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ABSTRACT In this paper, we analyze the throughput of data dissemination at the level of users’ interests.
We show that users’ interests have the ability to drastically improve upon existing throughput scaling’s
established under the assumption that users show the same preference in any type of data they encounter.
More precisely, we consider the scenario where each data source estimates the recipients that will be
interested in its data based on user interest probability, which is described by a Zipf-distributed data
popularity that decays of exponent α with data ranking. For such a user-centric model, we divide our analysis
into different cases depending on data catalogue size K and study their respective throughput performance.
With totally n users assumed, we present closed-form expressions of user-centric throughput versus n, α,
and K . In particular, our results reveal that when α = 1 where users’ interests exhibit a moderate level of
heterogeneity, the maximum throughput of 2(

√
n) (except for a poly-logarithmic factor) can be achieved

in all the situations, with appropriate choice of K . The results augment the existing scaling laws derived in
network-centric situation, in that given the same throughput data can be disseminated efficiently to more
recipients in a user-centric network.

INDEX TERMS Wireless network, information exchange, user centered design.

I. INTRODUCTION
A new trend is nowadays entailed on the Internet, where
a growing number of websites offer users the possibility
to actively contribute content. It is reshaping the way
of information dissemination in that more diverse infor-
mation generated by users themselves can be available
to others. Typical applications include You Tube [1]–[3],
microblog [4], Facebook [8] and P2P networks [5]–[7],
which have manifested themselves not only as websites
on which people can read and share information, but also
provided their visitors the possibility to create and main-
tain a social network. As opposed to the early days of
network-centric scenario where users must unconditionally
accept the information from some specific sources, such
identical popularity (or unpopularity) of information among
users is muchmore diluted in Internet. Constant waves of new
information contributed by users are quickly personalizing
their preference, leading to a great variability in user behavior

and attention span in the Internet. Such scenario is dubbed
user-centric network. User-centric network model has been
widely investigated in existing works [38], [39]. Note that
different from the content-centric network [40], user-centric
network not only highlights the data popularity, but also the
social connections.

The new trend of user-centric information dissemination
is also penetrating from the Internet into wireless ad hoc
networks, as the wireless networks themselves are developing
toward a social medium, where people’s preference during
information exchange is more highlighted than before. The
vast types of data generated by users themselves fit quite well
to the property of wireless ad hoc networks, where there is
no reinforcement from any centralized equipments on users’
reception behavior. Also, as data can be stored in a distributed
mode, ad hoc network can alleviate the heavy burden imposed
on the central infrastructure from which all nodes must
go through for certain data acquisition. And we therefore
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envision future wireless ad hoc networks shall be a good alter-
native of centralized network for user-centric data dissemina-
tion. Among numerous papers focusing on user-centric data
transmission in wireless ad hoc networks, the most related
ones consider social characteristics of nodes [9]–[14], where
users’ interests are identified from social perspective such as
homophily or community-based assumption. However, these
worksmainly focus on proposals of routing schemes for satis-
fying users’ interests, yet little is known about their impact
on network performance metrics such as throughput, delay,
etc. Established under Kumar’s framework about scaling law
analysis of throughput, some previous works have explored
socially-connected wireless network throughput [15]–[17],
while these works are mainly based on network structure
analysis rather than the users’ interests. These scenarios are
essentially ‘‘network-centric’’, ignoring the satisfaction of
users’ interests. Data is usually forwarded to many users
not interested in it, resulting in large amounts of network
resources wasted.

This motivates us to first address the problem of network
throughput in user-centric scenario from a social interest
perspective. In present work, we consider satisfying users’
interests and forward data only to users that are interested
in it. Such recipients can also be called ‘‘interesters’’ in the
rest of this paper. The major difficulty of user-centric data
dissemination in wireless networks lies in that the interesters
of a specific data class are generally unknown in advance at
the data source, because it is difficult for the source to have
knowledge about the interests of other users in the network.
Such uncertainty of data recipients is different from the traffic
pattern such as unicast [25]–[29] and multicast [30], where
the destinations are fixed and pre-known. This makes routing
strategy of user-centric data dissemination rather challenging.

Our main idea to overcome the aforementioned difficulty
is to let a user estimate the possible recipients that will
be interested in data as probability. Categorizing the data
into K classes ranking in a descendent order, we formu-
late a user’s interest in data item with a Zipf distribution
decaying of exponent α with data ranking, as there exists
ample evidence in the literature [3]–[19] that the data popu-
larity in some practical cases follows such power laws. This
probability is crucial to the determination of data recipients
since a data source has no prior-information other than esti-
mation of its possible recipients. We conduct our study in
different scenarios based on data catalogue size, i.e., limited
data catalogue where the total number of data classes K
is no more than the total number of users n and large
data catalogue where K is no less than n. In all the cases,
the throughput bounds turn out to be quite delicate as we
vary α and K . Notably, for α = 1 we achieve the best
performance, i.e., 2(

√
n) throughput scaling (except for a

poly-logarithmic factor), and, over a wide range of values
for α, the results may also manifest significant improvement
over some existing bounds derived under the network-centric
scenario. The performance benefit stems from the minimiza-
tion of wireless hops, thanks to users’ interest heterogeneity.

The corresponding throughput-achieving communication
schemes are also discussed.

It is worth noting that the purpose of our work is not
to establish optimal information theoretic results, but a first
attempt showing that there is an additional perspective to
be exploited, i.e., users’ interest, which has not been well
considered in a lot of theoretical studies aimed at establishing
fundamental scaling laws of ad-hoc networks. More sophisti-
cated techniques can be added to our scheme, and can further
improve the bounds presented here.

The roadmap of the paper is as follows. Section 2 lists
literature review of some existing studies from the perspec-
tive of user interest as well as some scaling law analysis
of throughput. We introduce the network model and list the
definitions in Section 3. The main results of this paper are
briefly introduced in Section 4. We give detailed analysis of
user-centric throughput in Section 5. Section 6 is contributed
to some discussions on our results and their implications.
We give concluding remarks in Section 7.

II. RELATED WORKS
Among the previous literature, user-centric data transmission
is mainly investigated under the background of content-based
networking, where data requests are placed on content and
routes are formed based on content provision and user
interest. Two of the related works consider content delivery
distribution [20], [21], the main idea of which is to store
different copies of the content inside the networks so that
terminal users can still retrieve the information even when
one or more than one node disconnected. Some successful
commercial distributed storage system include BigTable [22],
OceanStore [23] and distributed hash table (DHT) [24].

This paper focuses on throughput bound of large-scale
user-centric wireless networks. The fundamental asymptotic
throughput study is initiated by Gupta and Kumar [25], who
show that the maximal per-node unicast throughput achiev-
able in wireless networks is 2(1/

√
n log n) for a uniformly

distributed destination. A series of works [26]–[32] have then
followed, through either unicast or multicast. Nevertheless,
all those studies are based on network-centric framework.
Recently, there are only a few studies on throughput analysis
in user-centric networks. In particular, the most related ones
explore throughput scaling through backbone structure [33],
content replication [34] and user mobility [35]. To address
the concern of user demands, Rahul et. al. design a system
that scales wireless throughput by enabling joint beam-
forming from distributed independent transmitters. However,
it still remains unknown how user interests can affect the
scaling performance in large-scale wireless networks.

III. SYSTEM MODEL
A. NETWORK TOPOLOGY
We consider a dense network O as a unit square. The
size normalization and wrap-around conditions are also
introduced here, which are common technical assumptions
adopted in previous works to avoid tedious technicalities.
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Note that these assumptions will not change the main results
of this paper. n users with wireless communication capa-
bility are located in the network and exchange information
in an ad hoc manner. Their locations, which can be denoted
by a series of independent random variables, are uniformly
distributed in O.

B. COMMUNICATION MODEL
The well-known protocol model is introduced here to roughly
represent the behavior of transmission constrained by inter-
ference. And the results are also applicable to the more
refined physical model but it is beyond the scope of this paper.
The model indicates under a fixed total bandwidth W , two
node i is allowed to transmit to j if the positions of i and j,
denoted by Xi and Xj, satisfy ‖ Xi − Xj ‖< r , where r is a
common transmission range employed by all the nodes and
for every other node k transmitting, ‖ Xj − Xk ‖> (1+1)r ,
being 1 a guard factor.

C. USER INTEREST AND DATA MODELING
Our model estimates the interest of each user in data item
as probability. We assume that data is categorized into K
classes, each class contains one or multiple data items. The
interest profile of a user i is a K × 1 probability vector
Pi = [q(1), q(2) . . . , q(k), . . . , q(K )]T , where q(k) indicates
the user probability to be interested the k-th class. Without

loss of generality, we assume
K∑
k=1

q(k) = 1 and Pi can

be considered as a discrete probabilistic distribution. In our
paper, we assume a Zipf distribution, where the probability
that a user is interested in a data class of rank k is

q(k) =
1/kα∑K
k=1 1/kα

, (1)

α being the power law parameter indicating the rate of popu-
larity decline. Let H , 1/

(∑K
k=1 1/k

α
)
and we can also

express q(k) as q(k) = H/kα . In the above equation, we sort
different classes following their popularity, i.e., the most
popular data class is the class 1, and the least popular one is
class K .1 This choice is supported by a number of measure-
ments papers which have found Zipf distribution to be quite
ubiquitous in experimental traces related to data dissemi-
nation patterns over the Internet [3], [19]. In [3], Cha et al.
study the viewing patterns against videos with distinct ranks
based on YouTube and other similar user content gener-
ated systems. The empirical video popularity distribution
against the number of views is found to be Zipf-distributed.
Qiu et al. [19] conduct in-depth analysis on channel popu-
larity on a large collection of user channel access data from a
nation-wide commercial IPTV network and find that channel
popularity is highly skewed and can be well captured by a
Zipf-like distribution. Note that the data popularity model

1Note that in the present model a popular data class is popular among
all individual users. It is also an interesting future work to further consider
different users’ preferences for data classes, e.g., some users are more
interested in news while some are more interested in movies.

comprises, as a special case, the network-centric scenario
in which users cast identical interest to any incoming data.
This extreme case occurs at α = 0, making q(k) give rise to
uniform distribution where any one of the K data classes has
equal probability 1/K . A wider applications can be matched
through adjusting α, of which low values corresponds to the
data distribution in routers, intermediate values in proxies and
higher values in mobile applications.

D. TRAFFIC PATTERN
Each of the n users can act as a data source, a recipient or just
a relay which helps forward the data. If a user acts as a
data source, it does not know a priori who the recipients
are. Similarly, the recipients do not know who and when the
data was generated from since they will optionally receive
the data based on their own interests. Hence, in our traffic
pattern, it is the data that will determine the recipients. And
throughout the rest of our paper we will call these recipients
‘‘interesters’’ or destinations. This differs the traffic from
unicast and multicast in that their source-destination pairs are
pre-known and fixed. In our model the number of destinations
per source may vary based on the class of the data stored at
the source.

We also assume that each source has a data buffer storing
the data he will generate. Besides, each user also has a
relaying buffer for data to be forwarded to those intersters
and a receiving buffer storing the data it is interested in. Note
that data sent out from the same source always gains the same
preference order among users, i.e., the same probability that
a particular user will be interested in it.

E. THROUGHPUT DEFINITION
Definition 1: User-centric Throughput: For a specific

data class k , the aggregate user-centric throughput,3k , is said
to be feasible if there is a spatial and temporal scheme for
scheduling transmissions, such that by operating the network
in a multi-hop fashion and buffering at intermediate nodes
when awaiting transmission opportunities, each data source
can transmit g(k) bits/s of class k to its N k

I intersters. That is,
there is a T < ∞ such that in every time interval [(i − 1) ·
T , i ·T ], every data source can send T · g(k) bits of data from
class k to each of its N k

I interesters.
Definition 2: The average aggregate user-centric

throughput 3 can be obtained through taking the average

on 3k for all k ∈ [1, 2, . . . ,K ], i.e., 3 =
K∑
k=1

3k .

Note that both 3k and 3 will be our major concern
throughout the paper.

IV. MAIN RESULTS
A graphical representation of our results is reported in
Figures 1-3, respectively. We adopt the order notation 2̃(·) to
hide poly logarithmic factors for better readability. Refined
results are available in Section V.

Figures 1 and 2 plot the aggregate user-centric throughput
3 achieved versus different values of popularity parameter α
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FIGURE 1. The aggregate user-centric throughput 3 versus α in the case
of limited data catalogue, where K = O(n) and each data class is stored
by one data source.

FIGURE 2. The aggregate user-centric throughput 3 versus α in the case
of limited data catalogue, where K = O(n) and each data class is stored
by n/K data sources.

FIGURE 3. The aggregate user-centric throughput 3 versus α in the case
of large data catalogue, where K = �(n) and each of the n users stores
K/n non-overlapping classes.

in the case of limited data catalogue, where the total number
of data classes K available is no more than the number of
users n in the network. The difference between the scenarios
in the two figures lies in that Figure 1 considers one data item
per class with each data item stored initially in one data source

(totally K sources) whereas Figure 2 considers n/K data
items per classes distributed at n/K non-overlapping sources
at the beginning (with totally n sources for all the K classes).
As a counterpart, Figure 3 represents the throughput in large
data catalogue size, where K is no less than the number of
sources n, each with K/n data items from non-overlapping
classes. Note that the two cases of limited data catalogue can
model the real situations where limited contents are shared
by a large number of users. Similarly, the case of large data
catalogue reflects the circumstances where abundant contents
are shared among users. All the three figures suggest that
the aggregate throughput is maximized to 2̃(

√
n) at the point

where α = 1, with appropriate choice of K in each figure
(K = 2(n) in Figure 1, any K = O(n) in Figure 2 and any
K = �(n) in Figure 3). The throughput decreases smoothly as
α increases from 1 to 2 and is stabilized to a particular value
after α > 2 (2(1) in Figure 1 and Figure 3 and 2̃(

√
n/K )

in Figure 2). The results suggest that appropriate hetero-
geneity of users’ interests (the best heterogeneity occurs at
α = 1) can lead to throughput improvement and are also
likely to outperform the uniform case (α = 0) where each
user exhibits identical interests in all data types.

V. USER-CENTRIC THROUGHPUT ANALYSIS
A. PRELIMINARIES
Before we proceed, we first need to establish some important
properties of our data popularitymodel. The following lemma
shows how the parameter H in Zipf-distributed popularity
assumed in our model varies with α, in order sense. Note that
this result will be used throughout the paper.
Lemma 1: For the data popularity which follows a Zipf

distribution of q(k) = H/kα , the expression of H is shown in
the following cases, in different α:

H = 1/

(
K∑
k=1

1
kα

)
=


2(1) α > 1

2

(
1

logK

)
α = 1

2
(
Kα−1

)
0 ≤ α < 1.

(2)

Proof: Let f (x) denote a continuous decreasing function
which satisfies f (x) > 0 for all x ≥ 1. Then we have∫ K

x=1
f (x)dx ≤

K−1∑
k=1

f (k) ≤ f (1)+
∫ K−1

x=1
f (x)dx.

We set g(K ) =
K∑
k=1

1
kα . Then, equation (2) holds. With H =

1/g(K ), we can derive the results for H . This completes our
proof.

B. LIMITED DATA CATALOGUE
We first consider the limited data catalogue, which refers to
the case where the total number of data classes K is no more
than the total number of users n, i.e., K = O(n). In limited
data catalogue, data from K classes are initially stored at
K out of n users acting as data source. We further assume
one data item within each class to be disseminated over the
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network to span various users’ attention. We will get into
the finer resolution of different objects within each class in
Section 5.3. The lemma given below indicates the properties
exhibited in the case of limited data catalogue.
Lemma 2: For a data item belonging to class k , where

k ∈ [1, . . . ,K ], the number of estimated intersters NIk in it is

NIk = 2
(
n ·

H
kα

)
. (3)

And these NIk interesters are randomly and uniformly
distributed in the whole network.

1) UPPER BOUND
We first analyze the upper bound of both user-centric
throughput for data class k and the aggregate user-centric
throughput in limited data catalogue, as are shown in the
following lemma:
Lemma 3: In the case of limited catalogue where K out of

n users serve as data sources for each of the K data classes,
the user-centric throughput3k for data class k and the aggre-
gate user-centric throughput 3 can be upper-bounded by

3k ≤
NIk ·W

Ik

3 ≤
K∑
k=1

NIk ·W
Ik

,

(4)

where Ik is the total number of non-interesters of class k
overhearing a copy of data from class k and W is the total
bandwidth for transmission.

Proof: Given the set K of K data classes, let 3K =
(31,32, . . . , 3K ) be the rate vector of all K data classes.
Then, for a data class k , assume that Ik users who are not
interested in data from data class k but overhear a copy
from it during data transmission. Obviously, 3k · Ik ≤

NIk · W , where the right side represents the total data that
can be disseminated for data class k over the whole network.
Taking summation of 3k on all k ∈ [1, . . . ,K ], we can
obtain the upper bound of the average aggregate user-centric

throughput, i.e., 63k∈3K3k ≤ 6
K
k=1

NIkW
Ik

.

To obtain the closed-form expressions for the upper bound
of both 3k and 3, we need to calculate the lower bound
of Ik described in Lemma 3. This is usually figured out
through the average length of spanning tree in traditional
multicast. However, the problem is complicated in our model
by the fact that the number of destinations is not fixed and is
dependent on data popularity probability, which is different
from the spanning tree established in multicast [30]. In order
to proceed, we can simplify the problem by focusing on
establishing a tree Tk for a specific data class k first. The
tree is estimated to span from source to NIk interesters, where
NIk varies according to different k . Lemmas 4-6 provide some
properties of Tk .
Lemma 4: For the data belonging to class k ∈ [1, . . . ,K ],

the total transmission length, denoted by ‖ Tk ‖, of any tree
Tk spanning H ·n

kα nodes that are randomly placed over the

whole network almost surely is at least τ ·
√

H ·n
kα , where τ

is a constant.
Lemma 5: The area region Ak containing the number of

non-interesters of data class k is at least c · r
√
NIk when the

number of interesters of class k satisfies NIk ≤ n/ log n.
Proof: Let Lk denote the area covered by the number

of leaf nodes in Tk . Obviously, since there are NIk inter-
esters of data class k , the number of leaf nodes is thus NIk .
These NIk occupy a total region with area NIk · πr

2. Let Ink
denote union region covered by the internal nodes of Tk . Due
to the random and uniform distribution of these NIk users
(Lemma 2), the problem can be converted to figure out the
minimum tree spanning from the source of data class k to its
NIk interesters and get it to be σ

√
NIk according to [37]. Then,

we can get Ink =
σ
√
NIk
r ·πr2 = σπ

√
NIk ·r . Hence, the area

of the region covering those non-interesters that get a copy of
data from class k is Ak ≥ Ink −Lk = σπ

√
NIk · r−NIk ·πr

2.
Note that σπ

√
NIk · r > NIk ·πr

2 in order sense when NIk =

O
(

1
r2

)
. Therefore, we can conclude that Ak = c · r

√
NIk ,

where c = σπ . This completes our proof.
Lemma 6: If the estimated number of interesters NIk on

data class k exceeds a threshold η n
log n , where η is a constant,

then the number of empty sub-squares occupied by those
interesters is at most a constant fraction of the total number of
sub-squares. It has already been inferred from Lemma 2 that
the estimated NIk ≥ η

n
log n is randomly and uniformly chosen

among the n users during data dissemination process.
Proof: We partition the unit square into sub-squares

with side length r . Hence, the square will be partitioned into
L = b 1

r2
c, denoted as {Mi}

L
i=1.

Let X be the number of squarelets that do not have any of
these NIk interesters inside. We define the variable Xi as{

1, if there is no interesters of class k in Mi.
0, if there are interesters of class k in Mi.

Let X =

n∑
i=1

Xi. According to Chebyshevąŕs Inequality,

we have

Pr(|X − E[X ]| ≥ τ · L) ≤
Var(X )
τ 2L2

, (5)

where τ is a constant in the range [0, 1]. Obviously, we have

Var(Xi) = E[X2
i ]− E2[Xi]

=

(
1−

1
L

)NIk
−

(
1−

1
L

)2NIk
,

and

Var(X ) =
n∑
i=1

Var(Xi) = n · Var(Xi)

= L

[(
1−

1
L

)NIk
−

(
1−

1
L

)2NIk
]
.

VOLUME 6, 2018 32691



X. Gan et al.: Unraveling the Impact of Users’ Interest on Information Dissemination in Wireless Networks

Substituting it into Inequality (5), we obtain

Pr((X − E[X ])≥τ · L)≤
L
[(

1− 1
L

)NIk
−

(
1− 1

L

)2NIk ]
τ 2L2

.

Since NIk ≥ η
n

log n ≥ η · L, L ·
(
1− 1

L

)NIk
≤ L · e−η. Hence,

Pr(X ≥ E[X ]+ τ · L) ≤
e−η − e−2η

τ 2L2
. (6)

The right side of Inequality (6) goes to zero as L goes to
infinity. Moreover,

E[X ]+ τ · L ≤ L · e−η + τ · L = L(e−η + τ ) ≤ ϕ · L,

where ψ is a constant belonging to [0, 1]. We draw the
conclusion that the number of empty sub-squares occupied
by those interesters is at most a constant fraction of the total
number of sub-squares.
A consideration we should take into is the transmission

range r mentioned in Lemmas 5 and 6. Previous investi-
gations have shown that transmission ranges should not be
too large to increase power consumption while maintaining

network connectivity. A range r = 2
(√

log n
n

)
is commonly

adopted to make the whole network fully connected, which
has already been verified in [25]. Based on this, the Ak in
Lemma 5 can further be expressed as Ak =

√
NIk log n/n.

Since NIk = n · H/kα , substituting it into Ak we can get
Ak =

√
H · log n/kα . With Ak derived under NIk satisfying

O
(

n
log n

)
and �

(
n

log n

)
, we can figure out the number of

non-interesters Ik receiving the data from class k , as are
shown in Lemmas 7 and 8:
Lemma 7: When NIk = O (n/ log n), we can express the

number of non-interesters Ik obtaining data from class k as
Ik = n

√
H · log n/kα .

Proof: Since all the users are uniformly distributed over
the whole network, the number of users located in Ak is on

average Ak ·K
1 = n

√
H ·log n
kα . This completes our proof.

Lemma 8: When NIk = �
(

n
log n

)
, the area Ak occupies a

constant fraction of the whole network area, i.e., Ak = % ·

1 = %. Thus, the number of non-interester of class k that
obtain a copy of it can be expressed as Ik = %n.
The last step before we obtain the upper bound of 3k is

to specify the ranges of k , in which the condition NIk =
�
(

n
log n

)
and NIk = O

(
n

log n

)
can be satisfied respectively.

The next lemma gives the ranges of k where NIk = �
(

n
log n

)
,

varying with α:
Lemma 9: In a network with totally n users, for a specific

data class k , the number of intersters NIk = O( n
log n ) if and

only if k satisfies

k =



�

log

1
α n

 α > 1

�(1) α = 1

�

(
n
(
log n
n

) 1
α

)
0 < α < 1

∀k ∈ [1, . . . ,K ] α = 0.

(7)

Proof: According to Lemma 2, we have already known
that for data class k , NIk is estimated to be2

(
n · HKα

)
. Hence,

substituting it into the equation NIk = O( n
log n ), we obtain

that the equation holds when k ≥ H
1
α log

1
α n. According to

the result of H shown in Lemma 1, the results of this lemma
naturally hold.

With the closed-form expression ofIk , we can express the
upper bound shown in Lemma 3 for both NIk = O (n/ log n)
and NIk = �(n/ log n) as follows:
Lemma 10: In each subnetwork with n users, the upper

bound for the user-centric throughput 3k of data class k and
the aggregate user-centric throughput 3 is

3k = O
(√

H
kα log n

)
k = �

(
(H log n)

1
α

)
3k = O

(
H
kα

)
k = O

(
(H log n)

1
α

) (8)

2) THROUGHPUT-ACHIEVING SCHEME
Nowwewill propose an optimal routing scheme, under which
the throughput achieved can reach the upper bound proposed
above. For user-centric data routing, the cell partition TDMA
scheme is highly efficient for scheduling active transmissions
in the network. However, routing becomes a major issue in
user-centric traffic pattern since an optimal routing tree needs
to be established. Moreover, the destinations (also called
interesters) of data from class k cannot be determined and
fixed in prior. Instead, they can be estimated only during
data transmission, based on the ranking of data class for the
incoming data. Our main idea is to first construct a Euclidean
spanning tree using Prim’s algorithm, and then convert it to a
user-centric routing tree. We present the user-centric routing
scheme shown as follows:
Optimal User-Centric Routig Tree:
Step 1: Construct a spanning tree using Prim’s algorithm:

(a) Interesters of data class k form NIk components.
(b) The network is partioned into NIk − g squares with

side length of each square being 1/d
√
NIk − ge. (g =

1, 2, . . . ,NIk − 1.)
(c) Find a square that contains two nodes from two different

connected components. Merge the two components by
adding a edge between the two nodes.

(d) For each g ∈ [1, . . . ,NIk − 1], repeat step (b) and (c)
until g = NIk − 1. Return the User-centric Spanning
Tree, denoted by UCST(k) for data class k .

Step 2:Divide the network into cells with side length r . For
each edge uv in UCST(k), randomly select a point w that is

32692 VOLUME 6, 2018



X. Gan et al.: Unraveling the Impact of Users’ Interest on Information Dissemination in Wireless Networks

in the same row as u and the same column as v. Then select
a node in each of the cells which uw and wv are crossed by.
Connect those users to form a path from u to v.
Step 3: Combine the paths and remove cycles. Return the

obtained user-centric routing tree UCRT(k) for data class k .

FIGURE 4. User-centric routing tree and multi-hop in step 2.

An illustration of user-centric routing is shown in Figure 4.
One of themost significant factors related to routing tree is the
tree length spanning from a specific source to all destinations.
Denoting ‖ UCRT(k) ‖ as the tree length for data class k ,
we have
Lemma 11: For Hnkα interesters of data in class k randomly

located in a unit square, the length of User-Centric Routing

Tree ‖ UCRT(k) ‖ is at most ρ
√

Hn
kα , where ρ is a constant.

Note that employing transmission for UCRT(k) of a
specific k ∈ [1, . . . ,K ] is conducted through TDMA scheme.
Each cell is treated as a scheduling unit and transmits in a
round-robin fashion. For each active cell, randomly select
a user located in that cell. Which data class to disseminate
depends on which data class the selected user will send if it
acts as a data source, or on which data class it will help to
relay if it acts as a relay for that class. In order to analyze the
throughput for each data class k , it is important to figure out
the load for k in each cell, as is shown in Lemma 12.
Lemma 12: Given a squarelet c, the probability that the

flow for data class k is routed through c is upper bounded
by κ ‖ UCRT(k) ‖ r .

Proof: Recall that we will construct the UCRT as the
method described in Algorithm 1, which is composed of NIk
steps. For a given data class k , the squarelet c may be used
in any one of the NIk steps to build the tree. For step g (with
1 ≤ g ≤ NIk ), the network is divided into bNIk−gc

2 cells with
side length 1/

√
bNIk − gc. Let Ig represent the indicator that

c is used in step g. Then the probability that Pr(Ig = 1|NIk )
can be expressed as

Pr(Ig = 1|NIk ) =
1

bNIk − gc
· pc (g) , (9)

where 1
bNIk−gc

is the probability that the cell containing
squarelet c is used and pc represents the probability that

squarelet c is used when that cell containing c is used. With
this cell further tessellated into squarelets with area r , assume
that c locates in the ith row and jth column, then we have

pc(g) = (i− 1) ·
[
r2bNIk − gc − (i− 1)r3bNIk − gc

3
2

]
+ (j− 1) ·

[
r2bNIk − gc − (j− 1)r3bNIk − gc

3
2

]
≤ 2rb

√
NIk − gc, (10)

where the first (second) term in Equation 10 is the probability
that squarelet c is used when u (resp. v) is on the same row
(resp. column) as c. Taking summation from 1 to NIk , we get

Pr(Ig = 1) =

NIk∑
g=1

Pr(Ig = 1|NIk )

=

NIk∑
g=1

2r
bNIk − gc

b
√
NIk − gc

≤

NIk∑
g=1

2r
bNIk − gc

= 2
(
r ·
√
NIk
)

= κ ‖ UCRT(k) ‖ r . (11)

Lemma 13: For a specific data class k , the number of
sessions for k that invoke c for routing uniformly over all
cells is

lim
K→∞

Pr

(
K⋂
c=1

{
N (c) ≤ κ ′K ‖ UCRT(k) ‖ r

})
= 1.

Proof: For a specific squarelet c, we haveN (c) =
K∑
k=1

Ic,

where Ic represents the indicator function that squarelet c
is invoked by transmission of data class k . According to
Lemma 12, Ic is i.i.d. Bernoulli random variables with prob-
ability p ≤ κ ‖ UCRT(k) ‖ r . By Chernoff bounds, we have

Pr

(
N (c) > 2E

[
K∑
k=1

Ic

])
< Pr

(
K∑
k=1

Ic > 2E

[
K∑
k=1

Ic

])

<
( e
4

)n·κ‖UCRT(k)‖r
< (e)−n·κ‖UCRT(k)‖r/8 . (12)

Since r = 2(n/ log n), we can further get

Pr

(
K⋂
c=1

{
N (c) ≤ κ ′K ‖ UCRT(k) ‖ r

})

≥ 1−
∑
c

Pr

(
N (c) > 2E

[
K∑
k=1

Ic

])
≥ 1− ne−

√
n log n/8

→ 1. (13)

Note that the last row of Equaqtion (13) holds as long as n
goes to infinity. This completes our proof.
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The last step before we obtain the closed-form expression
of user-centric throughput is to find out the data classes that
will get �(1) interesters, as is shown in Lemma 14.
Lemma 14: In a network with total number of users

being n, for a specific data class k , the number of interesters
NIk satisfies NIk = �(1) if

k =



O

n 1α
 α > 1

O

((
n

logK

) 1
α

)
α = 1

O

n 1α K 1
α
−1

 0 ≤ α < 1.

(14)

Proof: The estimated number of interesters of data class
k is NIk = n · Hkα = �(1) is equivalent to k = O(n · H )

1
α .

According to Lemma 1, we can complete the proof.
Finally, by employing a TDMA strategy such that every cell
has a constant fraction of time for transmission, and further
dividing one time slot into mini-slots such that a cell can
deliver the traffic for each data class session invoking it,
we can get the results shown in the following lemma:
Lemma 15: The user-centric throughput for data class k

obtained in our optimal user-centric routing scheme is

3k =


�

(√
H

kα logK

)
k = �

(
(H logK )

1
α

)
�

(
H
kα

)
k = O

(
(H logK )

1
α

)
.

(15)

Note that the lower bound derived in Equation (15) matches
the upper bound derived in Equation (8). Hence, we can
obtain the tight bound of3k by simply replacing the�with2
in Equation (15). The detailed expression for both 3k and 3
can now be derived for the whole network, as shown in
Theorem 1.
Theorem 1: In limited data catalogue where each data

class contains only one data item stored initially at one source,
the aggregate throughput for a specific data class k , denoted
by 3k can be expressed as the results shown in Table 1.
And the aggregate average user-centric throughput 3 can

be expressed as

3 =



2(1) α > 2
2
(√

log n
)

α = 2

2

(
n

1
α
−

1
2

√
log n

)
1 < α < 2&K = �

(
n

1
α

)
2

(
K 1− α2
√
log n

)
1 < α < 2&K = O

(
n

1
α

)
2

(√
K

log n logK

)
α = 1

2

(√
K

log n

)
0 ≤ α < 1.

(16)
Proof: 1. Proof of the aggregate user-centric throughput

3k for data class k .

TABLE 1. User-centric throughput vs α and k .

According to Lemma 15, we know that 3k =

2(
√
H/
√
kα log n) when K >

√
kα/H log n and Nk =

O(n/ log n). This implies that k = O
(
K

2
α (H log n)

1
α

)
and

k = �
(
(H log n)

1
α

)
. We also should bound the minimum

number of interesters Nk for class k to be larger than 1,
i.e., n · H/kα > 1. This is equivalent to k = O

(
(n · H )

1
α

)
.

When α < 2, it is obvious that K
2
α (H log n)

1
α > K . Thus,

the condition that K >
√
kα/H log n holds for all k ∈

[1, . . . ,K ] when α < 2. Besides, the condition that k =
�
(
(H log n)

1
α

)
holds for all k ∈ [1, . . . ,K ] when 0 < α < 1

since (H log n)
1
α = K

α−1
α log

1
α n < 1. Considering that

fact that when K >
√
kα/H log n, 3k = 2(

√
H/kα log n)

when k = �(H log n)
1
α ) and 3k = 2(H/kα) when k =

O(H log n)
1
α ), we can obtain the result of3k for α ≤ 1 shown

in Table 1.
For 1 < α ≤ 2, the only concern is if the data class

guaranteeing the minimum number of interesters NIk exceeds
the maximum data class K . That is, if K > n1/α . Choosing
the minimum value between K and n1/α , we can get 3k for
1 < α ≤ 2 listed in Table 1.
Finally, for the case where α > 2, we are concerned about

ifK > n1/α as well as ifK
2
α (log n)

1
α > min(n1/α,K ). Listing

all the possible range of k satisfying one or both conditions,
we can get the throughput results 3k presented in Table 1
for α > 2.

2. Proof of the aggregate user-centric throughput 3.
For the aggregate user-centric throughput 3 for all data

classes, we only prove the part where α > 2. The result
of 3 for α < 2 can be obtained using the similar analysis.
The user-centric throughput 3k is reduced to 2(1/kα) when

k > K
2
α (log n)

1
α , K

2
α (log n)

1
α < n1/α and n1/α < K ;

3k is bounded by 2(1/
√
kα log n) when log

1
α n < k <

K
2
α (log n)

1
α and n1/α < K

2
α (log n)

1
α ; 3k reduces to2(1/kα)
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when k < log
1
α n. Hence, we can obtain 3 for α > 2 in the

following three cases:

• When K < n
1
α , we have

3 =

log
1
α n∑

k=1

(
1
kα
+3k )

=

K
2
α log

1
α n∑

k=log
1
α n

1
√
kα log n

+

K∑
k=K

2
α log

1
α n

K
√
kα
= 2(1).

(17)

• When n
1
α < K <

√
n, we have

3 =

log
1
α n∑

k=1

(
1
kα
+3k )

=

K
2
α log

1
α n∑

k=log
1
α n

1
√
kα log n

+

n
1
α∑

k=K
2
α log

1
α n

n
1
α

√
kα
= 2(1).

(18)

• When K >
√
n, we have

3 =

log
1
α n∑

k=1

1
kα
+

n
1
α∑

k=log
1
α n

1
√
kα log n

= 2(1). (19)

The proof can be completed by using the similar calculation
of 3 to the cases where α < 2.

C. MULTIPLE SOURCES PER CLASS IN
LIMITED DATA CATALOGUE
Another common application in limited data catalogue, and
meanwhile our major concern in this subsection is the case of
multiple objects within the same data class. More precisely,
we assume each data classes has n/K sources randomly
distributed over the network, storing different data items from
each other (See Figure 5 for illustration.). Since the n/K data
items gain the same preference ranking from users, the prob-
ability that a user is interested in one of the n/K data items
within a specific class k can be expressed as q(k)i = H

kα ·
K
n .

Hence, with total number of interesters NIk for each data
class, the number of interesters for each of the n/K data items
within class k is NIk ·

K
n = n · Hkα ·

K
n = K · Hkα .

The upper bound of3k can be obtained through the similar
techniques in Section 5.2. Also, an optimal user-centric
routing scheme to Section 5.2 can be adopted here to reach
the upper bound. For the sake of brevity, we skip the
corresponding analysis and instead present the key point in
throughput calculation, i.e., to find out the maximum data
class kMi that can attract at least one interester in each of
the n/K objects per class. This can be figured out in the
similar manner of Lemma 14, but deep down into the scale of
each data item within the same class. As another significant
step, Lemma 16 gives the range of data classes within which

FIGURE 5. Illustration of multiple sources per data class in limited data
catalogue. Each of the K classes has n/K sources randomly distributed
over the whole network, storing different data items from each other. The
squares, triangles and the circles shown in the figure represent some
typical sources. Note that sources of the same shape store a data item
that belongs to the same class.

the number of interesters can be bounded by n/ log n, in the
similar idea of Lemma 9, but again at the level of each data
item within the same class.
Lemma 16: Denote NIki (i ∈ [1, . . . , n/K ]) as the number

of interesters in each of the n/K contents for a specific
data class k . Then, for all k ∈ [1, . . . ,K ], NIki satisfies the

condition that NIki = O
(

n
log n

)
.

Proof: The condition NIki = O
(

n
log n

)
is equivalent to

KH
kα = O

(
n

log n

)
. This implies that k >

(K
n H log n

) 1
α . Since

K = O(n), we know that K/n < 1, which further indicates

that
(K
n H log n

) 1
α < 1. The minimum value of k is 1, which

is already larger than
(K
n H log n

) 1
α . Thus, the conclusion in

this lemma naturally holds for all k ∈ [1, . . . ,K ].
Now we can derive the specific expression of 3k and 3

given in Theorem 2.
Theorem 2: In limited data catalogue with multiple data

items contained in each data class, the aggregate throughput
for a specific data class k , denoted by3k can be expressed as
the results shown in Table 2.

The aggregate average user-centric throughput 3 can be
expressed as

3 =



2

(√
n

K log n

)
α > 2

2

(√
n logK
K log n

)
α = 2

2

(√
n

log n
K

1−α
2

)
1 < α < 2

2

(√
n

logK log n

)
α = 1

2

(√
n

log n

)
0 ≤ α < 1.

(20)
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TABLE 2. User-centric throughput vs α and k .

Proof: 1. Proof of the aggregate user-centric throughput
3k for data class k .

Since there are n/K sources in each of the K classes,
the user-centric throughput of a specific data class k is the
sum of the throughput of each of the n/K sources. Denote
λi as the throughput of the ith (i ∈ [1, . . . , n/K ]) source at
class k , then the user-centric throughput of class k is 3k =∑n/K

i=1 λi. Moreover, since the n/K data items are at the same
level of popularity, we can further express 3k as 3k =

n
K λi.

For each λi, according to Lemma 16, we know 3k =

2(
√
H/
√
kα log n) for all k ∈ [1, . . . ,K ]. Also, we should

bound the minimum number of interesters NIki > 1. This
leads to k = O(H ·K 1/α). Based on these conditions, we can
obtain the results of 3k =

n
K λi shown in Table 2.

2. Proof of the aggregate user-centric throughput 3.
The aggregate user-centric throughput for all data classes

can be obtained by taking the summation of 3k over all k ,
i.e., 3 =

∑K
k=13k =

∑K
k=1

∑n/K
i=1 λi. We only prove the

results of α > 1 and the results in other scenarios are easy to
obtain by taking the summation of 3k on all k .

• When α > 1, we have 3 =
K

1
α∑

k=1
2
(√

n
Kkα log n

)
.

• When α ≥ 2, we have 3 =
(√

n
K log n

)
for α > 2 and

2
(√

n logK
K log n

)
for α = 2.

• When 1 < α < 2, 3 can be expressed as 3 =
2
(√

n
K log n

)
· K 1− α2 = 2

(√
n

log nK
1−α
2

)
.

Similarly, we can obtain the results in the case where
α = 1, 0 < α < 1 and α = 0 using the same method above.
The results of 3 corresponding to different α are shown in
Equation (20). This completes our proof.

D. LARGE DATA CATALOGUE SIZE
A counterpart of limited data catalogue is the case of large
data catalogue size, where the total number of data classes
satisfies K = �(n). And the K classes are uniformly stored
at n users. More precisely, on average, each user has M =
K/n data classes. For a specific user i, denote {kil }|

M
j=1 as

the data classes stored at it. Then, for another arbitrarily
chosen user j storing data classes {kjl }|

M
l=1, we assume that

{kil }|
M
j=1

⋂
{kjl }|

M
l=1 = φ, which implies that each of the K

classes is possessed by one and only one user. And we restrict
our consideration here to one data item within each class.
A finer resolution of different data items within each class
will be taken into account as our future work.

FIGURE 6. Illustration of the case of large data catalogue, where
K = �(n) and each of the n users stores M = K/n non-overlapping
classes. The red dotted line represents a threshold kM on the ranking of
data classes stored at a generic node. Data classes with their ranking
below kM will have zero interester.

As can be derived using Lemma 2, the estimated number of
interesters Nkij on data class j stored at user i is 2(n ·H/kαij ).
Taking the summation of Nkij on all i ∈ [1, . . . , n] and
j ∈ [1, . . . ,M ], we have

n∑
i=1

M∑
j=1

Nkij =
n∑
i=1

M∑
j=1

n

(
H
kαij

)
= n. (21)

More precisely speaking, a data source in large data cata-
logue needs to act as multiple sources to deliver data from
different classes to their corresponding interesters. However,
due to the existence of kM , some data classes ranking behind
kM have zero interesters (see Figure 7 for illustration) and
therefore should be excluded in throughput calculation. From
Lemma 14, we can obtain the kM in this case, as is shown in
Lemma 17.
Lemma 17: For K = �(n), the maximum data class kM

that can guarantee Nk > 1 is

kM =



O

n 1α
 α > 1

O
(

n
logK

)
α = 1

O

n 1α K α−1
α

 0≤α<1&n=�(K 1−α)

0 0≤α<1&n=O(K 1−α).

(22)

Lemma 17 implies that kM never exceeds n regardless
of the fact that the total number of data classes K is much
larger than n. An observation from this lemma is that when
0 ≤ α < 1, to guarantee kM > 1 we must have K > n

1
1−α .

Hence, there is no interester for any of the K data classes
when K > n

1
1−α and leads to zero throughput in such case.

The upper bound of 3k can still be derived in the
similar manner as previous two cases. Also, the throughput-
achieving routing scheme can follow the main idea of that in
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case 2, with some minor modifications: Considering the fact
that K/n data classes stored at each user, with at most one
of the K/n classes having non-zero interesters, when a user
is scheduled to transmit, he only picks out the one with the
highest ranking stored in his buffer and then transmits it. The
rest data classes stored at the buffer can be simply ignored
for that they will hardly attract interesters. Hence, the same
result can be informed by analyzing the scenario where there
are totally kM data classes and each of these kM classes
is possessed by one and only one user. As a consequence,
we can obtain 3k and 3 shown in Theorem 3.
Theorem 3: In large data catalogue, the user-centric

throughput 3k for data class k is shown in Table 3. And
the aggregate average user-centric throughput 3 can be
expressed as

3 =



2(1) α > 2

2

(
n

1
α
−

1
2

√
log n

)
1 < α ≤ 2

2

( √
n

√
log n logK

)
α = 1

2

(
n

1
α
−

1
2K 1− 1

α

√
log n

)
0<α<1&n=�(K 1−α)

0 0<α<1&n=O(K 1−α).

(23)

TABLE 3. User-centric throughput vs α and k .

Proof: According to Lemma 17, the total valid number
of data classes is kM < n for all α ≥ 0. Since the K data
classes are randomly and uniformly stored among n users,
the kM valid data classes are also randomly and uniformly
stored among n users. That is to say, each user stores on
average 2(K/n) data classes with at most one valid class
among them. Since the invalid data classes contribute zero
throughput to the whole network, we can focus mainly on the
contribution from those kM classes of the throughput. This is
equivalent to the scenario where there are n users with totally
kM data classes and each of these kM classes is stored by one
and only one source. Then, we can obtain the3k and3 using
the similar analysis in case 2.

VI. DISCUSSION
A. IMPACT OF α ON THROUGHPUT
Although mainly of theoretical interest, we believe that our
work can provide fundamental principles to smart design

of user-centric network architecture. We first discuss about
the impact of user-centric data distribution on network
throughput. In all three scenarios, a common phenomenon
from our results is that the aggregate user-centric throughput
3 is reduced to a constant in order sense when α > 2
and decreases gradually as α increases from 1 to 2. This
is because users’ interests are highly skewed to popular
data when α > 2. The preference on popular data makes
it similar to the broadcast case where the data from each
source needs to be disseminated to all the other nodes in the
network.

Another significant phenomenon is that the maximum
throughput can be achieved at α = 1 in all three
cases. Note that this outperforms the throughput at 0 ≤
α < 1, where each user’s interest is flattened towards the
uniform over all K data classes. The reason behind is that
the average source-destinations’ transmission length, a key
factor that determines throughput in static networks is mini-
mized when α = 1. A useful heuristic can be brought
about is that throughput improvement can be achieved by
the existence of diverse users’ interests in real network
applications.

B. IMPACT OF K ON THROUGHPUT
Data catalogue size (say K ) also has a strong impact on user-
centric throughput performance. And the graphical results
shown in Figures 1-3 all indicate that changing K can
affect the aggregate throughput results 3, in the range
α ∈ [0, . . . , 2]. In the case of limited data catalogue,
when each data class is possessed by only one source
(Figure 1), the throughput 3 increases linearly with

√
K in

the range α ∈ [0, 1] and reaches the maximum throughput
when K = 2(n); In the range α ∈ [1, 2], there is a critical
threshold of K = n

1
α , above which the throughput jumps

to n
1
α
−

1
2 , independent of K ; When each data class contains

multiple data items (Figure 2), the throughput remains to be
√
n when α ∈ [0, 1), regardless of how K varies. Because

users exhibit identical interest in each of the K data classes
when α ∈ [0, 1). For each data class, users cast the same
interest at each of the n/K data belonging to that class.
Overally, users can be treated as having identical interest in
each of them given n data items totally, which is equivalent
to unicast traffic pattern. On the contrary, the throughput
decreases as we increases K when α > 1, since a larger K
will impose more users’ concentration on data from different
classes but dilute users’ identical interests among data items
within the same class. In the case of large data catalogue
(Figure 3), the aggregate throughput3 is independent of how
K varies but only constrained by the number of users n when
α ∈ [1, 2]. In contrast, 3 decreases sharply as K increases
when α ∈ [0, 1), given the constraint that K = O(n

1
1−α ). The

throughput reduces to zero if K = �(n
1

1−α ). The reason is
that the users show identically very low interests in each of
the K classes in too large data catalogue, resulting in almost
zero bandwidth utility.
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C. RELATIONSHIP WITH THROUGHPUT
RESULTS IN PREVIOUS WORKS
Now we will associate user-centric throughput obtained in
our work with those in previous works. Note that most of
previous works are based on the network-centric scenario,
where whether a user is interested in the data he encoun-
ters is not taken into account. The typical aggregate unicast
throughput is already shown to be2(

√
n) in [25], where each

source is assigned to send data to 2(1) destinations. Note
that the same throughput of2(

√
n) is achievable in our work,

where ω(1) users can be treated as destinations of a data item.
To this regard, both data dissemination and bandwidth utility
are exploited in amore efficient way in our paper. Because the
data can be disseminated to as many interesters as possible,
resulting in little extra bandwidth wasted in transferring data
to lots of users not interested in it.

The aggregate throughput for classic multicast is demon-

strated to be 2
(√

n
k log n

)
in static network [30], where

k denotes the number of destinations for each source.
Note that the throughput of 2(

√
n) can be achieved only

when k = 2(1) and the multicast throughput reduces
to 2(1) when k = 2(n). Our results outperform such
multicast throughput in that a maximum throughput 2(

√
n)

can be achieved provided that ω(1) users can receive the
data they are interested in. Furthermore, the user-centric
throughput can remain to be 2(

√
n) regardless of data cata-

logue size. In the case of large data catalogue, throughput
of 2(

√
n) remains unchanged even if the total number of

data classes available is much more larger than n. This
brings about a heuristic that we can introduce as many
data classes as possible to the network without sacrifice on
throughput.

Note that here the throughput gain refers to the number of
extra destinations that data can be delivered to given the same
throughput. The gain is attributed to the efficient user-centric
data dissemination where data is delivered to the users that
are interested in it.

VII. CONCLUSION
This paper analyzes the throughput of user-centric data
dissemination in large scale ad hoc wireless networks, which
considers data transmission from perspective of users’ inter-
ests. We show that users’ interests can drastically improve
upon existing scaling laws established under the assump-
tion that users show the same preference in any data they
encounter. More precisely, we consider the scenario in
which each data source estimates the interesters of its data
based on Zipf-distributed user interest probability. For such
user-centric model, we study throughput performance and
present closed-form expression of user-centric throughput
versus different value of α and the total number of data
classes K available. Notably, for α = 1 the maximum
capacity of 2(

√
n) (except for a poly-logarithmic factor) can

be achieved for all three situations, under appropriate choice
for K in each situation.
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