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ABSTRACT Fourier ptychographic microscopy (FPM) is a recently developed microscope that offers wide
field, high resolution, and quantitative phase imaging. Combining the concepts of ptychography, synthetic
aperture, and phase retrieval, FPMovercomes the space-bandwidth-product (SBP) limit of the optical system.
In FPM, a LED array is used as the illumination module and specimen images illuminated with angular
varying illuminations are captured. These images are synthesized to recover the high SBP complex field
of the specimen. There have been many improvements of FPM since its appearance and FPM is of great
potential in the field of hematology and pathology. However, low efficiency in capturing data, especially in
the situation of capturing all three color channels, limits the application of FPM. Although spectral multiplex
strategy for FPM is developed, the reconstruction quality and speed is decreased for exchanging the capture
efficiency. On the other hand, the reconstruction quality of FPM is significantly degraded by the imaging
noise in the dark-field images because the high-frequency information in dark-field images is of low energy
and contaminated by noise. In this paper, we propose an efficient colorful FPM reconstruction method
using multi-resolution wavelet color fusion. We also propose an adaptive denoising method by analyzing
the noise information of the dark-frame. Both simulation and experiment results are carried out to validate
our methods. Results demonstrate that the imaging noise is suppressed and the colorful reconstruction is of
high efficiency and quality.

INDEX TERMS Microscopy, phase imaging, high space-bandwidth-product, dark-frame denoising, multi-
resolution wavelet color fusion.

I. INTRODUCTION
Fourier ptychographic microscopy (FPM) is a recently
reported wide-field, high-resolution and quantitative phase
imaging microscopy which overcomes the SBP limit of a
low NA objective [1]–[4]. FPM is developed from the lens-
less imaging method termed ptychography [5]–[7] and com-
bines the concepts of synthetic aperture [8]–[10] and phase
retrieval [11], [12]. The traditional ptychography scans the
specimen with a focused beam and recovers the complex
field of the specimen from the diffraction patterns with phase
retrieval methods. Different from ptychography, FPM scans
the specimen with angularly varying oblique plane waves
provided by a LED array. When a specimen is illuminated
by oblique plane waves, high frequency information of the
specimen is shifted into the passband of the objective. Similar
to the synthetic aperture technique, FPM collects images

containing high frequency information and stitches them
together in Fourier space to enlarge the bandwidth of the
optical system. To recover the phase information lost in
the acquisition process, FPM also applies a phase retrieval
technique.

Comparing with traditional methods, FPM offers a flexible
and low-cost approach to achieve high resolution, wide field
and quantitative phase imaging. Researchers have imple-
mented various modifications on both system setup and
reconstruction method to improve FPM.With phase retrieval,
FPM can also recover the aberration of objective lens [13],
[14], the positions of LED elements [15], [16] and the defocus
distance [14], [17]. To accelerate the image capture proce-
dure, several strategies such as multiplexing [18]–[20] and
content awareness [21] are developed. To improve the recon-
struction speed and robustness, optimization theories like
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Gauss-Newton method [20], Wirtinger flow [22] and convex
relaxation [23] are introduced into FPM. New system setups
for FPM such as lensless system [24], reflective system [25],
fluorescent system [26] and macroscopic system [27] are
also developed. Ever since the appearance of FPM, it has
been widely used in many fields such as hematology [28],
pathology [29], [30] and quantitative phase imaging [31].
These modifications show the great prospect of FPM in
biomedical observation and clinical diagnosis. Nevertheless,
there are still some issues which hinder the application
of FPM.

In one hand, FPM is of low efficiency to obtain high-
resolution color image. As a phase imaging method, FPM
requires coherent illuminations such as lasers and LEDs.
In other words, FPM can only recover the high-resolution
image of one wavelength. Typically, FPM produces color-
ful reconstruction by merging reconstruction results with
red, green and blue light, which triples the acquisition and
reconstruction time. This restricts the application of FPM in
observation and diagnosis that require a color vision. To solve
the aforementioned problem, the wavelength multiplexing
strategy is developed which captures data of three wavelength
together and separates the mixed data in reconstruction pro-
cess [18], [32]. With more light energy and only one capture
loop, the multiplexing strategy accelerates the acquisition
process. But the mixture of the three color channel decreases
the redundancy of FPM data. As a result, the reconstruction
speed and quality are decreased. On the other hand, the recon-
struction quality of FPM is significantly degraded by the
imaging noise in the dark-field images. In the acquisition
process of FPM, the high frequency information in dark-field
images is of low energy and usually at the same level of noise.
So that, the difficulty of suppressing noise is to maintain the
useful information from the noise. One traditional noise sup-
pression strategy is to produce a high-dynamic-range (HDR)
image in each LED position using a short-exposure image
and a long-exposure image [1]. The HDR method decreases
the dark-field noise at the expense of increasing the capture
time many-fold. Several recent researches [33], [34] have
been reported to perform a better reconstruction by improv-
ing the robustness of FPM reconstruction without noise
suppression.

In this paper, we focus on efficiently recovering a colorful
high-resolution image which is significant in observation and
diagnosis. Inspired by the application of wavelet in multi-
resolution fusion and color fusion [35]–[39], we develop
a colorful FPM reconstruction method with wavelet fusion
termed wavelet-FPM. To use wavelet-FPM, typical low-
resolution monochromatic intensity images of FPM and the
corresponding low-resolution color image are captured. The
FPM reconstruction is performed on the monochromatic
intensity images and a particular wavelet fusion process is
applied on the FPM reconstruction result to recover the high-
resolution color intensity image. The wavelet-FPM combines
FPM to recover the high-resolution monochromatic complex
field andwavelet to perform themulti-resolution color fusion.

FIGURE 1. The FPM experimental system. (a) The overall appearance and
diagram of FPM capture system. (b) The LED arrangement of the LED
illumination module. (c) The Fourier space spectrum regions
corresponding to different LED elements with the original spectrum
region in blue and a shifted spectrum region in red.

Comparing with the conventional colorful FPM reconstruc-
tion methods, wavelet-FPM utilizes the low-resolution infor-
mation better. Both numerical simulations and experiments
on the real system are carried out to evaluate the effectiveness
of wavelet-FPM. Results show that the colorful reconstruc-
tion is significantly improved comparing with conventional
methods. Besides, to improve the colorful reconstruction
results under noise, we propose an adaptive denoisingmethod
by using the information of noise in a dark-frame. The dark-
frame method is developed based on a noise model of FPM
imaging process and outperforms in results and efficiency.
Experiments are also carried out to validate the effectiveness
of dark-frame method.

II. PRINCIPLES AND METHODS
A. PRINCIPLE OF THE ORIGINAL FPM
The FPM system can be modified from a conventional
microscopy by replacing the original illumination module
with a LED array. As an example, Fig. 1 (a) shows the
composition of our experimental system. The system equips
a 4× objective lens for optical imaging with a numerical
aperture (NA) of 0.13. A scientific CMOS (sCMOS) camera
with 2560 pixel × 2160 pixel (6.5 um pixel size) is used to
record the intensity images. The LED arraywith 169 elements
is placed 100 mm below the specimen for providing angle-
varied illumination. All LED elements are addressable and
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FIGURE 2. The reconstruction process of FPM. The complex field is initialized with an upsampled brightfield image and transformed
into Fourier space. Then, the Fourier spectrum is iteratively updated with the captured intensity images and transformed back into
real space.

programmable color pixels. In monochromatic FPM, we use
only the green light (central wavelength of 505 nm) for its
best reconstruction result in all three lights. In colorful FPM,
we use red (629 nm), green (505 nm) and blue (460 nm)
light separately or multiply. We utilize an Arduino micro-
processor to control the color, sequence and exposure time
of all LED elements. The LED array is accurately aligned
with the brightfield localization (BFL) method [16] before
acquisition.

In FPM, all samples are regarded as thin samples which
modulate the amplitude and phase of incident lights. The
bio-optical property of a thin sample can be represented by
its transmission function o(r), where r = (x, y) represents
the 2D spatial coordinates in the sample plane. As the LED
elements are sufficiently far from the sample stage, the illumi-
nation waves are approximately oblique plane waves. Under
the oblique plane wave assumption, for the lth LED, the wave
vector is

kl = (sin θxl/λ, sin θyl/λ) (l = 1, 2, · · · ,NLED), (1)

where (θxl, θyl) define the illumination angle for the lth LED
and λ is the wavelength. Then the complex field entering
the sample plane can be formulated as exp(iklr). When the
specimen is illuminated by the lth LED, the exit field passing
through the sample is

e(r) = o(r) exp(iklr). (2)

By applying Fourier transform, the exit field is expressed
as

F{e(r)} = F{o(r) exp(iklr)} = O(k− kl), (3)

where k = (kx , ky) represents the 2D frequency coordinates.
The spectrum O(k− kl) is also the result of spatially shifting

the sample spectrum O(k) to be centered around kl . When
passing through the objective lens, the field is low-pass fil-
tered by the objective pupil function P(k). The complex fields
reaching the detector is

gl(r) = F−1 {P(k)O(k− kl)}, (4)

which contains the high frequency information centered
around kl . The low resolution intensity image captured by
the image sensor can be expressed as

Ilc(r) =
∣∣∣gl(r)2∣∣∣. (5)

Equation 1 and 2 are the forward model of FPM.
The principle of FPM reconstruction is to synthesize gl(r)

in Fourier space and get a high-resolution complex field.
However, comparing Ilc(r) with gl(r), the phase information
is lost during the imaging process. The reconstruction of FPM
is to estimate the complex fields and minimize the difference
between the amplitudes of estimate complex fields and the
captured amplitudes. The cost function of the minimization
problem is formulated as

min
O(k)

ε = min
O(k)

∑
l

∑
r

∣∣∣Ilc(r)− |gle(r)|2∣∣∣2 , (6)

where gle(r) is the estimated complex field on the image
sensor. To solve theminimization problem, the phase retrieval
algorithms are applied in FPM reconstruction. The most
common strategy is to replace the amplitudes of estimated
images with the amplitudes of captured images, known
as the Alternate Projection (AP) strategy, which can be
formulated as

gle (r) = F−1 {P (k)Oe (k− kl)} , (7)
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FIGURE 3. The relative values of intensities corresponding to
different LEDs.

Ol (k) = P∗ (k)F
{√

Ilc (r)
|gle (r)|

gle (r)
}
, (8)

Oe (k) =
∑
l

Ol (k+ kl), (9)

where Ol (k) is the updated sub-spectrum and Oe (k) is
the whole spectrum. Equation 7 to 9 are repeated until the
estimated spectrum converges and the iteration starts from
an intensity-only guess of gle (r). At last, by transforming
the spectrum back to the spatial domain, the high-resolution
intensity and phase are extracted. The detailed iterative recon-
struction process of FPM is shown in Fig. 2.

B. NOISE SUPPRESSION WITH DARK-FRAME
ADAPTIVE THRESHOLD
According to the forward model of FPM, the image sensor
receives the complex fields passing through the objective
lens and turns the intensities of complex fields into analog
electronic signals. Then, the analog electronic signals are
converted into digital signals which can be easily stored
and processed by a computer. However, the digital signals
are contaminated by quantum noise, thermal noise, low-
frequency noise and so on. As shown in Fig. 3, the inten-
sities corresponding to edge LED positions are about 10−4

to 10−5 of the intensity corresponding to the central LED.
Besides, the dynamic range of most scientific camera is not
larger than 105. Therefore, when the sample is illuminated
with rather oblique plane waves, the intensities are of low
energy and the influence of noise is non-negligible. The
imaging noise in dark-field images must be suppressed or the
FPM reconstruction will collapse. Traditionally, the noise
is suppressed with HDR imaging or experience threshold.
The HDR method improves the signal-noise ratio but slows
down the capture process seriously. The experience threshold
method faces difficulties in balancing the noise suppressing
effect and maintaining low-energy information. We present

FIGURE 4. The histogram of a dark frame and the Gaussian distribution
with the expectation of µ and the standard deviation of σ .

a noise model in this section to analyze the relationship
between signal and noise and suppress noise according to its
statistical properties.

Specifically, the intensities of FPM raw images can be
divided into three parts,

Ilc = Ili + Ilp + Ils. (10)

First, Ili is the intensity of the ideal complex field reaching
the sensor, as described in the first section. In most angles,
Ili accounts for the main part of Ilc. Second, the parasitic light
and dark current in the surrounding environment add extra
response Ilp to the sensor. Ilp is much larger than the last
factor and even larger than Ili in vary large angles, but it is
uniform and easy to measure. The last part Ils is the stochastic
response of quantum noise and other stochastic noise that fits
the Gaussian distribution.

To eliminate Ilp and Ils, we capture a dark frame I0c with
no LED on and calculate the mean µ and standard deviation
σ of I0c. As shown in Fig. 4, the blue graph shows the
histogram of a dark frame in our experiment and the red curve
shows the Gaussian distribution with expectation of µ and
standard deviation of σ . The conformance of histogram and
the estimate distribution indicates the feasibility of obtaining
statistical information of noise with the dark frame. Accord-
ing to the properties of three kinds of noise, I0c contains only
Ilp and Ils. Value µ is the estimate of Ilp and 0 mean Gaussian
distribution with standard deviation of σ is the estimate of Ils
standard deviation. With the 3σ principle, Ilp and Ils can be
eliminated from all intensity images by setting up an adaptive
threshold

th = µ+ 3σ. (11)

and suppress the signal response under th,

I ′lc = Ilc − th. (12)
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FIGURE 5. 2-D wavelet decomposition and synthesis of an image. Credits to copyright-holder of ‘‘cameraman’’ image: the
Massachusetts Institute of Technology.

C. PRINCIPLE OF EFFICIENT COLORFUL FPM
RECONSTRUCTION WITH WAVELET FUSION
As a phase imaging method, FPM requires monochromatic
coherent light sources to illuminate the sample from different
angles. Therefore, only the high-resolution complex field
of one wavelength can be recovered with FPM reconstruc-
tion. In the conventional implementation of FPM, a col-
orful reconstruction is obtained by merging reconstruction
results with red, green and blue light. This is the most
straightforward strategy for colorful FPM reconstruction,
but it triples the capture time and reconstruction time of
FPM. To improve the efficiency of colorful FPM recon-
struction, the wavelength multiplexing strategy is developed
which captures data of three wavelength together and sep-
arates the mixed data in reconstruction process [18], [32].
Although the wavelength multiplexing strategy greatly accel-
erates the acquisition process, it decreases the reconstruction
speed and quality. In this section, we present an efficient
colorful FPM reconstruction strategy with wavelet multi-
resolution color fusion, termed wavelet-FPM. Our method
well balances the time consumption and reconstruction
quality.

The 2-D wavelet decomposition consists of filtering and
down-sampling using the 1-D low-pass filter L and high-
pass filter H to each row and column of an image. Assuming
Cj−1 is the approximation of the original image C0 and level
2j−1, the 2-D wavelet decomposition in level 2j is expressed
as 

Cj = LrLcCj−1
D1
j = LrHcCj−1

D2
j = HrLcCj−1

D3
j = HrHcCj−1,

(13)

where the subscript r and c represent the row and column of
the image. The sub-image Cj reflects the low-frequency char-
acteristics of the original image, while D1

j , D
2
j and D

3
j reflect

the high-frequency characteristics of the original image, cor-
responding to horizontal, vertical and diagonal directions
respectively. The 2-D wavelet synthesis operation consists of
up-sampling and filtering using the 1-D low-pass filter L∗ and
high-pass filter H∗, formulated as

C∗j−1 = L∗r L
∗
cCj + L

∗
rH
∗
cD

1
j + H

∗
r L
∗
cD

2
j + H

∗
r H
∗
cD

3
j . (14)

The 2-D wavelet decomposition and synthesis process
of an image is shown in Fig. 5. The stepwise wavelet
decomposition results of the image make up the decompo-
sition coefficients.

By fusing the decomposition coefficients and reversely
transforming the coefficients, two images of different types
can be fused together and the information from two images is
synthesized together. The colorful FPM reconstruction can be
reached by fusing the monochromatic high-resolution recon-
struction and the low-resolution color image. As a multi-
resolution color fusion, the high-resolution (HR) grayscale
image should be expanded to three channels and the low-
resolution (LR) color image should be upsampled to the same
size of high-resolution grayscale image. The fusion process is
shown in Fig. 6 where the high-resolution image is captured
with a 20× lens and the low-resolution images is downsam-
pled 10×. As shown in Fig. 6, the color and resolution are
nearly the same as the groundtruth of high-resolution color
image. The key points of image fusion with 2-D wavelet lie
in selecting wavelet bases and fusion strategies. We design
a multi-scale fusion strategy according to the properties of
two image sources, termed piecewise linear strategy (PWL),
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FIGURE 6. Wavelet multi-resolution color fusion of a low-resolution
image and a high-resolution image.

formulated as

Ef =
n∑
i=1

[
αiElc + (1− αi)Ehg

]
, (15)

αi =

0, 0 < i ≤ m
x − m
n− m

, m < i ≤ n,
(16)

where Elc, Ehg and Ef represents the decomposition coeffi-
cients of low-resolution image, high-resolution image and the
fused image. αi is the fusion weights where m is adjustable
according to the resolution difference between two images.
The comparison of fusion results with different wavelet bases
and fusion strategies are detailed in section 3. The principle
of our colorful FPM reconstruction is to fuse the FPM recon-
struction in one wavelength and the low-resolution color
image together. With only one reconstruction, our method
achieves a state of art colorful reconstruction result while
maintaining short time consumption.

III. SIMULATION AND EXPERIMENT RESULTS
A. THE EFFECTIVENESS OF DENOISING METHODS WITH
ADAPTIVE THRESHOLD
The denoising process of FPM is to eliminate the noise
from captured raw data while maintaining high-frequency
information. A good denoising method not only improves
the reconstruction results but also shortens the capture and
reconstruction process. With these principles, we validate
the performance of dark-frame adaptive threshold method by
comparing with two conventional denoising methods. The
first is the HDR imaging method and the second is the expe-
rience threshold method. As the types and levels of different
imaging noises cannot be perfectly simulated, the compar-
isons are carried out directly on real data. The raw data is
169 images of 100 pixel × 100 pixel human blood smear
section with exposure time of 20 ms. A dark-frame with the
same exposure time is captured to use the dark-frame adaptive

FIGURE 7. Reconstruction results comparison of three denoising
methods.

TABLE 1. Experimental parameters of three denoising methods.

threshold method. Intensity images with 10ms, 40 ms, 80ms,
160 ms and 320 ms exposure time are also captured to make
the HDR images. The parameters of our system are as stated
in the very beginning of section II.

The reconstruction results with different denoising meth-
ods are shown in Fig. 7 and some parameters of three methods
shown in Table 1. As the results shown in row 1, the recon-
struction results with HDR imaging method is not very well
and consumes too much time to capture images with different
exposure time. As the results of low threshold and high
threshold shown in row 2 and 3, experience threshold method
has difficulty in finding the proper threshold. The denoising
is poor when the threshold is too low and the high-frequency
information is lost when the threshold is too high. With the
dark-frame method, a good denoising result is achieved and
high-frequency information is kept as much as possible.

B. THE COMPARISON OF DIFFERENT WAVELET BASES
AND FUSION STRATEGIES
Our colorful FPM reconstruction method is actually a multi-
resolution color wavelet fusion process. As illustrated in
section 2, wavelet bases and fusion strategies are the key
factors that affect the fusion results. In this section, we test the
combination of different wavelet bases and fusion strategies.
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FIGURE 8. Comparison of the multi-resolution color fusion results with 7 wavelet bases and 3 fusion strategies.

The wavelet families analyzed are Daubechies (dbN , N =
1 · · · 45), Coiflets (coifN , N = 1 · · · 5), Fejer-Korovkin
filters (fkN , N = 4, 6, 8, 14, 18, 22), Symlets (symN ,
N = 2 · · · 45), Discrete Meyer, Biorthogonal (bior(Ñ ,N ),
(Ñ ,N ) = (1, 1), (1,3), (1,5), (2,2), (2,4), (2,6), (2,8), (3,1),
(3,3), (3,5), (3,7), (3,9), (4,4), (5,5), (6,8)), Reverse Biorthog-
onal (rbior(Ñ ,N ) with (Ñ ,N ) same as bior). We firstly select
the member of each family with the best result and this
member is used as the representative for this family so that
it can be compared with other wavelets families. We test
three coefficients fusion strategies. The first is the averaging
method which takes the mean value of coefficients in each
level. The second is the approximations and details method
which combines the low-frequency coefficients of the low-
resolution color image and high-frequency coefficients of the
high-resolution grayscale image. The last is our method pre-
sented in section 2 which linearly weights the low-frequency
coefficients and high-frequency coefficients according to
the level.

The fusion process is the same as Fig. 6 which combines
a low-resolution color image and a high-resolution grayscale
image. The fusion results with 7 wavelet families and three
fusion strategies are shown in Fig. 8. The corresponding
root-mean-squared errors (RMSE) between fusion results
and groundtruth are also shown in Fig. 8. For ease of type-
setting, we rotate all images 90 degrees counterclockwise.
As shown in Fig. 8, the PWL strategy achieves better results
comparing with the other two strategies. Among all wavelet
bases we tested, the sym40 achieves the best results and
the db42 achieves the suboptimal results. Considering that
sym40 consumes much more calculation, we choose db42 as
our wavelet basis in wavelet-FPM.

C. THE COMPARISON OF DIFFERENT COLORFUL FPM
RECONSTRUCTION METHOD
To evaluate the effectiveness of wavelet-FPM, both numerical
simulations and experiments on the real system are carried
out. We compare the reconstruction results of wavelet-FPM
with two colorful FPM reconstruction methods. The first
is combining the separate reconstruction results under red,
green and blue light, called separate-FPM for short. The sec-
ond is recovering red, green and blue spectrum from trichro-
matic white light data with wavelength multiplexing strategy,
called multiplex-FPM for short.

In the numerical simulations, we use a true color image to
simulate the intensity of sample and a grayscale image as the
spatial phase. Low-resolution intensity images corresponding
to red, green, blue and trichromatic white light are simulated
with the forward model of FPM. The trichromatic white
light intensities are the linear addition of red, green and blue
light intensities. Colorful FPM reconstructions of separate-
FPM, multiplex-FPM and wavelet-FPM are carried out using
simulated intensities. The performances of three methods are
shown in Fig. 9, where Fig. 9 (a), (b) show the RMSEs
of recovered intensities and phases and Fig. 9 (c) shows
the reconstruction results and specific RMSEs. As shown
in Fig. 9, both separate-FPM and wavelet-FPM methods
converge faster than the multiplex-FPM method and achieve
good results. The multiplex-FPM reconstruction results of
three wavelengths all contain obvious errors. Among all three
methods, the wavelet-FPM achieves the lowest reconstruc-
tion error.

We also validate the reconstruction results with human
blood smear images captured on a real system. Low-
resolution intensity images corresponding to red, green,
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FIGURE 9. Reconstruction performance of three methods on simulate data. (a) RMSE curves of color intensity reconstruction results.
(b) RMSE curves of phase reconstruction results. (c) Reconstruction results of color intensity and phase with corresponding RMSEs.
Credits to copyright-holder of ‘‘barbara’’ image: the University of Calirfornia.

blue and trichromatic white light are captured. Since the
camera in our system is monochrome, the color image is
obtained by merging the red, green and blue channel inten-
sity. The color image captured under 20× magnification
is also captured for comparison. Colorful FPM reconstruc-
tions of separate-FPM, multiplex-FPM and wavelet-FPM are
carried out with the captured intensities. All raw images
are preprocessed with dark-frame denoising method before

FPM reconstruction. The reconstruction results are shown
in Fig. 10 and detailed experimental parameters are listed
in Table 2. It is easy to tell that both separate-FPM and
wavelet-FPM methods achieve rather good reconstruction
results and converge fast. The results of these twomethods are
very close to the high-resolution groundtruth. The reconstruc-
tion errors in all three color channels and colorful reconstruc-
tion of multiplex-FPM are non-negligible. Among all three
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FIGURE 10. Reconstruction performance of three methods on human blood smear images.

TABLE 2. Experimental parameters of three colorful FPM reconstruction
methods.

methods, the wavelet-FPM achieves the best reconstruction
result and the least time consumption.

IV. CONCLUSION AND FUTURE WORK
In this paper, we process a colorful FPM reconstruction
method termed wavelet-FPM to perform colorful recon-
struction more effectively. The basic idea of wavelet-FPM
is to fuse a low-resolution color intensity image and the
high-resolution FPM reconstruction result of monochro-
matic intensities. To use wavelet-FPM, only one more
low-resolution color image is needed which saves time con-
sumption of capture process. Simulations are performed to

select the most effective wavelet bases and fusion strategies.
Both simulations and experiments are performed to validate
the effectiveness of wavelet-FPM. Results show that wavelet-
FPM achieves better result and speed comparingwith conven-
tional methods. To improve the reconstruction results under
noise, we develop a noise model and a denoising method
to eliminate noise from captured raw data. Our denoising
method, termed dark-frame method, use the statistical infor-
mation of noise in a captured dark-frame and suppress noise
under an adaptive threshold. Experiment results show that
the reconstruction is improved with dark-frame method in
result and speed comparing with conventional methods. The
wavelet-FPM methods performs well together with the dark-
frame denoising method.

In the experiments of wavelet-FPM, we notice the great
use of wavelets in FPM reconstruction. It is possible to use
wavelet in more aspects of FPM. We think, the wavelet
transform is able to replace the Fourier transform in FPM and
makes a better use of the raw data of FPM. This can be a future
work for us.
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