defense Incomplete Information Evo-

lutionaryGameModel AIEGMcan be formalized as a 5-tuple
AIEGM = (N ,T ,E, S,U).

1) N = (NA,ND) is the set of population of game players,
where ND is the population of defenders, and NA is the
population of attackers.

2) T = (TA,TD) is the space of attack-defense types of
players, TA = {t1, t2, · · · , tλ} is the type space of the attacker
population, where λ ∈ N+ and λ ≥ 2, λ is the total number
of attacker types. TD = {t} is the type of the defender.

3) E = (EA,ED) is the probability distribution of the
type of the players, EA = {ε1, ε2, · · · , ελ} is the probability
distribution set of the attacker type space {t1, t2, · · · , tλ}, that
is, the probability of attacker type tk is εk , 1 ≤ k ≤ λ. The
defender population has only one type t and the probability
of this type is 1.

4) S = (SkA, SD) is a set of attack-defense strategies,
SkA = {A1,A2, · · · ,An} is the optional strategies space of
the attacker with type tk , SD = {D1,D2, · · · ,Dm} is the
optional strategies space of the defender, where m, n ∈ N+

and m, n ≥ 2, 1 ≤ i ≤ n, 1 ≤ j ≤ m, n and m are the total
number of attack and defense strategies respectively.

5) U = (UA,UD) is the set of payoff functions, UA and
UD are the payoff functions of the attacker and defender
respectively. It refers to the profit value of player obtaining
from its strategy. The function UA(tk ,Ai,Dj) is related to
the player type space and strategy space. akij ∈ UA and
dkij ∈ UD respectively denote the payoff value of the tk
type attacker and defender when their strategy combination
is (Ai,Dj).
Remarks:
1. In condition 1), the general attack-defense scenario

includes multiple participants. To simplify our analysis, our
model abstracts multiple participants with the same type as a
player population.

2. In condition 2), the motivation behind our Bayesian
game formulation is that, generally an attacker/defender
game is an incomplete information game where only the
defender is uncertain about the type of his opponent (regu-
lar or malicious) [29]. Besides, the security defense servers
for the information system. Because of the needs of open
service, product advertising, social supervision, and commer-
cial interests, the defense strategies taken by defenders are
public knowledge to some extent. Therefore, we consider
that there is only one type ‘t’ for the defenders, which is
common knowledge to the two players [29]. The scenario
of one type defender is more practical. The type of attacker
is related with its attacking behaviors and is the attacker’s
private information. Thus, we take into account of multiple
different types of attackers t1, t2, · · · , tλ for satisfying the
flexibility and the scalability of our game structure.

3. In condition 4), for the extraction of attack-defense
strategies, we first analyze network environment informa-
tion, including network topology, connectivity and vulnera-
bility information, etc. Among which, topology is obtained
based on network structure statistics, network connectivity is
achieved based on the network firewall filtering rules, and
vulnerability is gained using vulnerability scanning tool like
Nessus, In addition, through analyzing vulnerability upgrade,
rules adjustment of firewall access, configuration updates
of security devices, etc., we extract defense strategies set.
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Furthermore, through collecting the alert data of firewalls,
host logs, intrusion prevention systems, virus detection sys-
tems and other sensors, we can analyze attack behaviors.
Finally, through referring to the database of attack-defense
behaviors published by MIT Lincoln Laboratory [31],
we can extract the feasible strategies of attacker and
defender.

4. In the classic complete rational game model, Nash equi-
librium is explained as the optimal reaction between both two
sides of attacker and defender, but no forming process of Nash
equilibrium is given. The emphasis of this paper is to analyze
the evolutionary process of attack-defense strategies. In addi-
tion, we try to simulate the process of strategies learning and
adjustment. We also describe the dynamic evolutionary track
of strategy.

C. PAYOFF QUANTIFICATION OF
ATTACK-DEFENSE STRATEGIES
Payoff quantification of attack-defense strategies is the basis
for selecting the optimal defense strategy. The accuracy of
quantification directly affects the results of defense strategy
selection. Jiang et al. [3] summarize a large number of attack-
defense strategies and their classification, and propose a
quantifiable method of payoff based on benefit/cost, but they
do not consider the benefit returned by defender’s counterat-
tack. In this paper, we further optimize it.
Definition 2: Attack Benefit AB is the network resource

value obtained by an attacker, which reflects the attacker’s
ability to control target network resources.
Definition 3: Attack Cost AC is the cost of human,

time and material resources for obtaining the network
resources or damaging the system.
Definition 4: Defense Benefit DB includes direct bene-

fit and indirect benefit. Direct benefit refers to the reward
of security strengthen by the defender’s safety countermea-
sures for repairing the vulnerability of network resource.
Jiang et al. [3] and Liu et al. [12] only consider the direct
benefit. We further provide supplements of indirect benefit.
It is the reward of defender gaining through collecting the
evidences of attack such as attacker’s pattern, sequence, scale
and path. For example, the port scanning time, port number,
source IP address, and destination IP address can be used to
track and locate the source of the attacker. These measures
can bring indirect benefits to defenders and increase the
difficulty of subsequent attacks, which can deter potential
attackers.
Definition 5: Defense Cost DC is the cost that defend-

ers spend on strengthen the vulnerability of the system.
It includes human and time costs on investment in security
devices, and resources loss cost on affecting the normal oper-
ation of the service.
Definition 6: Attack-defense payoff matrix Mk indicates

the payoff values of attacker and defender, in which akij and
dkij respectively represent attacker’s and defender’s payoff
when the strategies are (Ai, Dj) and the attacker type is tk ,

where ∀k = 1, · · · , λ, i = 1, · · · , n, j = 1, · · · ,m.

Mk =


ak11, dk11 ak12, dk12 · · · ak1m, dk1m
ak21, dk21 ak22, dk22 · · · ak2m, dk2m

· · · · · ·
. . . · · ·

akn1, dkn1 akn2, dkn2 · · · aknm, dknm


D. EVOLUTIONARY STABLE EQUILIBRIUM
Based on the attack-defense evolutionary game model pro-
posed in Section III-A, this section first gives the concept of
attack-defense evolutionary stable strategy, and then analyzes
how to use the dynamic evolutionary equation to calculate
the evolutionary stable equilibrium. Finally, we design the
optimal defense strategy selection algorithm based on evo-
lutionary stable equilibrium.

Evolutionary Stable Strategy (ESS) [30] is the optimal
strategy for the game system formed during the long-term
strategy evolution. The strategy is balanced and stable, which
is able to resist the intrusion of other strategies. The definition
of network attack-defense evolutionary stable strategy is as
follows.
Definition 7: For any attacker population with type

tk , the attacker population randomly selects the strategy
space SkA = (A1,A2, · · · ,An) with probability P =

(pk1, pk2, · · · , pkn). Meanwhile, the defender population ran-
domly selects the strategy space SD = (D1,D2, · · · ,Dm)
with probability Q = (q1, q2, · · · , qm). It indicates that
individual player in the attacker population and defender
population randomly select and implement the pure strategy
with probability distributions P and Q in the actual game
process respectively. We take strategy σ ∗ = (P,Q) as the
attack-defense evolutionary stable strategy. For any σ 6= σ ∗,
U (σ ∗, σ ∗) indicates the payoff when the players in the pop-
ulations of attacker and the defender choose the co-strategy
σ ∗. U (σ ∗, σ ) indicates the payoff when there is a mutation
of natural selection for some players. The above definition
follows when the following conditions are met:

i. (equilibrium) U (σ ∗, σ ∗) ≥ U (σ, σ ∗)
ii. (stability) U (σ ∗, σ ∗) = U (σ, σ ∗) ⇒ U (σ ∗, σ ) >

U (σ, σ )
The first condition guarantees that σ ∗ is the Nash equi-

librium strategy. It means attackers’ or defenders’ unilateral
change of the strategy will not be profitable. When σ is
mostly consist of σ ∗ and contains a few other strategies,
it satisfies that σ ∗ is the optimal response, otherwise other
strategies have the possibility of invasion and development.
The second condition guarantees that if there exist the other
optimal response σ , then it requires that when facing σ , σ ∗ is
better. It also guarantees if there is a mutation of strategy to
σ , σ is impossible to further develop.
The mechanism depicted in Definition 7 indicates that in

any attack-defense game evolutionary model, if most players
in the population select the stable strategy, then a small
number of strategy mutants in the population will not affect
the entire population. The attack-defense system will keep in
the state of evolutionary stable equilibrium. Unless there is
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a higher-payoff strategy, the system will not deviate from the
current stable state and will remain in that state. Therefore,
the evolutionary stable attack-defense strategy has stronger
predictability and robustness ability.

The above definition directly gives the condition
of whether the strategy evolves but does not depict the track of
selecting the strategy ultimately. In the adversarial process
of network attack-defense in the reality, the rational degree
of players is relatively low since that attackers and defenders
do not have common understanding of each other’s payoffs.
The learning speed of information security strategy and
dynamic adjustment ability is not fast, so this paper depicts
the track of attack-defense strategies by improving replicator
dynamic equation [28] with randomness, which describes the
uncertainty characteristic of biological evolution. We define
it as the stochastic replicator dynamic:
Definition 8: Stochastic replicator dynamic differential

equations

dp
dt
= ωp

(
U (S)− U

)
The formula shows that the change rate of the population

proportion of player adopting strategy S in the entire pop-
ulation dp/dt is directly proportional to the proportion of
player selecting this strategy. Moreover, it is also directly
proportional to the range of the expected payoff over the
average payoff (U (S)− U ).

The conventional replicator dynamic equation adopts a
deterministic dynamics to update the evolution, and the indi-
vidual learns from the individual behavior of the population
of highest-payoff with the probability 1. Considering that
in the actual attack-defense game process, individual gain
different payoffs when referring to different a strategy, this
causes the randomness of the strategy learning. Based on
this consideration, we add the randomness of referring payoff
to the original replicator dynamic equation. We describe the
noise effect by bringing in the selecting intensity factor ω,
0 ≤ ω ≤ 1. The ω is assigned according to the player’s
historical data of selection. In detail, ω = 1 represents the
strong selection and ω � 1 represents the weak selection.
It means that some low-rational players in the population are
allowed to select irrational strategies. In other words, the low-
payoff strategy still has a small probability of being adopted
by high-payoff individuals in natural selection. We think the
improved replicator dynamic equation is more general and is
more consistent with the reality.

From Definition 8, we can see that most bounded ratio-
nality players in the population will gradually undertake the
strategy that have higher payoff than the average payoff,
and give up the irrational low-payoff strategy. Therefore,
the population proportion of the players adopting this strategy
will change dynamically.

In order to construct the stochastic replicator dynamic
equation over the proposed model, we first define the param-
eters, pki is the population proportion of the attack players

(with type tk ) adopting strategy Ai, ∀tk ,
n∑
i=1

pki = 1, where

1 ≤ k ≤ λ, 1 ≤ i ≤ n. qj indicates the population pro-
portion of the defense players adopting the defense strategy

Dj, where
m∑
j=1

qj = 1, 1 ≤ j ≤ m. We define the probability

vectors (pk1, pk2, · · · , pkn) and (q1, q2, · · · , qm) respectively
represent the mixed strategies of the attacker (with type tk )
and the defender. We also set the defense payoff as UDj when
selecting strategy Dj and the average defense payoff as UD.
The attack payoff is UAI when selecting strategy Ai and the
average payoff for attacker type tk is U tk .
(1) Stochastic replicator dynamic equation of defense

strategy
The defender analyzes the prior probability distribution

of attacker’s types P = (ε1, ε2, · · · , ελ) combining with
the current defense situation. Since defenders have only one
type t , the probability of the type of attacker inferred by
the defender can be calculated by the following Bayesian
formula.

Prob(tk |t) =
Prob(tk , t)
Prob(t)

= εk

Further, the expected payoffUDj of selecting different kind
of defense strategy Dj for the defender is as follows:

UD1 = ε1 (p11d111 + p12d121 + · · · + p1nd1n1)+ · · ·
+ ελ (pλ1dλ11 + pλ2dλ21 + · · · + pλndλn1)

UD2 = ε1 (p11d112 + p12d122 + · · · + p1nd1n2)+ · · ·
+ ελ (pλ1dλ12 + pλ2dλ22 + · · · + pλndλn2)

UDj = ε1
(
p11d11j + p12d12j + · · · + p1nd1nj

)
+ · · ·

+ ελ
(
pλ1dλ12 + pλ2dλ2j + · · · + pλndλnj

)
=

λ∑
k=1

[
εk

n∑
i=1

(
pkidkij

)]
. . .

UDm = ε1 (p11d11m + p12d12m + · · · + p1nd1nm)+ · · ·
+ ελ (pλ1dλ1m + pλ2dλ2m + · · · + pλndλnm)

Then, the average defense payoff is as follows:

UD = q1UD1 + q2UD2 + · · · + qmUDm

=

m∑
j=1

[
qj

λ∑
k=1

(
εk

n∑
i=1

(
pkidkij

))]
The change rate of the population proportion of selecting

strategy Dj in the defender population varies with time is
dqj
dt . It reflects defender’s learning and adjusting process of
selecting strategy Dj through repeated games. Hence, the dif-
ferential equation describing the change rate of selecting Dj
is as follows:

dqj
dt
= ωqj(UDj − UD)

= qj

[
λ∑

k=1

(
εk

n∑
i=1

(
pki × dkij

))

−

m∑
j=1

(
qj

λ∑
k=1

(
εk

n∑
i=1

(
pkidkij

)))
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(2) Stochastic replicator dynamic equation of attack
strategy (with type tk )
The expected payoffUAi of an attacker choosing a different

attack strategy Ai is as follows:

UA1 = q1ak11 + q2ak12 + · · · + qmak1m
UA2 = q1ak21 + q2ak22 + · · · + qmak2m
UAi = q1aki1 + q2aki2 + · · · + qmakim =

m∑
j=1

qjakij

. . .

UAn = q1akn1 + q2akn2 + · · · + qmaknm

Then, we can get the average attack payoff is as follows:

U tk = pk1UA1 + pk2UA2 + · · · + pknUAn

=

n∑
i=1

pki m∑
j=1

(
qjakij

)
For the attacker population with type tk , the change rate

over time of the game proportion of strategy selection Ai is
dpki
dt . It depicts attacker’s process of learning and improving
strategy Ai after repeated games. The differential equation
describing the change speed with time for strategy Ai is as
follows:

dpki
dt
= ωpki(UAi − U tk )

= ωpki

 m∑
j=1

qja1ij −
n∑
i=1

pki m∑
j=1

(
qjakij

)
The practical significance of the replicator dynamic equa-

tions for the attack-defense strategies are that: We take the
defense strategy Dj as an example, if the individual defender
player who chooses a pure strategy Dj gains the payoff UDj ,
which is less than the average payoff UD of the defender
population. Then the growth rate of the population proportion
of defenders who select the strategy Dj is less than 0. On the
contrary, if the individual player choosing a pure strategy Dj
gains the payoff UDj , which is over the average payoff UD,
then we can predict that the growth rate of the defenders
selecting the strategyDj is more than 0. In another case, if the
individual payoff is exactly equal to the average payoff of the
population, then the growth rate of selecting the strategy Dj
is equal to 0.

Assign F(p) = dpki
dt , G(q) =

dqj
dt . By calculating the results

of Y (p, q) =
[
F(p)
G(q)

]
=

[
dpki
dt
dqj
dt

]
= 0, the evolutionary sta-

ble equilibrium of the network attack-defense game decisions
is obtained from the solution.

IV. OPTIMAL DEFENSE STRATEGY
SELECTION ALGORITHM
Based on the attack-defense evolutionary game model pro-
posed in section III, we construct the stochastic replicator

Algorithm 1 Optimal Defense Strategy Selection
Algorithm for Network Attack-Defense Game
Input Network information NetInf, Configuration informa-
tion of device SafetyInf, Intrusion alert data information
AlertInf
Output Optimal defense strategy Q

BEGIN
1) Initialize AIEGM = (N ,T ,E, S,U)
// Initialize attack-defense evolutionary game model

{
1-1) Construct TA = {tk}, TD = {t}, 1 ≤ k ≤ λ
// According to the information of historical security

events and NetInf, we construct the attacker type space
1-2) Construct EA = {εk}, ED = {ε}, 0 ≤ εk ≤ 1
// Analyze the probability distribution of attacker type

space based on the historical security events
1-3) Construct SA = {Ai}, 1 ≤ i ≤ n
// By analyzing security devices’ configuration informa-

tion SafetyInf and collecting defense strategy, we construct
the space of attack strategy using [31]

1-4) Construct SA = {Dj}, 1 ≤ j ≤ m
// By collecting real-time alert data AlertInf and analyz-

ing characteristics of attack behavior, we construct defense
strategy space using [31]

1-5) Construct Pk = {pki}, ∀k, ∃0 ≤ pki ≤ 1,
n∑
i=1

pki=1

// Construct the attack strategy selection vector P,
in which the attacker of the type tk selects attack strategy
Ai with the probability pki ∈ P

1-6) Construct Q = {qj}, 0 ≤ qj ≤ 1,
m∑
j=1

qj = 1

// Construct the defense strategy selection vector Q,
in which the defender selects the defense strategy Dj with
the probability qj ∈ Q
}

2) Calculate Prob(tk |t)
// Calculate the priori probability of the attacker typetk from
the view of the defender
3) Set ω, 0 ≤ ω ≤ 1
// Set the selecting intensity factor according to the player’s
historical selections

For (k = 1; k ≤ λ; k ++)
For (i = 1; i ≤ n; i++)

For (j = 1; j ≤ m; j++)
{

4) Calculate
{
akij = AB(tk ,Ai,Dj)− AC(tk ,Ai,Dj)
dkij = DB(tk ,Ai,Dj)− DC(tk ,Ai,Dj)

// By traversing each attacker type, we calculate the attack
payoff and the defense payoff under different strategies
combinations using [3].

}
For (k = 1; k ≤ λ; k ++)
{
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Algorithm 1 (Continued.) Optimal Defense Strategy
Selection Algorithm for Network Attack-Defense Game

5) Construct

F(Pk ) = ωpki

(
m∑
j=1

qjakij −
n∑
i=1

(
pki

m∑
j=1

(
qjakij

)))
// Construct the stochastic replicator dynamic equation for
each strategy of attacker with type tk

}
6) Construct

G(q) = ωqj

[
λ∑

k=1

(
εk

n∑
i=1

(
pki × dkij

))
−

m∑
j=1

(
qj

λ∑
k=1

(
εk

n∑
i=1

(
pkidkij

)))]
// Construct the stochastic replicator dynamic equation for
each strategy of defender

7) Calculate Y =
[
F(p)
G(q)

]
= 0

// Calculate the evolutionary stable equilibrium
8) Output Q = {q1, q2, · · · , qm}
// Output the optimal defense strategies
END

dynamic equations of both the attacker and defender. By cal-
culating the evolutionary stable equilibrium, the optimal
selection algorithm of defense strategy is given as follows.

The time cost of the above algorithm focuses on step 4)
and step 7). The step 4) traverses each element in the n × m
payoff matrix of λ attacker types in turn, the number of
operations isO(λmn), the computation complexity of solving
the equations in the equation of step 7) is O(λ (m+ n)3). The
total complexity of the algorithm isO(λ (m+n)3). The storage
cost of the algorithm focuses on the storage of payoff matrix
and the middle vector of the equilibrium calculating. The
storage of payoff matrix has higher complexity. It contains
a total number of nm storage units. Therefore, the storage
complexity is O(nm).

V. EXPERIMENTS AND ANALYSES
This section takes the intrusion and proactive defense in the
realistic network system as the example to verify the proposed
attack-defense evolutionary game model and the correspond-
ing equilibrium calculation method. Based on this, we sum-
marize the general rules of strategy evolution. Furthermore,
in order to analyze the impact of strategy payoff on strategy
selection, the numerical experiments in two cases (consid-
ering/without considering the defense indirect benefits) are
compared and analyzed. In the end, a comprehensive com-
parison among this paper and existing works is provided.

A. EXPERIMENTAL ENVIRONMENT
The structure of experimental network system is shown
in Fig. 1, where the network security devices are consist of
firewall, intrusion prevention system IPS and virus detection
system VDS. The firewall forbids external host access the

FIGURE 1. The architecture of experiment network system.

servers and hosts in the trusted zone. External host can only
use the HTTP protocol (port 80) to communicate with the
web server in the DMZ Zone. Meanwhile, the web server
can communicate with the servers in the Trusted Zone and
the servers in the Trusted Zone receive the service requests
passively.

B. PAYOFF QUANTIFICATION
First, we initialize the parameters of the proposed model by
using step 1) of Algorithm 1. For simplicity of analysis and
discussion, we only consider with 2 by 2 games including two
kinds of basic attack and defense strategies. When encounter-
ing other types of game structures, the calculation procedure
and analysis method are similar.

There are two basic defense strategies ‘D1 = patch
upgrade’ and ‘D2 = service close’. Intrusion prevention
system IPS and virus detection system VDS detect system
vulnerabilities as well as download and install the new patch
resources in the real time. Operated by the security adminis-
trator, the firewall can close the service.

Through real-time alerts generated by the running firewall,
IPS, VDS and host security audit log, we preprocessed the
alert data firstly. After correlating and analyzing the data,
we obtain the information of attack behavior. According to
the characteristics of attack behaviors [31], we get two basic
attack strategies ‘A1 = DoS’ and ‘A2 = Sniffer’.

DoS attacks can undertake reasonable service requests to
overcommit service resources, leading legal users cannot get
normal services. In essence, it is a proactive attack. Sniffer
attacks include the scanning of ports, addresses, vulnerability,
etc. The purpose is to collect information rather than to access
it. It also will not affect the normal access of legal users and
is a passive attack difficult to be found. According to the
defender’s historical experience, the attacker has two types
‘t1 = adventure’ and ‘t2 = conservative’.
Based on the history experiences of defense, we can

divide the attack types into ‘t1 = adventure’ and ‘t2 =
conservative’, and the payoff matrices are

M1 =

[
a111, d111 a112, d112
a121, d121 a122, d122

]
,

M2 =

[
a211, d211 a212, d212
a221, d221 a222, d222

]
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FIGURE 2. The game tree of experiment network.

The payoff matrices of different strategy combinations can
be illustrated using the game tree in Fig. 2.

C. EQUILIBRIUM CALCULATION AND
DEFENSE STRATEGY SELECTION
According to step 1-5) and step 1-6) of Algorithm 1, when the
attack type is ‘t1 = risk’, the population proportion of players
selecting the strategy ‘A1 = DoS’ is p11(0 ≤ p11 ≤ 1).
Meanwhile, the proportion of players selecting the strategy
‘A2 = Sniffer’ is p12 = 1 − p11. When the attack type is
‘t2 = conservative’, the proportion of game players selecting
the strategy ‘A1 = DoS’ is p21(0 ≤ p21 ≤ 1) and the
player proportion of selecting the strategy ‘A2 = Sniffer’
is p22 = 1 − p21. The proportion of players in the defense
population selecting the strategy ‘D1 = patch upgrade’ is
q(0 ≤ q ≤ 1). Meanwhile, the proportion of game play-
ers selecting the strategy ‘D2 =service close’ is 1 − q.
According to the statistics of historical data, the proportion
of risk attackers is ε. Meanwhile, According to step 1-2) of
Algorithm 1, the proportion of the conservative attacker is
set as 1− ε. According to step 3) of Algorithm 1, we set the
selecting intensity factor ω according to the players’ security
knowledge. Next, we show how to construct the stochastic
replicator dynamic equations of attack-defense strategies.

1) RISK ATTACK STRATEGIES
EVOLUTION EQUATION
According to step 5) of Algorithm 1, we get the differential
equation of risk attacker’s decision evolution is

dp11
dt
= ωp11(UDoS − U t1 )

= ωp11(1− p11) (q(a111 + a122 − a121 − a112)
+ a112 − a122) .

2) CONSERVATIVE ATTACK STRATEGIES
EVOLUTION EQUATION
According to step 5) of Algorithm 1, we can get the differen-
tial equation of risk attacker’s strategy evolution

dp21
dt
= ωp21(UDoS − U t2 )

= ωp21(1− p21) (q(a211 + a222 − a221 − a212)

+ a212 − a222) .

3) DEFENSE STRATEGIES EVOLUTION EQUATION
According to step 6) of Algorithm 1, we get the differential
equation of defense strategy evolution is as follows:

dq
dt
= ωq(UPatch − UD)

= ωq(1− q)(εp11(d111 + d122 − d112 − d121)

+ (1− ε)p21(d211 + d222 − d212 − d221)

+ ε (d121 + d222 − d122 − d221)+ d221 − d222).

Based on the above analysis, According to step 7) of
Algorithm 1, we set the right-hand side of the above equa-
tions as 0.

{ωp11(1− p11) (q(a111 + a122 − a121 − a112)

+ a112 − a122) = 0

{ωp21(1− p21) (q(a211 + a222 − a221 − a212)

+ a212 − a222) = 0ωq(1− q)(εp11(d111 + d122 − d112 − d121)+(1− ε)p21(d211 + d222 − d212 − d221)
+ε(d121 + d222 − d122 − d221)+ d221 − d222) = 0

According to step 8) of Algorithm 1, The solution of
the above equations is the attack-defense evolutionary sta-
ble equilibrium for decision-making. The defender’s opti-
mal defense strategy is randomly selecting strategies ‘patch
upgrade’ and ‘service close’ with the probability q and 1− q
respectively.

D. RESULTS ANALYSES
In the following, numerical experiments were conducted
using two cases: Case 1 (including defense indirect bene-
fits) and Case 2 (excluding defense indirect benefits). The
Case 1 considers the benefit of defense counterattack while
the Case 2 does not consider. In addition, we make a compre-
hensive comparison and analysis.
(1) Case 1:
According to Definition 2 - Definition 5 in Section III-C,

combined with the quantitative methods of payoff [3], we can
get attack-defense payoffs of case 1 as shown in Table 1.

TABLE 1. Game payoff values of case 1.

We take the strategy combination ‘t1 = risk’, ‘A1 =
DoS’and ‘D1 = patch upgrade’ as an example. The payoff
calculation process is as follows.

1) The privilege obtained by attack is divided into
three levels, namely, Remote privilege, User privilege and
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Root privilege. The corresponding attack benefits AB are
measured using 30, 50 and 100 respectively. The DoS attack
obtains the root privilege of the system resource and therefore
the attack benefit AB = 100. The human, time and resource
costs of attack have 3 levels, namely, high, medium and low,
which can be respectively measured using 50, 30 and 10. The
DoS attacks need to use large number of puppets and have
the features like long duration, high bandwidth traffic, and
therefore the attack cost AC = 50. According to step 4) of
Algorithm 1, the attack payoff is AB−AC = 100−50 = 50.
2) The direct benefit of defense results from the strengthen

promotion of security. We divide it into three levels, namely
high, medium and low, with the value of 100, 50 and 30.
Meanwhile, the indirect value of security deterrence is mea-
sured using 30, 20 and 10. Amongwhich, the benefit of ‘patch
upgrade’ is 50, the indirect benefit of security deterrence is
10, so the total defense benefit is DB = 50 + 10 = 60.
Defense costs include the consumption of time, human and
resource for patch download, transmission and installation,
so that defense cost DC = 30. According to step 4) of
Algorithm 1, the defense payoff isDB−DC = 60−30 = 30.
Because the implementation of attack is illegal and has

potential risks. The number of risk attackers in the real world
is obviously less than the number of conservative attackers.
The historical statistics show that the population proportion
of risk attacker is ε = 1/4 and that of conservative attackers
is 1− ε = 3/4.

The assignment of attack-defense stochastic replicator
dynamic equations in section V-C is as follows:

F(p11) = ωp11(1− p11) (40q− 20) = 0
F(p21) = ωp21(1− p21) (20− 40q) = 0
G(q) = ωq(1− q)(20εp11 + 20(1− ε)p21

+20− 10ε) = 0

We get 12 equilibrium solutions in the game system for
the experimental network, in which p11 = 0, p21 = −7/6,
q = 1/2, p11 = 1, p21 = −3/2, q = 1/2, p11 =
−7/2, p21 = 0, q = 1/2, p11 = −13/2, p21 = 1, q = 1/2
do not meet the probability range requirement, so that we
exclude them.

Moreover, the evolutionary stable strategy needs to satisfy
the following conditions [28], namely, the growth rate of
strategy evolution should not exceed 0. We analyze the local
stability of the game system in Table 2.

dF(p11)
dp11

= (1− 2p11)(40q− 20) ≤ 0

dF(p21)
dp21

= (1− 2p21)(20− 40q) ≤ 0

dG(q)
dq
= (1− 2q)(5p11 + 15p21 + 17.5) ≤ 0

According to the result in Table 2, we can get the evolu-
tionary stable equilibrium point p11 = 1, p21 = 0, q = 1.
We set the strategy of game system at initial moment as p11 =
0.9, p21 = 0.9, q = 0.9, p11 = 0.1, p21 = 0.1, q = 0.1 and

TABLE 2. Equilibrium determination of attack-defense game system.

FIGURE 3. Phase diagram of attack-defense game evolutionary system
when ε = 1/4, ω = 1.

FIGURE 4. The evolutionary track of the risk attacker’s strategy ‘DoS’
varies with time when ε = 1/4, ω = 1, p21 = 0.1, q = 0.1, p11 = 0.1, 0.3,
0.5, 0.7, 0.9.

p11 = 0.1, p21 = 0.9, q = 0.1 respectively. Setting ε = 1/4,
ω = 1 and Using Matlab2017 to simulate, we can get the
phase cures of the system in Fig. 3. The evolutionary track of
the risk attacker’s strategy is shown in Fig. 4. Fig. 5 shows
the evolutionary track of the conservative attacker’s strategy.
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FIGURE 5. The evolutionary track of the conservative attacker’s strategy
‘DoS’ varies with time when ε = 1/4, ω = 1, p11 = 0.1, q = 0.1, p21 = 0.1,
0.3, 0.5, 0.7, 0.9.

Fig. 6 shows the evolutionary track of defender’s strategy. The
abscissa represents the evolutionary times of game system,
and the ordinate represents the probability result of strategy
selection. We will discuss them separately as below.

1) As can be seen from Fig. 3, the system will evolve
to an equilibrium point in the end. We take p11 = 0.9,
p21 = 0.9, q = 0.9 as an example. At the initial time,
the population proportions of risk attacker and conservative
attacker selecting ‘DoS’ attack strategy are both 0.9, the pro-
portion of defenders selecting the strategy of ‘patch upgrade’
is 0.9. After continuous strategy learning and improving,
the game system finally evolves to a stable equilibrium point
(1, 0, 1), namely, the population of risk attackers undertakes
the ‘DoS’ strategy while the population of risk attackers
undertakes the ‘Sniffer’ strategy, and the optimal defense
strategy of the defender population is ‘patch upgrade’. The
result is consistent with the fact that risk attackers are more
likely to choose proactive and profitable ‘DoS’ attack, while
conservative attackers prefer passive and moderate ‘sniffer’
attack. The defenders select pure strategy of ‘patch upgrade’,
which will increase the attacker’s difficulty of invasion and
improve the defender’s own payoff.

2) As shown in Fig. 4, we set p21 = 0.1, q = 0.1 at
the initial time of system. It means that the conservative
attacker randomly select pure strategy {DoS, Sniffer} with
the mixed probability {p21 = 0.1, 1 − p21 = 0.9} and the
defender randomly choose strategy {patch upgrade, service
close} with the mixed probabilities {q = 0.1, 1 − q = 0.9}.
The tracks of risk attackers randomly choose strategy ‘DoS’
with different initial probabilities p11 = 0.1, 0.3, 0.5, 0.7, 0.9
are shown in Fig. 4. After strategy learning and improvement,
the risk attacker of bounded rationality will finally select
pure strategy ‘DoS’ with the probability 1. Moreover, this
selection has a constant stability. It also can be seen that in the
initial stage of the evolution, some players in the population
try other strategies, so the population proportion choosing
strategy ‘DoS’ decreases when t < 1. However, through
continuous strategy adjustment, the population proportion

choosing strategy ‘DoS’ turns to rise until it reaches 1 when
t > 1. The results show that even if there are a few of mutants
change to select ‘Sniffer’, because the payoff of mutants is
less than the average payoff of the whole population, they will
eventually give up the irrational selection ‘Sniffer’. To sum
up, the optimal defense strategy of ESS regarding network
attack-defense proposed in this paper has the strong predic-
tive ability and robustness capability as expected.

3) As shown in Fig. 5, we set p11 = 0.1, q = 0.1 at the
initial time of system. It means that the risk attacker randomly
choose a pure strategy from {DoS, Sniffer} with the mixed
probabilities {0.1, 0.9} and the defender randomly choose a
pure strategy from {patch upgrade, service close} with the
mixed probabilities {0.1, 0.9}. The evolutionary track that
risk attackers randomly choose ‘DoS’ with different initial
probabilities p11 = 0.1, 0.3, 0.5, 0.7, 0.9 is shown in Fig. 5.
This shows that after strategy learning and improvement,
the risk attacker of bounded rationality will finally choose
pure strategy ‘Sniffer’ with the probability 1. It can be seen
that since some mutants try other strategies in the popula-
tion of risk attacker, the proportion of population choosing
strategy ‘DoS’ is increasing when t < 1. However, through
continuous learning and improving, the proportion continues
to decrease until it reaches 0 when t > 1. This indicates
that players in the population of conservative attacker all
select pure strategy ‘Sniffer’ finally, and the irrational strat-
egy selection ‘DoS’ cannot develop further. Above results
verify that the proposed attack-defense evolutionary game
model can dynamically depict the track of strategy selection.

FIGURE 6. The evolutionary track of defender’s strategy ‘patch upgrade’
varies with time when ε = 1/4, ω = 1, p21 = 0.1, p11 = 0.1, q = 0.1, 0.3,
0.5, 0.7, 0.9.

4) As shown in Fig. 6, we set the initial state of the game
system as p11 = 0.1, p21 = 0.1. It means that the initial
strategies of both risk and conservative attackers are ran-
domly selecting strategy ‘DoS’ with the probability 0.1. The
initial defense strategy is respectively selecting the strategy
‘patch upgrade’ with the probability p11 = 0.1, 0.3, 0.5,
0.7, 0.9. The result of numerical simulation in Fig. 6 shows
that after strategy learning and adjustment, the bounded

29816 VOLUME 6, 2018



H. Hu et al.: Optimal Network Defense Strategy Selection

rationality defender will eventually select the pure strat-
egy ‘patch upgrade’. Therefore, the optimal security defense
strategy is the ‘patch upgrade’, and this strategy has strong
stability and robustness. In other words, regardless of the type
of the attackers or their attack strategies, choosing the defense
strategy ‘patch upgrade’ can make the defender compromise
the defense cost and benefit.

FIGURE 7. The effect of incomplete information on the evolutionary track
of attack-defense strategy when ω = 1, p21 = 0.1, p11 = 0.1, q = 0.1,
ε = 0, 0.25, 0.5, 0.75, 1. (green = risk attacker’s strategy ‘DoS’,
red = conservative attacker’s strategy ‘DoS’, blue = defender’s strategy
‘patch upgrade’).

Secondly, in order to analyze the influence of probability
distribution of types of the attacker on the evolution, we first
consider the conventional replicator dynamics equation with
deterministic selection, namely, ω = 1. We set the initial
state of the system as p11 = 0.1, p21 = 0.1, q = 0.1. For
different ε = 0, 0.25, 0.5, 0.75, 1, we useMatlab2017 toolkit
to respectively get the evolutionary tracks of strategy selec-
tion varying with time as shown in Fig. 7, where the abscissa
indicates the time (reflects the number of repeated games),
and the ordinate indicates the probability of selecting the
strategy. The green, red and blue curves respectively represent
the strategy evolutionary path of the risk attacker, conser-
vative attacker and defender under different ε. As can be
seen, the prior probability distribution of types of the attacker
affects the convergence rate of the system, but does not affect
the trend of the evolution. With the increasing of risk player
proportion in the whole population of the attacker, the inflec-
tion point of the defense curve appears earlier and the system
reaches the equilibrium quicker. Results prove that the pro-
posed strategy selecting approach helps the defender make a
prompt decision.

Finally, in order to analyze the impact of stochastic selec-
tion of mutant on strategy evolution, Setting the initial state
of the system as p11 = 0.1, p21 = 0.1, q = 0.1, ε = 0.25
and respectively setting ω = 0.2, ω = 0.4, ω = 0.6,
ω = 0.8, ω = 1, we get the evolutionary tracks of defenders
selecting the strategy of ‘patch upgrade’ shown in Fig. 8.
When the payoffs are the same, the bigger selection intensity
indicates the more referred payoff under natural selection,

FIGURE 8. The effect of randomness on the evolutionary track of
defender’s strategy ‘patch upgrade’ when p21 = 0.1, p11 = 0.1, q = 0.1,
ε = 0.25, ω = 0.2, 0.4, 0.6, 0.8, 1.

then the system converges faster and the number of repeated
games for reaching equilibrium is less. which is consistent
with the basic law of attack-defense game. Therefore, individ-
ual player can avoid the ineffective game process by directly
referring to the strategy with high-payoff, which canmake the
game system reach the equilibrium quicker.
(2) Case 2:
Based on the case 1, we further analyze the impact of

strategy payoff change on selecting the defense strategy in
case 2. Table 3 shows the payoff distribution in case 2. Com-
pared with the Table 1 in case 1, we can see that the defense
payoffs of different strategy combinations decrease because
our case 2 do not consider indirect benefits of defense.

TABLE 3. Game payoff values of case 2.

Similar to the above calculation process, we set the initial
state of the game system as p11 = 0.1, p21 = 0.1, ω = 1,
ε = 0.25. After respectively setting initial q = 0.1, 0.5,
0.9, we obtain the evolutionary cures of case 1 and case 2 as
shown in Fig. 9, where the abscissa t represents the number of
game execution, and the ordinate q represents the probability
of selecting the strategy ‘patch upgrade’ during each time of
the game execution. We can derive that the defense strategy
of case 1 evolves faster. The consideration of indirect benefits
can affect the convergence speed of the game system. The
equilibrium state of the game system is independent of its
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FIGURE 9. Comparisons of evolutionary curves of the defense strategy
‘patch upgrade’ under case 1 and case 2.

initial state. Although in both of the two cases, the probability
of defender selecting ‘patch upgrade’ is 1. Since the case 1
considers the benefits of the counterattack, which helps to
calculate the payoff accurately. The defender’s countermea-
sures deter the underlying attacker and reduce the probability
of attackers selecting radical ‘DoS’ strategy, which in turn
encourages the defender to reach the equilibrium faster.

To sum up, combined with the experimental results of the
two cases mentioned above, we can conclude that
•The attack-defense game model proposed in this paper

is suitable for realistic incomplete information situations.
By estimating the probability type distribution of the attacker,
defenders can correctly predict the relationship between the
type of attacker and its selected strategy. For defenders,
the selection of defense strategy is based on its own type
as well as the relationship between the type of attacker
and attacker’s strategy. Our approach realizes the tradeoff
of maximum expected payoff of defense, which increases
the scientificity and effectiveness of attack-defense decision-
making.
•Based on the bounded rationality hypothesis of both

attackers and defenders, this paper builds the attack-defense
evolutionary game model, depicts the mechanism of strategy
evolution by employing the replicator dynamic of biological
evolutionary network, and considers that the game player
gradually reaches the stable state by trying and keeping
on exploring and interacting with other players. Numerical
experimental results of Fig. 3 to Fig. 5 dynamically show
the tracks of selections of the attacker and defender. The
evolutionary path of the bounded rational defender shown
in Fig. 5 can reflect the forming process of optimal defense
strategy more scientifically and accurately. Our game model
has a stronger interpret ability and the proposed optimal
defense strategy has stronger robustness.
•In order to analyze the stochastic evolutionary behavior,

we improve the replicator dynamic equation by adding the

selecting intensity factor to objectively depict the randomness
of selection. The modified replicator equation describes the
strategy evolutionarymechanism of both sides of attacker and
defender appropriately. We consider that the players grad-
ually explore the evolutionary stable strategy by constantly
trying under the interaction of strategy with other players.
Experimental results shown in Fig. 8 indicate that when a
small number of mutants refers to low-payoff strategies due
to their limited ability of learning, this will not affect the trend
of strategy evolution, but will affect the convergence rate of
the system, namely, the system requires more repeated games
to find the stable solution. Therefore, the proposed method
in this paper has a preferable ability to explain the forming
process of the optimal strategy and enhances the scientificity
and practicability of game analysis.
•By adjusting the payoff values, it can affect the con-

vergence speed of the game system, namely, the inflection
point of evolutionary curve is different, and can guide the
network security defense timely. By punishing the malicious
attacker and improving the rewards of defense counterattacks,
as illustrated in Fig. 9, it helps the defender make a quicker
determination on selecting the optimal strategy, encourages
both the attacker and defender to adopt strategies that are
moderate, avoids the escalation of confrontation, and assists
the security governance of network.

E. COMPARISONS AND DISCUSSIONS
The comparisons among our method and others are summa-
rized in Table 4. We can derive.

1) In terms of information requirements, [4], [8],
[15]–[17], [20], and [22] are based on the complete informa-
tion hypothesis. However, because of the asymmetric infor-
mation between the both sides of attacker and defender in
actual network, players cannot accurately understand the
opponent’s payoff, which reduces the operability of existing
models. Reference [10] and this paper build an attack-defense
game model based on incomplete information condition.
Particularly, we consider the uncertainty of the strategies and
payoffs of the attacker and defender as the uncertainty of each
other’s type, because the type of player is closely related to
its strategy payoff. Furthermore, we use Bayesian formula to
calculate our belief of defender on the type of the attacker.
Our method effectively enhances the practicality of the game
model.

2) In terms of rationality, Li et al. [4], Serra et al. [8],
and Liu et al. [10] assume that the attack-defense players
are completely rational. The Nash equilibrium in [4] and [8]
requires both attackers and defenders choose their own opti-
mal strategies at the same time. However, the process is hard
to be achieved in the reality. On the contrary, [15]–[17],
[20], [22], and this paper consider that the game players are
affected by the environment and their personal interests, they
are bounded rational agents. The game players in network
gradually find the optimal solution through strategy learning/
improving mechanism under repeated game. This signifi-
cantly improves the scientificity of attack-defense modeling.

29818 VOLUME 6, 2018



H. Hu et al.: Optimal Network Defense Strategy Selection

TABLE 4. Performance comparisons among the proposed method and others.

3) In terms of game types and game structure, Li et al. [4]
analyze the Nash equilibrium, Serra et al. [8] calculate the
equilibrium solution using Pareto optimization algorithm,
Liu et al. [10] take into account the Bayesian Nash equilib-
rium, and Huang et al. [17] explore the Nash equilibrium
of attack-defense game system under different states with
Markov decision process, and calculated the optimal solution
by linear programming algorithm. The above studies all focus
on how to solve the game solution, while the [15], [16],
[20], [22], and ours show the dynamic process of strategy
evolution, and analyze the strategy selection at different
evolutionary times. In [8], the game structure focuses on
three types of attackers while this paper is applicable to n
types of attackers. In [16], the game structure only abstracts
two simple attack-defense strategies, namely, whether to
attack or not, and whether to increase the defense invest-
ment or not. This paper comprehensive considers the general
game structure containing n kinds of attack strategies and
m kinds of defense strategies.
4) In terms of the evolutionary behavior, [4], [8], and [10]

do not consider the influence of natural selection, and there
is no analysis with the strategies adjustment. Liu et al. [15],
Zhu et al. [16], Huang et al. [17], and Du et al. [22] ana-
lyze the deterministic evolution, that is, the player always
selects the high-payoff strategy during the evolutionary
process. On the contrary, [20] and this paper consider the
random genetic variations and stochastic environmental dis-
turbances. The stochastic biological network under natural
selection in [20] is modeled through Poisson-driven genetic
variations and random environmental fluctuations. Moreover,
its emphasis is the analysis of the transformation from the
non-cooperative strategy selection to an equivalent multi-
objective optimization problem and the solution of solv-
ing this problem. In contrast, we focus on how to apply
the stochastic replicator dynamics based game theory to
model the process of network attack-defense and calculate the

optimal strategy.We consider the short sight of attack-defense
players, which is more consistent with the reality of the
network. For network security issue, we take new insight into
the uncertain selection causing by the information asymmetry
and strategy adjustment. In detail, according to the difference
between players’ cognitive abilities, we innovatively intro-
duce the selection intensity parameter to model the stochastic
law of strategy evolution. All above are more consistent with
the actual attack-defense environment.

5) In terms of strategy type, strategy independence and
equilibrium solution, Serra et al. [8] and Liu et al. [10]
take into account the type of pure strategy. In fact, pure
strategy is a special case of mixed strategies, and we con-
sider the more general mixed strategies. Liu et al. [15] and
Chen and Yeh [20] provide the investigations on cooperative
and non-cooperative games. In detail, to optimize the intru-
sion detection strategy for lowering energy consumption and
reducing alarm messages in a Sensor-Cloud, Liu et al. [15]
describe how the physical sensor nodes and virtual sensor-
service nodes should cooperate with each other in employing
a defense strategy of monitoring and informing with evolu-
tionary game theory. Zhu et al. [16] take new insights into the
phenotypic robustness of non-cooperative and cooperative
strategies from a stochastic Nash game perspective. Because
the interests of the attackers and defenders are conflicting,
we model the process of attack-defense over the framework
of a non-cooperative game, which fits the characteristic of
network security. Zhu et al. [16] undertakes the simple 2 by
2 games to model the security governance, but does not give
the specific calculating process regarding its equilibrium.
We give the detailed computing process shown in algorithm 1.
Overall, the practical guidance of this paper is outstanding.

6) In terms of application scenario, [4], [8], [17], and
this paper focus on the issue of strategy selection in the
field of network attack-defense. Chen and Yeh [20] give
the discussion about the phenotypic robustness and network
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evolvability of strategy selection under natural selection.
Liu et al. [10] evaluate the performance of worm attack-
defense game. For social network, a game theoretic frame-
work to model users’ interactions that influence users’
decisions as to whether to undertake privacy protection or not
is established in [22]. Considering the security protection
in the sensor-cloud computing environments, Liu et al. [15]
formulate the cooperative defense decision-making problem
among multiple intrusion detection systems as an evolution-
ary game. Overall, the mentioned topics are the extension of
strategy selection. Therefore, the research issue of strategy
selection is more general.

VI. CONCLUSION
Game theory is an effective tool to study the proactive
defense of network security. At present, the research on
attack-defense game with player’s bounded rationality is still
in its infancy. Besides, there are many restrictions on the
information requirements, game structure, strategy type and
equilibrium solution, which seriously affect the universality
and effectiveness of the game models and methods.

This paper starts with the view of bounded rationality of
players, breaks through the limit of complete information,
builds attack-defense evolutionary game model under the
condition of incomplete information, and expands the set
of player types and strategies in existing game structure.
By further improving the replicator dynamic mechanism of
biological evolution theory, we construct the stochastic repli-
cator dynamic equation of attack-defense strategies. More-
over, we describe the evolutionary tracks of both attackers
and defenders. We also give the selection method of optimal
defense strategy by solving the evolutionary stable equilib-
rium. Results of numerical experiment and comparison show
that the proposed model and algorithm are suitable for practi-
cal application. Moreover, the dynamic analysis performance
of selecting strategy and the ability of predicting the defense
situation are improved, which provide effective guidance for
proactive defense.
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