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ABSTRACT In this paper, we propose an empirical mode decomposition (EMD)-based approach to ultra
wide band radar for sense-through-foliage target detection. When the radar signal quality is good, the
EMD-based target detection approach performs well by comparing to the no target case. When the radar
signal quality is poor and a single radar echo fails to detect the target, we first apply Rake structure in radar
sensor networks to combine radar echoes from different radar cluster-members and then the EMD-based
method could successfully carry out the target detection.

INDEX TERMS Target detection, foliage, radar sensor networks, EMD, UWB.

I. INTRODUCTION
Target detection and identification in a strong background
clutter are significant topics of civilian and military research
and applications. For example, in modern warfare, forest
provides good cover for enemy military targets such as tanks,
artillery and other weapon caches. Therefore, sense-through-
foliage target detection is important for eliminating potential
hostile enemy activities. However, the non-stationary nature
of foliage environment, for example, doppler shift caused by
tree leaves and branches blowing in the wind makes the target
detection difficult. Despite of the dynamic and impulsive
nature of background foliage clutter, it is also shown to be
a rich scattering environment that multi-path propagation
effects could dominate received echoes containing both target
and clutter information [1].

In this paper, our goal is to make the target appear from
the background foliage clutter based on our knowledge in
signal processing and sensor networks using UWB radar.
Compared to other types of signals used on foliage target
detection study, such as waveforms used in UHF and VHF
bands [2] to analyze attenuation and backscatter statistics
of foliage and Millimeter-Wave radar [3], [4] used to detect
target underneath foliage-cover, UWB radar operates at a
relatively lower frequency band between 100MHz and 3GHz
with a large fractional bandwidth greater than 20 percent.
With such characteristics UWB radar is more suited for
short distance application. However, the good penetration
ability also high range resolutions make UWB radar has

more advantage than narrow band signals in terms of target
detection. In [5], radar channel modeling is studied using both
UWB and narrowband measured radar sensor data in foliage
environment.

Some previous works related to foliage penetration exper-
iments using UWB radar have been conducted. In [6], DCT
based approach is proposed to detect target through foliage.
Reference [7] proposed differential and STFT based sense-
through-foliage approaches. Meanwhile, some information
theory based methods using mutual information [8], rela-
tive entropy [9] and multi-step information fusion [10] are
applied on this topic. In [11], detection of man-made target
obscured by foliage via UWB SAR imagery is studied. Also
some theocratical works of opportunistic sensing and signal
waveform design in radar sensor networks based on sense
through foliage data are reported in [12] and [13]. Due to
the characteristic of foliage which makes it difficult to use
conventional time-frequency analysis to extract features of
radar echoes, we are inspired by Empirical Mode Decom-
position (EMD) for its ability to analyze nonlinear and non-
stationary signals. EMD decomposes multi-component sig-
nals into several frequency components know as intrinsic
mode functions (IMFs) and a residue(e.g. trend function with
no frequency content) through a sifting process [14]. Some
research works have employed EMDmethod to analyze radar
target signal corrupted by sea clutter [15]. In [16] and [17],
EMD based methods are also applied to sense through wall
human target detection which could be treated as an oppo-
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site scenario of sense-through-foliage since the human target
has micro doppler shift caused by breadth and heart beat
while the background clutter (wall) is stationary. In [18],
a license plate localizationmethod is proposed based on EMD
analysis. In [19] EMD is shown to act as a dyadic filter
bank in stochastic situations involving broadband noise. Also,
bi-dimensional EMD(BEMD) is also widely used for image
texture analysis and classification [20]–[22] as well as image
target detection.

The rest of this paper is organized as follows: In Section II,
we introduce the measurement and data collection used in the
paper. In Section III, we present the background knowledge
of EMD and Hilbert Transformation. In Section IV, we pro-
pose the EMD based sense-through-foliage target detection
approachwith good signal quality. In SectionV, the combined
RAKE structure and EMD based sense-through-foliage tar-
get detection is discussed when the signal has poor quality.
In Section VI, we draw the conclusion.

II. DATA MEASUREMENT AND COLLECTION SETTINGS
In this work, the sense-through foliage data are provided
by Air Force Research Lab [23]. The foliage penetration
measurement effort began in late summer and continued
through early winter. Late summer foliage involved in the
measurement has decreased water content due to the limited
rainfall. In this paper, the data we used involves defoliated
foliage measured in late fall and winter.

The data collection experiment was conducted on a man
lift. The total lifting capacity of the platform is 450 kg. The
major equipment components are: Barth pulse generator, two
antennas with mounting stand, Tektronix oscilloscope, RF
switch, Signal generator and power supply. A model 732 GL
Barth pulse source was used during the measurement. Coax-
ial reed switch is used by the pulse generator to generate
less than 50 ps rise time pulses. The provided pulses also
have amplitude from 150 V to greater than 2 KV into any
load impedance through a 50 ohm coaxial line. The mini-
mum width of produced pulses is 750 ps and the maximum
width is up to 1 µs determined by capacitors or charge
line length. The target is a trihedral shape metal reflector
placed at 300 ft distance from UWB radar antennas as show
in Figure 1.

For the data used in this paper, each data collection con-
tains 16,000 samples. The total sample duration is 0.8 µs.
50 ps sample interval is used and approximate sample rate
is 20 Hertz. We consider two different data sets from this
measurement. Firstly, the pulse generator used low amplitude
transmitting pulses to collect data. 35 reflected radar signals
were averaged to produce each collection. One important
property noted of these collections is that variability from
different signal pulses was significant. We refer this col-
lection as ‘‘poor’’ quality signal. Later, higher amplitude
transmitting pulses are used for another data collection. Sim-
ilarly, 100 reflected radar signals were averaged to produce
each collection. We refer this collection as ‘‘good’’ quality
signal.

FIGURE 1. A trihedral metal target placed at 300 feet from the lift.

III. EMPIRICAL MODE DECOMPOSITION AND
HILBERT TRANSFORM
Empirical Mode Decomposition is introduced as part of
Hilbert-Huang Transform (HHT) for non-stationary and non-
linear signal time-frequency analysis [24]. The main idea of
EMD is to decompose the given multi-component signal into
a series of finite intrinsic oscillatory basic functions and a
residue through a ‘‘sifting" process. These mono-component
basic functions are called intrinsic mode functions (IMFs)
represent different frequency components of the original sig-
nal and they satisfy two conditions: (1) the number of zero
crossings and the number of local maximum or local mini-
mum are either equal or differ at most by one; (2) the mean
value of the envelope defined by the local maxima and the
envelope defined by the local minima is zero at all points [24].

Compared to other time-frequency analysis methods, for
example, wavelet transform and Short-Time Fourier Trans-
form (STFT), the EMD algorithm is not only a fully data-
driven but also adaptive method. The selection of window
size of STFT is usually a tradeoff between time resolution and
frequency resolution. Without a priori knowledge of suitable
window size for certain applications, STFT can have per-
formance degradation. The wavelet transform performance
is greatly affected by the types of basic wavelet function
employed [25]. Unlike these methods, the EMD does not
require a priori basis functions and extracted basic functions
from the data itself. The sifting process used in EMD of a
given signal x(t) is described as follows:
1) Identify all the local maxima and minima of x(t).
2) Interpolate the local maxima using cubic spline line to

obtain the upper envelope denote as eupper (t). Repeat
the same procedure for local minima to obtain the lower
envelope elower (t).

3) Calculate the mean of upper and lower envelope
m1(t) = (eupper (t)− elower (t))/2.

4) Calculate the difference between x(t) and m1(t) as
h1(t) = x(t)− m1(t)

5) Examine if h1(t) satisfy the two criteria of IMF. If it
does not treat h1(t) as the original signal x(t) and repeat
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step1 - step4. Denote the the mean of upper and lower
envelopes constructed from the extrema from h1(t) as
m11(t). Then the difference between h1(t) andm11(t) is
given as h11(t) = h1(t) − m11(t). Repeat this process
k times until h1k (t) = h1(k−1) − m1k (t) meets the
IMF criteria. Then the first IMF is extracted from the
signal and designated as c1(t) = h1k (t). However,
to guarantee the extracted IMFs has enough physical
meaning, a Cauchy type stop criterion is introduced
to stop the sifting process if the standard deviation of
two consecutive sifting output is less than a predefined
value [26]:

SD =
T∑
t=0

[∣∣h1(k−1)(t)− h1k (t)∣∣2
h21(k−1)(t)

]
(1)

SD value is usually between 0.2 and 0.3 [24].
6) Subtract c1(t) from the the rest of signal x(t),

the residue r1(t) = x(t)− c1(t) is treated as signal x(t)
and repeat step1 - step5 n times to extract the rest IMFs
from c2(t) to cn(t).

r2(t) = r1(t)− c2(t)

...

...

rn(t) = rn−1(t)− cn(t)

The sifting process ends until no IMF can be obtained
from the residue rn(t) whichmeans that rn(t) becomes a
monotonic function. Therefore the original signals can
be represented by all the extracted IMFs and the residue
as:

x(t) =
n∑
i=1

cj(t)+ rn(t) (2)

Since the extracted intrinsic mode functions can be seen
as monocomponent signals, it is straightforward to compute
the Hilbert transform for each IMF to construct analytical
signal which has meaningful instantaneous frequency. Let
ĉj(t) denotes the complex conjugate of the real valued signal
cj(t):

ĉj(t) = H[x(t)] = p.v.
1
π

∫
−∞

∞

x(τ )
t − τ

dτ, (3)

Where p.v. indicates the Cauchy principal value. The analyt-
ical signal obtained from each IMF is then defined as:

sj(t) = cj(t)+ iĉj(t) = aj(t)eiθj(t), (4)

where

aj(t) =
√
c2j + ĉj

2
, (5)

ψj(t) = arctan(
ĉj
cj
). (6)

aj(t) is the instantaneous amplitude and ψj(t) is the phase
of the analytical signal. The instantaneous frequency is:

ωj(t) =
dψj(t)
dt

(7)

After performing the Hilbert transform for each IMF com-
ponent, Then we are able to calculate the Hilbert spectrum as
the following:

H(ω, t) = <


n∑
j=1

aj(t)e[i
∫
ωj(t)dt]

 (8)

IV. SENSE-THROUGH-FOLIAGE TARGET
DETECTION WITH GOOD QUALITY SIGNAL
USING EMD APPROACH
In Figure 2, we plot two collections of data with good signal
quality. Figure 2(a) shows the received echoes without target
on range. Figure 2(b) shows the received echoes with tar-
get’s presence around 14,000 sample. For a more clear view,
we expand views of Figure 2 from sample 13,001 to 15,000 as
plotted in Figure 3(a) without target and Figure 3(b) with
target respectively. Since the Figure 3(a) has no target on
range, it can be treated as the pure background clutter
response. Therefore, it is intuitive to calculate the echo dif-
ference between Figure 3(a) and Figure 3(b) and the result
is shown in Figure 3(c). From Figure 3(c) we can observe
that target appears at around sample 14,000. However, prac-
tically it is impossible for us to obtain both collections of
data (Figure 3(a) and Figure 3(b)) simultaneously. We can

FIGURE 2. Good quality signal measurement. (a) Without target (b) Target
on range.
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FIGURE 3. Expanded view of a good quality signal measurement from samples 13,001 to 15,000. (a) Without target. (b) Target on range at
around 14,000 sample. (c) Differences between echoes in (a) and echoes in (b).

FIGURE 4. EMD results with good signal quality. (a) Original signal and IMF1-4 with no target on
range, (b) Original signal and IMF1-4 with target on range (Observed target signature in IMF1 at
around sample 13,900).

only detect target based on one of them(Figure 3(a) or
Figure 3(b)).

V. SENSE-THROUGH-FOLIAGE TARGET DETECTION
WITH POOR QUALITY SIGNAL USING RSN AND
EMD APPROACH
The real world data usually tends to be non-stationary in
nature. Motivated by this, we apply the EMD algorithm to

our two collections of data to see if any useful information
about the target can be extracted. Since the EMD is an
iterative algorithm which is time consuming, in this paper,
by comparing the results obtained using different stopping
criteria, we confine the each sifting process to 11 iterations
and the obtained result is good enough to conduct target
detection task. After applying EMD for samples provided
in Figure 3(a) and Figure 3(b), we plot the first four order
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FIGURE 5. Hilbert spectrum of original signal.

IMFs extracted from the sifting process in Figure 4. Observed
from Figure 4(b) which is the EMD result of echoes with
target, the first IMF which contains the highest frequency
component of original signal has a higher amplitude oscil-
lation at around sample 14,000 compared to other sample
locations. Due to the fact that the foliage clutter is very
impulsive and behaves like Gaussian distributed noise [6]
in the frequency domain, it is impossible to separate target
and noise in each IMF which means each IMF contains
both information about target and foliage clutter. However,
in the first IMF sample locations other than sample around
14,000 have low amplitude fluctuations and behave like
Gaussian noise. We can conclude that the high energy oscil-
lation around sample 14,000 in IMF1 is the signature of the
target and this also imply higher signal to clutter ratio (SCR)
in high frequency. We also plot the IMFs extracted from
the signal without target as shown in Figure 4(a) that in
the first IMF we don’t notice any obvious change in all
sample locations and it can represent the foliage clutter fea-
ture. This also proves our conclusion by comparing the two
figures. Figure 5 is the Hilbert Spectrum of the original
signal.

As mentioned in Section II, when the Barth pulse gen-
erator was operated at low amplitude, only 35 pulses are
averaged for each collection. This results in poor return
signal quality since not enough pulse averaging are used

to obtain the sample value. We plot the two collections of
data with poor signal quality in Figure 6(a) without target,
Figure 6(b) with target on range and Figure 6(c) the differ-
ence between two data collections. From Figure 6(c) we are
not able to tell whether there’s a target. Also, in Figure 7(a)
and Figure 7(b) we draw the extracted IMFs results using
EMD approach from these two data collections. From the
high frequency IMFs we are not able to observe any notice-
able target signature. Experiments also validate that apply-
ing EMD to each single collection of poor quality sig-
nal fails to detect the target. However, significant pulse-
to-pulse variability is observed in the UWB radar receive
echoes. Assuming measurements are independent, we are
motivated to explore some diversity combining techniques
in Radar Sensor Networks (RSN) to improve the received
signal quality.

In this case, we propose to use a RAKE structure to handle
poor signal quality target detection problem. RAKE structure
is an effective diversity combining method due to the fact that
uncorrelated radar measurements could experience different
fading levels. Echoes from different cluster-member radars
are combined by the cluster head. We consider two differ-
ent diversity combing schemes to implement Rake struc-
tures: equal gain combing and maximum ratio combining.
The equal gain combined signal can be formulated as the
following:

xeq(n) =
1
M

M∑
i=1

xi(n). (9)

Here M is the number of radar echoes used in the
combining.

The maximum ratio combing scheme uses a weighted
average wi determined by the power of each echo xi(n) (n is
the sample index),

Ei = var(xi(n))+ [mean(xi(n))]2, (10)

where

wi =
Ei∑M
i=1 Ei

. (11)

FIGURE 6. Expanded view of a poor quality signal measurement from samples 13,001 to 15,000. (a) Without target. (b) Target on range at
around 14,000 sample. (c) Differences between echoes in (a) and echoes in (b).
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FIGURE 7. EMD results with poor signal quality. (a) Original signal and IMF1-4 with no target on
range, (b) Original signal and IMF1-4 with target on range.

FIGURE 8. Block diagram of RAKE struture.

The maximum ratio combined signal has following
form:

xmrc(n) =
M∑
i=1

wixi(n) (12)

After the diversity combing EMD is applied to the com-
bined signal. We plot the IMFs extracted from two cases
in Figure 9(a) (without target) and Figure 9(b) (with tar-
get). In Figure 9(b), from first IMF with highest frequency

component, we cannot tell if there’s a target. However,
in the second IMF with second highest frequency, we observe
a high amplitude oscillation around sample 14,000. Also
in Figure 9(a) which represents the IMFs of foliage clutter and
we do not observe anything in the first two IMFs. Therefore,
we conclude this high amplitude oscillation in IMF2 is the
target signature. This observation is also in accordance with
the result of target detection of good quality signal.

In our database, totally 70 radar echoes can be used to
construct the Rake structure receiver. We further investigate
the RAKE structure performance at different combing levels.
For example, we randomly choose M = 10, M = 20 and
M = 30 radar echoes in the database and 10,000Monte Carlo
simulations are performed at each combing level. Figure 10
shows the probability of detection with different thresh-
olds for equal gain combing and maximum ration combing
schemes. From the figure we can see that the maximum ratio
combing method outperforms equal gain combing method
at each combing level. Using more radars also improves the
detection accuracy.

VOLUME 6, 2018 29259



G. Zhao et al.: EMD Based Sense-Through-Foliage Target Detection UWB Radar Sensor Networks

FIGURE 9. EMD results with poor signal quality after RAKE structure combing. (a) Original signal and
IMF1-4 with no target on range, (b) Original signal and IMF1-4 with target on range. (Observed target
signature in IMF2 at around sample 14,000).

FIGURE 10. Probability of detection using maximum ratio combing and
equal gain combing at radar combing level M = 10,M = 20 and M = 30.

VI. CONCLUSION
An EMD based approach for sense-through-foliage target
detection is studied. After extracted IMFs from the original
signal through sifting process, we are able to observe target

signature in the first IMF which represents the highest fre-
quency component when the signal quality is good. When
the signal quality is poor and a single collection of radar echo
cannot carryout target detection, a RAKE structure in RSN
using cluster-head radar by combining echoes from different
cluster-member radars is used for preprocessing before apply-
ing EMD algorithm. From the second extracted IMF we are
able to find similar target signature as the one appears in good
quality signal. Simulation results indicate that using more
combined radar echoes improves the detection accuracy.
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