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ABSTRACT Analysis on the modularity of software network plays a critical role in the detection of software
vulnerabilities and in the improvement of software stability, reliability, and robustness. This paper intends to
propose a method based on the most vital nodes to analyze the modularity of software of different versions.
To this end, it first tracked software dynamic execution traces to build a dynamic software network model, and
then it mapped these traces to a complex network of a dynamic invoke software network. Second, it identified
the most vital nodes in two steps, namely the calInitialWeightForNode and calFinalWeightForNode in order
to compute the initial weights and the final weights of nodes iteratively. Third, it mined top-k nodes as the
original communities to create a framework for detecting new community, and expanded these nodes to
the community by the algorithm expandTheCommunity and evaluated the results with criterion Q. Finally,
it calculated the modularity of software of different versions. Experimental results show that the most vital
nodes are reasonable to be taken in comparison with other ranking measures, and that the analysis approach
to the modularity of software network is effective in evaluating software community structure, and can help
assist the developer to refactor the software and improve the software quality.

INDEX TERMS Software network, vital nodes, power-law, modularity.

I. INTRODUCTION
As software functional design is diversifying, software struc-
ture is also becoming more and more complex and difficult
to be understood [1]. It is a significant research challenge to
understand software evolution models [2], [3] and to improve
software maintenance [4]. On the basis of these, the under-
standing of software networks structure has become increas-
ingly important recently, especially internal characteristics of
software.

The characteristics of software shown in the software exe-
cution process [5], [6] can help us understand its structure.
During the execution process, functions carry most of the fea-
ture characteristics and the topology information, which play
critical roles in maintaining the stability and robustness of the
software system. Zhou andWang [7] and Zemanová et al. [8]
pointed out that mechanisms such as cascading and spreading
could be highly affected by a tiny fraction of key nodes.
Freeman [9] adopted betweenness to evaluate the importance

of nodes, and pointed out that nodes with larger betweenness
may be more important than others in software network.
However, it should be noted that it is time-consuming to
calculate the betweenness of each node. Callaw et al. [10]
took node degree to measure the importance of nodes and
those with larger degree are regarded as key nodes. Although
the node which connects two communities in a network does
not have a large degree, it is still an important node because
if it is removed the communities will not get connected.
In other words, the method is less relevant to global structure
information. Kitsak et al. [11] realized that the position of
nodes is important in global network, and they proposed
k-shell decomposition analysis to obtain the ranking index
of nodes. Although the k-shell decomposition presents more
accurate results than betweenness and degree, it fails to rank
the spreaders in the same k-shell index. Bae and Kim [12]
proposed a novel measure called coreness centrality to esti-
mate the spreading influence of a node in a network in use of
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the k-shell indices of its neighbors. The approach was based
on the idea that a powerful spreader has more connections
to other nodes in the core of network. It pointed out that the
number of a node’s neighbors has a great influence on its
spreading ability. Also, Liu et al. [13] presented an improved
method to generate the ranking list to evaluate the node
spreading influence, taking into account the shortest distance
between a target node and node set of the highest k-core value.
In addition, they also took a new perspective to understand
the relationship between the k-shell location and the nodes
shortest distance to the network core. All this research shows
that modeling functions as nodes is attracting attention to the
analysis of network. However, it is unreasonable to just regard
one node as an individual unit despite of the relationship
between nodes and the global network. It is to say that net-
work should be considered as a whole in practical application
because nodes may interact with each other.

In recent years, the detection and analysis of commu-
nity structure in software networks have become a research
hotspot in many applications [14]. It is thus necessary to
understand the global structure of software network. Gen-
erally speaking, communities are groups of nodes that are
densely interconnected but only sparsely connected with the
rest of the network [15]. So far, many algorithms have been
proposed to detect these communities, of which the two
classic algorithms, namely the spectral bisection algorithm
and the Kernighan-Lin algorithm, have improved the initial
division of network by optimizing the number of edges in
communities in use of a greedy strategy [16]. Newman [17]
provided a method by adapting the Laplacian spectral parti-
tioningmethod to perform community inference and proved it
was better than the previous methods. Lin et al. [18] studied
the problem in detecting communities in incomplete infor-
mation network with missing edges. They first adopted a
distance metric to reproduce the link-based distance between
nodes from the observed edges in local information regions.
Then they used the distance metric to estimate the distance
between any pair of nodes in the network. In recent years,
various community detecting algorithms have been proposed
on the basis of modularity [19]. Kim et al. [20] proposed a
generalized form of modularity to identify community struc-
ture in directed networks and also provided a model as a
benchmark structure to testify its feasibility.

By means of complex network analysis, there were
several discoveries in the node-based researches on the com-
munity structure of software network in the past years.
Zanjani and Darooneh [21] presented an alternate method in
order to find the communities in a complex network. They
introduced two concepts in complex networks, namely the
seed of the community and the absorption power of the
seed. They discovered the seeds and developed them by their
absorption power to achieve the communities. It was proved
that this algorithm was faster and more efficient than some
recent algorithms. Chen et al. [22] proposed a community
detecting algorithm of which the main strategy was to find
an initial partial community from a node with maximal node

strength and to add tight nodes to expand the partial commu-
nity. However, most of the researches ignored the dependency
among nodes in the process of software dynamic execution.
In most cases, studies on static software structure cannot
reflect well the interrelation of software network.

Based on the researches above, we examined specifically
the information of the dynamic execution process and the
evolution of community in software network based on the
most vital nodes. According to the information of multiple
executions, we built the DSNM to show the structure of
software. We put forward CIWN and CFMN methods to
mine the most vital nodes according to its initial weight and
the construction of its neighbors in the mapped network of
DISN. Further, we proposed an algorithm ETC to detect the
community of software based on the most vital nodes and
analyze the evolution of software accordingly.

The primary contributions in this paper can be summarized
as follows.
•A novel software modeling method DSNMwas proposed

based on the execution file which generates by tracking the
execution process of software, which was mapped to the
complex network DISN.
• Novel methods CIWN and CFWN were proposed to

identify the most vital nodes in software network.
• The Node Final Weight(NFW) of all nodes with different

ranking in software network obey the power-law distribution.
• ETC Method is presented to expand community based

on the most vital nodes so as to analyze the modularity of
different versions of software and to assist the developer to
refactor the software.

The rest of this paper is organized as follows.
Section 2 introduces some preparation works and basic def-
initions. Section 3 describes in detail the identifying of the
most vital nodes. The algorithm of detecting Community in
the network is shown in Section 4. The experiment results are
given in Section 5. Conclusions are drawn in Section 6.

II. PRELIMINARIES
A. TRACKING THE EXECUTION PROCESS OF SOFTWARE
Under Linux environment, we track the execution process of
software. The framework of the tracking process is shown
in Fig. 1.

FIGURE 1. Framework of the tracking process of software execution.

(1) First, we compiled the instrument code(instrument.c)
together with the software code, so as to track the relationship
of function calls when software was compiled and installed,
and generated the result file trace.txt which records addresses
of functions.
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(2) Second, we undertook the tool Pvtrace to analyze
trace.txt file and to generate document of graph.dot which
records names of functions and relationships of function calls.

(3) Finally, we used the tool Gephi to display visualization
of call relationship among functions.

B. CREATING A DYNAMIC SOFTWARE NETWORK MODEL
In order to reflect the topological structure and the behavioral
characteristics of software accurately, we created a dynamic
software network model(DSNM) described by a triple{F, R,
W}, among which, F is a set of functions in the network, like
{f1, f2, . . . , fi, . . .}, R is a set of call relationships {< f1, f2 >,
< f2, f3 >, . . . , < fi, fj >, . . . }, and W is the weight of each
call relationship described as follows and showed in Fig. 2(a).

FIGURE 2. A simple illustration of the model creation.

Software information in one execute process could not
cover the characteristics of all functions. To reflect the poten-
tial characteristics of the software system more accurately,
the most comprehensive information is needed to display
the call process of the software execution. We got different
execution traces through different test cases executing the
software system. Then we merged these multiple execution
results to build the dynamic execution network software.

Based on some software execution results, we proposed
a novel method to eliminate noise as far as possible in the
process of execution. First, we counted the number of calls
in the process of software execution for several times and
took the average value to avoid randomness and uncertainty.
Then taking the accidental factor of execution into account,
we referred it to 1 when the result is less than 1. By doing
so, we took the situation into considering as long as the func-
tion or relationship between functions had occurred. We used
ωij to represent the number of call times of function fi calling
function fj in the multiple executions.

ωij = p

∑τ
1 c(ij)
τ

q (1)

Where τ is the number ofmultiple executions and c(ij) is the
call number of function fi calling function fj in each execution
of software. The value of ωij is rounded to 1 when less than 1.
Fig. 2 is an illustration of the model creation.
In Fig 2, we executed the software for 5 times though

5 different test cases and got different DSNMs mapped by
various execution traces. Fig 2(a) refers to the function rela-
tionship and call times in nth(1 < n < τ ) execution process,

while Fig 2(b) describes the final network and call times got
from Eq. (1).

C. RELEVANT DEFINITIONS
Definition 1: Dynamic invoke software network (DISN ).
In DISN, nodes represent functions and directed edges rep-
resent the call relationship among functions. We use a triple
to describe the DISN, as it were DISN = {V, E, W}.
Where V is a set of nodes in the network, like

{v1, v2, . . . , vi, . . .}, E is a set of directed edges {< v1, v2 >,
< v2, v3 >,. . . , < vi, vj >, . . . } and W the weight of each
edge which is defined as follows:

Wij =
CTij∑
CTi
∗

beCTji∑
beCTj

(2)

Where
∑
CTij is the number of call times(ω) of node vi

calling node vj,
∑
CTi is the total numbers of node vi calling

others. Likewise, beCTji is the number of call times of node vj
being called by node vi, and

∑
beCTj is the total numbers

of node vj being called by other nodes. For example, WAC
in Fig 2(b) is equal to 1/(3+ 1+ 1) ∗ 1/1 = 1/5.
Definition 2: Node Initial Weight (NIW ). NIW is defined

as follows to measure the initial weight of node vi.

NIW (vi) =
n∑
j=1

Wij (3)

Where Wij is the weight of edge < vi, vj >, NIW of node
vi is the sum of all weights of edges which connect vi to its
neighbors.
Definition 3: Node Final Weight (NFW ). NFW is defined

as follows to measure the final weight of the node vi.

NFW (vi) = NIW (vi)+
n∑
j=1

Wij ∗ NIW (vj)

=

n∑
j=1

Wij ∗ [1+ NIW (vj)] (4)

In Eq. (4) where NFW (vi) is the final weight of node vi. vj
represents the neighbors of node vi. The subnodes behind vj
are all indirect invocation nodes for the vi. The NFW value
of the node not only considers the influence of its direct
neighbor nodes, but also depends on the influence of nodes
indirectly called until their out-degree is 0. As the instance
in Fig 2(b), the NIW of D and F are 0, then the NFW of A
can be computed by NFW (VA) = WAB ∗ [1 + NFW (VB)] +
WAC ∗ [1+ NFW (VC )]+WAD.

III. IDENTIFYING THE MOST VITAL NODES
It is in our opinion that the weight of node vi is based
on its initial value and the contribution of its neighbors.
In order to measure the most vital nodes, there were two steps
needed to be taken. We first computed the NIW of node vi in
algorithm 1, and then its NFW accumulated in the process of
iteration in algorithm 2.
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Algorithm 1 calInitialWeightOfNode (CIWN)
Input: set V = {v1,v2, · · · ,vi, · · · },
set E = {<vs1, ve2>,<vs2, ve3>, · · · ,<vsi, vej>, · · · },
outDegreeList[vi],
Output: NIW(vi)
1. for( vi ∈ V )
2. if(outDegreeList[vi] != null

and outDegreeList[vi].size() != 0)
3. for (child : outDegreeList[vi])
4. for (child1 : outDegreeList[vi])
5. outd += child1.getNodeWeight();
6. p1 = child.getNodeWeight()/outd;
7. for (edge e : E)
8. if(e.getEndNode() == child.getNodeIndex())
9. ind += e.getEdgeWeight(); //

the number of being called
10. p2 = child.getNodeWeight()/ind;
11. weight = p1*p2;
12. NIW(vi) += weight;
13. return NIW(vi);

A. CALCULATING NODE INITIAL WEIGHT
We calculated the NIW of each node in the software network
as its initial weight. We used adjacent table to store each
node and its outDegreeList (the child nodes of node vi).
In algorithm 1, if node vi calls node vj, we would store the
call numbers in the edge< vi, vj > and if node vi is called by
others, we would store the number of calls in the structure of
node vi.

As shown in algorithm calInitialWeightOfNode, the initial
weight of node vi is consisted of two parts. Line 2 to line 6
is the process of computing p1, which represents the ratio
between the call number of node vi and the v′i total call num-
bers. p2 is obtained from line 7 to line 10, which stands for the
ratio between the number of node vj called by node vi which
is the father node of vj and the number of nodes calling vj.
Line 11 to line 12 counts the initial weight of node vi.

B. CALCULATING NODE FINAL WEIGHT
As the weight of node vi is considered to be based on not
only the initial weight of itself but also the contribution of its
neighbors in each iteration process, we defined contriWeight-
ForNode(CWN) to represent the contribution. We continued
to iterate the process until vi could no more get any contribu-
tion from its neighbors.

The neighbors of vi make contributions to it with a certain
probability p2. The CWN of vi is the accumulation of its
neighbors in each iteration process. We updated the CWN of
node vi after each iteration so as to get the weight of node vi
of next iteration in line 17. In the first iteration, we used the
NIW of node vi as is shown from line 3 to line 7, while
in other iterations shown in line 8 to line16, we could only
obtain part of the values of neighboring nodes for vi from
last iterations. The iteration is stopped until node vi could not
get any contribution from its neighbors as shown in line 18.

Algorithm 2 calFinalWeightOfNode(CFWN)
Input: set V = {v1,v2, · · · ,vi, · · · },
set E = {<vs1, ve2>,<vs2, ve3>, · · · ,<vsi, vej>, · · · },
outDegreeList[vi],
Output: NFW(vi)
1. do
2. for(k)// the number of iterations
3. if(k == 0)// in the first iteration
4. for (vi ∈ V)
5. if (outDegreeList[vi] != null

and outDegreeList[vi].size() != 0)
6. for (child : outDegreeList[vi])
7. CWN(vi) += p2 * calInitialWeightOfNode

(vi);
8. else
9. for (vi ∈ V)
10. if (outDegreeList[vi] != null

and outDegreeList[vi].size() != 0)
11. for (child : outDegreeList[vi])
12. for (entry : map.entrySet)
13. if (child.equals(entry.getKey()))
14. weight = entry.getValue();
15. break;
16. CWN(vi) += p2 * weight;
17. while(CWN(vi) != 0)
18. NFW(vi) = 6 CWN(vi) + NIW(vi);
19. return NFW(vi);

In line 19 we calculated the final weight of vi in accordance
to its original value and value obtained during the iterative
process.

IV. DETECTING COMMUNITY STRUCTURE
Based on the software design principle of ‘‘high cohesion
and low coupling’’, the relationships among functions were
developed to be different in software. Community structures
exist in most of the software networks. It should be noted
that functions relies on each other tightly in the community
structure but loosely among different community structures.

Considering the dependency relationship among the
functions, we partitioned the software network from the per-
spective of community detection. In the process, we detected
functions closely related to software execution process.
We took top-k nodes as the original community when the
NFW of these nodes were larger than that of other nodes.
Nodes are considered as original communities, if those NFW
are µ times larger than the maximum NFW value of node.
Then we considered the top-k nodes as the center so as to
expand the original communities and to evaluate software
modules.

A. CREATING ORIGINAL COMMUNITY
In algorithm 3, we ranked the NFW of nodes and mined top-
k nodes as the original communities. Accordingly, we chose
top-k nodes as communities, of which the NFW was larger

32546 VOLUME 6, 2018



B. Zhang et al.: Approach to Mine the Modularity of Software Network Based on the Most Vital Nodes

Algorithm 3 createOriginalCommunity(COC)
Input: set V = {v1,v2, · · · ,vi, · · · }, outDegreeList[vi],
Output: top-k nodes list finalist // the original community
1. Initialize resultList;
2. for( vi ∈ V )
3. value = NFW(vi);
4. reslutList.add(vi, value);
5. resultList.sort();
6. Max = max(value);
7. if(value(vi) > µ *Max) // 0 < µ <1
8. finalList.add(vi, value);
9. return finalList;

than µ (0< µ <1) times of the largest NFW as the original
communities.

In Algorithm 3, we initialized resultList as the measure-
ment list for all nodes in line 1. Line 2 to 4 stands for a looping
process to store the value of each node. The sorting process
is shown in line 5 and the top-k nodes chosen from the result
List is presented from line 6 to line 8.

B. EXPANDING THE ORIGINAL COMMUNITY
In this part, we expanded the original community by adding
nodes to it. In the first step, directly dealt with nodes which
connects to the original communities(top-k nodes). Then we
categorized the remained nodes based on their father nodes.
Therefore in the second step, we took into account the father
nodes of remained nodes.We counted the classes and weights
of their father nodes. In the final step, we classified remained
nodes accurately by referring to the statistical data got from
the last step.

As shown in algorithm 4, in process 1, we considered
each node vi which connects to the original community node
directly in line 2. If node vi had not been classified before,
the classification was the same with its father node in line 9
to line 11. If node vi happened to be an original community
node, we would compare the values between the node and
the core nodes, and put the node into the community with the
maximal value from line 3 to line 6. However If we couldn’t
distinguish the class for the reason that node vi has the same
value with different core nodes, we would put it back to the
source set V again in line 8. Process 2 counts the father nodes
of the rest nodes, in which we would judge whether they had
been classified or not first in line 13. A list currentList is then
defined to store them and their information in line 14. If the
father node of node vi had been classified, the weight and size
of this class would be added up in line 15 to line 18. Or we
would store the new class in the currentList in line 20, and
add 1 to the size of the class in line 21. Finally in process 24,
the final class of node vi was determined by the weight or the
size which had been counted in process 23. When the ratios
of community of father nodes and all in-degree nodes are
more than 50%, we would consider that the community has
an absolute advantage and we would put the node into this
community. If we failed to distinguish the community by the

Algorithm 4 expandTheCommunity (ETC)
Input: top-k nodes list finalList, set V =

{v1,v2, · · · ,vi, · · · }, outDegreeList[vi],inDegreeList[vi]
Output: class list resultList
Process1 dealing the nodes connecting to the original
community directly
1. for(n ∈ finalList)
2. for( vi ∈ outDegreeList[n])
3. if (vi ∈ finalList) //vi has been classified
4. currentNode = finalList.get(vi.getIndex());
5. if (currentNode.getWeight() < vi.getWeight()

currentNode.classification () != vi.classification ())
6. store (vi.getIndex(), vi.classification(),

vi.getWeight();
7. else if (currentNode.getWeight() == vi.getWeight())
8. V.add(vi); //could not distinguish and put it into

set V
9. else
10. store (vi.getIndex(), n.classification(),

vi.getWeight());
11. V.remove(vi);
Process2 counting the number of class and weight of
the father nodes of remained nodes
12. for(remained nodes vi ∈ V)
13. for( each father ∈ InDegreeList[vi])
14. Initialize currentList; //storing the remained nodes
15. if (father ∈ resultList) //father node has been

classified
16. if (currentList.exist(father.classification()))
17. currentList.weight += father.weight();
18. currentList.classification.size += 1;
19. else
20. store (father.classification(),

father.getWeight(), size = 1);
21. currentList.classification.size = 1;
Process3 classing the remained nodes
22. if(classification.size())//comparing the size
23. if( classification.size() > 0.5*inDegreeList.size())
24. finalClass = classification;
25. else //comparing the weight
26. finalClass =Max(weight).getIndex.classification();

size in line 25 to line 26, we would put the node into the
community with the maximum value of weight.

And the detail detection strategies in algorithm 4 can be
explained by three situations in Fig. 3-5 below.

In Fig. 3-5, the gray node b and e are initialized as original
community structures. In Fig. 3, node a,c,f are directly con-
nected with community structure b or e(called ‘‘b’’ or ‘‘e’’),
the they can be put into b or e, like the Fig. 3(a). But for
node d, there are two judgements to make it belong to its
corresponding community structure.

1) Judged by connections. In Fig. 3, there are 3 edges for
node d connecting with ‘‘b’’, larger than 2 edges connecting
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FIGURE 3. Partitioning strategy - situation 1.

FIGURE 4. Partitioning strategy - situation 2.

FIGURE 5. Partitioning strategy - situation 3.

with ‘‘e’’, so node d is put into ‘‘b’’, which is shown
in Fig. 3(b);

2) Judged by connection weights. From Fig. 4(a), the con-
nection edges with ‘‘b’’ and ‘‘e’’ for node d are the same,
in this case, the connection weight for node d with ‘‘b’’ is
1 + 1 + 1 = 3, smaller than that(1 + 3 + 2 = 6) with ‘‘e’’,
so node d is assigned to ‘‘e’’ in Fig. 4(b).
As is derived in Fig. 5, once there are the same connec-

tions or connection weights, the node can be belong to all the
communities, which will form the overlapping community.
This is another topic discussion in our future research.

V. EXPERIMENTS AND ANALYSIS
In this section, approaches mentioned above will be tested
by three open source software Tar, cflow and gzip. Tar is
a decompression software for Linux, cflow an analysis tool

for program C to extract the relationship of function calls,
and gzip an compression software for Linux system file.
We would choose their own different versions for further
experiments.

The experiments are conducted on 64 bit Windows
10 ultimate, Intel(R) Core(TM) i7-4710HQ CPU@2.50GHz,
512GB SSD, 16G of RAM and Ubuntu14.04.

Firstly, we executed the software to capture the execu-
tion trace under Linux environment. We inserted some track
marks in the compilation and installation stages to obtain
the execution information of the software, we got the func-
tion invoking traces by using the marks during running.
After analyzing these traces, we recognized the relationships
among the software functions. Regardless of the occasional
situation in some special execute process, we obtained the
key execution information from the multiple executions in
different experiments for each version of the software. Then
we created a dynamic software network model (DSNM) to
map the execute trace and built a network DISN accordingly.
By doing so, we got the accurate and stable network structure
for each version of software. Finally we analyzed the evolu-
tion of nodes in the software and mine the most vital nodes.
Meanwhile, we analyzed another characteristic of software
modularity in different versions of software by referring to
the most vital nodes.

A. ANALYZING THE NIW OF NODES
We run the algorithm CIWN on each version of Tar, cflow
and gzip. By the algorithm CIWN, we calculated the NIW of
each function node. Fig. 6, Fig. 7 and Fig. 8, which show the
analysis results of different versions of software.

FIGURE 6. NIW value distribution of Tar.

As shown in Fig. 6, the NIW distribution of software Tar
are very similar to each other in its five versions. With the
ranking of nodes, the value of NIW shows a trend of decrease.
The higher NIW ranges from 4 to 6. Most nodes’ NIW are
around 1 or 2 but others close to 0. Different versions of
software follows the same laws, that is, the node’s NIW of
a certain ranking remains stable and the NIW distribution of
different software version is nearly the same. We can then
predict the trends of future versions based on this. Fig. 7
shows the NIW distribution of software cflow, and the curve
of each version has the same tendency. The higher NIW
ranges from 5 to 7 and most nodes’ score range from 0 to 2.
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FIGURE 7. NIW value distribution of cflow.

FIGURE 8. NIW value distribution of gzip.

The NIW distributions of software cflow in different versions
follow the same trend, so do the distributions of other two
software gzip and tar.

B. ANALYZING THE NFW OF NODES
By the algorithm CFWN, we calculated the NFW of each
function node. The iterator process of the algorithm 2 ended
from 6 to 30 times. The NFW of the nodes with same ranking
in different versions of software have a small fluctuation,
which are shown in Fig. 9, Fig. 10 and Fig. 11.

FIGURE 9. NFW value distribution of Tar.

Fig. 9, Fig. 10 and Fig. 11 show the NFW value distribu-
tions of software Tar, cflow and gzip. From the figures, we can
see that only few nodes have great weights while most nodes
have small ones. In addition, we can also get some implicit
information from the three figures.

FIGURE 10. NFW value distribution of cflow.

FIGURE 11. NFW value distribution of gzip.

• The NFW values of the nodes obey the power-law
distribution in the software. We chose software Tar-1.21,
cflow-1.2 and gzip-1.4 in order to describe the distribution
separately, and enumerated the fitted results of software
Tar-1.21, cflow-1.2 and gzip-1.4 in Fig. 12, Fig. 13 and Fig. 14
respectively.

FIGURE 12. NFW value distribution of Tar-1.21.

• The NFW distributions of the software are much similar
in the five versions. With the nodes ranking, the NFW of each
node shows a decrease trend.
• The development of versions follows the same laws,

the nodes’ NFW of a certain ranking remains stable. Also,
the NFW distributions of different software versions are
nearly the same. The higher NFW ranges from 15 to 40, but
the scores of most nodes are around 5 or 10, others close
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FIGURE 13. NFW value distribution of cflow-1.2.

FIGURE 14. NFW value distribution of gzip-1.4.

to 0. Seen from the above, we can predict the trends of future
versions.

As shown in the Figures, we chose Tar-1.21, cflow-1.2 and
gzip-1.4 as representation of each software. As we can see in
these figures, most nodes with small NFW are ordinary func-
tions. In other words, it is not necessary to emphasize them.
Unlike, nodes with the NFW around 20 are minorities in each
version, but they play important roles software updating and
maintenance.

The distributions of different software are shown in Fig. 12,
Fig. 13 and Fig. 14. The image feature can be divided into
two parts. In Eq. (4), NFW(vi) is the final weight of node
vi, and the value accumulated indirectly in the path is grad-
ually increased. Observed from the front part in the curve,
node with larger values are not located on the curve exactly,
this suggested that these nodes have the biggest NFW and
have a strong connection with other nodes (such as big-
ger out/in degree),which is suitable for Scale-free network.
But the NFW of all nodes with different ranking obey the
power-law distribution from the whole tendency. To verify
them, we have tested the correctness of the results with
Kolmogorov-Smirnov(KS) test [23] which is described in
detail as follows.

Given an observed distribution P(x), we firstly assume
that it obeys a certain form F(x; a1, a2, . . . , al), with a set
of parameters a1, a2, . . . , al , whose values are estimated by
using the maximum likelihood method [24]. The standard
KS distance is defined as the maximal distance between the
cumulative density functions of the observed data Pc(x) and

the fitting curve Fc(x), namely DKSreal = maxx |Pc(x)−Fc(x)|.
The original hypothesises of KS are the two data distribution
being consistent or the data obeying the theoretical distribu-
tion. First, the significance level α is set, and it is called the
first type of error which is the probability of rejection as the
original hypothesis is correct in statistics. By the engineering
experience, it is usually set as 0.05, namely α = 0.05.
Assuming that there is a checksum F, then the value of
another index f can be calculated by putting the sample data
into F, so the p value in KS is the probability when F > f
under the condition of the original hypothesis. If p is less
than the given significant level α, we would reject the original
hypothesis, vice versa. According to the data provided in this
paper, the corresponding p-value and D can be calculated as
shown in Table 1.

TABLE 1. The corresponding value of p, D and D0.05.

According to the experimental results, the p-value in each
group experiment is greater than that of α (0.05), and value
of D in all groups are all smaller than D0.05 in the table of
critical value of D in two sample test, so the original data
are consistent with power-law distribution. Because the NFW
of nodes in software networks obey power-law distribution.
In other words, a small number of nodes in the software
network has a larger weight, a few of the nodes are in control
of the entire network, while the NFW of most nodes are
small, this phenomenon in the software network proves that
the software has scale-free properties.

FIGURE 15. Execution time in each version of software.

Also, we listed the execution time of different versions of
software as shown in Fig. 15.

As shown in Fig. 15, we listed execution time of the three
software in each version. TN, CN and GN represent the num-
ber of nodes in the three software network.With the update of
software version, the complexity of software is increased and
the execution time increased steadily. It is worth mentioning
that the more complex of the software, the more execution
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TABLE 2. Top-10 nodes of software Tar-1.25.

time among the three software, and its execution time is also
the longest, such as cflow, the number of nodes is the largest,
so the corresponding execution time is the longest.

In software engineering, although important functions will
be invoked rarely, they may have great influences to others.
Unlike, simple functions will be reused frequently. In other
words, the out-degree represents the complexity of a function
and the in-degree of a function the high reusability.

We mined top-10 nodes in software based on the NFW
and we listed Tar-1.25, cflow-1.1 and gzip-1.4 in Table 2,
Table 3 and Table 4 respectively. In order to ensure that
the method CFWN is effective in mining most vital nodes,
we compared the results with the results got from those
ranking measures widely used in network, such as closeness
centrality(CC), betweenness centrality(BC) [25] and out-
degree(OD). It needs to be pointed out that Closeness of node
is defined as the reciprocal of the sum of geodesic distances
to all other nodes, and betweenness, a centrality measure
of a node in a network, is defined as the fraction of the
shortest paths between node pairs that pass through the node
of interest.

TABLE 3. Top-10 nodes of software cflow-1.1.

As shown in the tables, we mined top-10 nodes by the
method NFW in the first column and then rankings of NFW,
closeness centrality, betweenness centrality, out-degree in
turn. There being 80% nodes in the top-10 nodes mined by
metric NFW exist in top-20 nodes ranking by other measures.
And if more nodes listed, the similarities between the nodes
in NFW’s result-list and others would be even greater. Espe-
cially in software gzip, most nodes in NFW’s top-10 result-
list were almost in the top-10 nodes in other result-lists of
measurements.

TABLE 4. Top-10 nodes of software gzip-1.4

Here we defined a similarity coefficient C to measure the
correlation between NFW ranking and others. The coefficient
C is shown as follows.

C =
|{NFWvi}

⋂
{otherMetricvi}|
TN

(5)

Where {NFW (vi)} is a set of nodes which contains top-
k nodes about measure NFW, where {otherMetricvi} is a
set of nodes about other measures like closeness centrality,
betweenness centrality and out-degree. Here TN represents
the total number of nodes. The coefficient of similarity is used
to measure the degree of similarity between NFW and other
measures. A higher value indicates a more accurate ranking
of the nodes’ NFW.

The similarity coefficient of the top-10 functions between
NFWand closeness centrality can be as high as 0.7 in gzip-1.5
and as low as a half. As for the other measure betweeness
centrality, the coefficient C ranges from 0.6 to 0.8 between
NFW and this metric. Similarly, nodes of closeness centrality
and betweenness centrality, out-degree of nodes shows the
same characteristics, in most cases, C is 0.5 or 0.7 in different
software.

Compared NFW with other measures, their betweenness
was found to be more complex to compute but their degrees
simple but more inaccurate.We can thus infer that the method
we proposed is helpful to identify the most vital nodes in the
software network, which can be used for further studies.

C. ANALYZING THE MODULARITY OF THE SOFTWARE
Arenas et al. [26] proposed a generalization of modularity
in directed networks by simply replacing the strength terms
into directional ones. The generalized modularity can be
described as follows:

Q =
1
M

∑
i,j

[wij −
wouti ∗ w

in
j

M
]δci,cj (6)

Wherewij represents the weight of link pointing from node
i to node j, wouti =

∑
j wij and w

in
j =

∑
i wij are the out-

strength and in-strength of node i and node j respectively, and
the total strength is M =

∑
i w

out
i =

∑
j w

in
j =

∑
i,j wij.

We adopted modularity Q to evaluate the modularity of
software. According to theNFWof each node byAlgorithm 2
CFWN, we chose top-k (µ = 0.2 in Algorithm 3) nodes
which are larger than others. The top-k nodes range 5 to 14
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in each version of different software. The modularity of dif-
ferent versions shows in Fig. 16, Fig. 17 and Fig. 18.

FIGURE 16. Modularity of software Tar.

FIGURE 17. Modularity of software cflow.

FIGURE 18. Modularity of software gzip.

As shown in the three figures, we can find some
information.
• Modularity of different versions of the software have

small wave ranges. For example, in Fig. 16, the modular-
ity ranges from 0.501067 to 0.5592005, and the difference
between the two values is less than 0.1. Likewise, there are
little differences in various versions of software cflow and
gzip.
• This metric reveals whether the projects follow good

software engineering practices or not. In the evolution of
software, it has the tendency of high cohesion and low cou-
pling, even if the performance is not good in a certain version.
The metric of software tar in version tar-1.22 shows the trend

of decreasing, but the value of modularity grows steadily
in later versions. It is to say that in later versions, software
will be reconstructed to improve its modularity. Similar to
the version tar-1.22, we need to refactor software in some
version. For example, the modularity of cflow-1.4 is less than
its previous versions in Fig. 17, and for software gzip-1.5
in Fig. 18, its modularity is lower than the modularity of other
versions, which implies that the software of these versions
should be refactored.
• We can predict the modularity of the future versions

based on the existing version. High cohesion and low cou-
pling software make the modularity of software significant to
be an new direction of development and research. To put it
another way, the modularity will have a gradual increase.

VI. CONCLUSIONS
This paper examined specifically the modularity of software
network based on the most vital nodes. A dynamic soft-
ware network model was constructed by multiple process
of execution and then mapped to a directed-weight network,
in which the most vital nodes were identified by the NFW
in accordance to the call numbers and the contribution of
neighbor nodes. Besides, the top-k nodes were mined to be
original communities by a parameter µ, which were then
expanded by the ETC algorithm. Finally, the relationships
among nodes were discussed and analyzed by ETC method,
and these nodes were put into the suitable communities.
During experiments, values of the NIW andNFWdistribution
of the nodes in different software versions were analyzed to
study the evolution rules of the software. The experimental
results show that it is acceptable to use NFM method to
identify the most vital nodes and that it is reasonable to
adopt criterion Q to evaluate software modularity. Follow-up
studies focus on the exploring of more structural features of
software execution network.
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