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ABSTRACT The fingerprint is one of the oldest and most widely used biometric modality for person
identification. Existing automatic fingerprint matching systems perform well when the same sensor is
used for both enrollment and verification (regular matching). However, their performance significantly
deteriorates when different sensors are used (cross-matching, fingerprint sensor interoperability problem).
We propose an automatic fingerprint verification method to solve this problem. It was observed that
the discriminative characteristics among fingerprints captured with sensors of different technology and
interaction types are ridge orientations, minutiae, and local multi-scale ridge structures around minutiae.
To encode this information, we propose two minutiae-based descriptors: histograms of gradients obtained
using a bank of Gabor filters and binary gradient pattern descriptors, which encode multi-scale local ridge
patterns around minutiae. In addition, an orientation descriptor is proposed, which compensates for the
spurious and missing minutiae problem. The scores from the three descriptors are fused using a weighted
sum rule, which scales each score according to its verification performance. Extensive experiments were
conducted using two public domain benchmark databases (FingerPass and Multi-Sensor Optical and Latent
Fingerprint) to show the effectiveness of the proposed system. The results showed that the proposed system
significantly outperforms the state-of-the-art methods based on minutia cylinder-code (MCC), MCC with
scale, VeriFinger—a commercial SDK, and a thin-plate spline model.

INDEX TERMS Biometrics, feature fusion, fingerprint cross-matching, fingerprint sensor-interoperability,
score level fusion.

I. INTRODUCTION
Fingerprint is a prevalent biometric modality, which is widely
used for person authentication. There has been an intensive
research on the development of automatic fingerprint veri-
fication methods. However, existing methods were designed
to work in the situation when a specific type of sensor is
used for both enrollment and verification. Owing to advances
in sensing technology, there is a plethora of low-cost and
smart fingerprint sensors, which are being embedded in smart
devices such as mobile phones and PCs. Matching an indi-
vidual’s fingerprints that originate from different sensors has
been an important concern with the growing number of fin-
gerprint applications. Law-enforcement departments, secu-
rity agencies, and various service providers have developed
huge fingerprint databases usually with a specific sensor,
but a different type of sensor can be used at the time of
authentication and verification. This has given rise to the

fingerprint sensor interoperability problem. Fingerprint sen-
sors are based on various technologies such as ultrasound,
optical sensors, and solid-state devices [1]. The underlying
physics of these technologies incorporate inconsistencies in
the captured fingerprints, making the interoperability prob-
lem even more challenging.

Recent research has highlighted the need to study the
impact of diverse fingerprint sensors in fingerprint-matching
methods. Ross and Jain [1] demonstrated that a matching
method’s performance will decline drastically if a fingerprint
is obtained using two different sensors. Lugini et al. [2]
carried out statistical analysis of the sensor interoperability
problem to measure the degree of change in match scores
when using different sensors for enrollment and verification.

The literature on automatic fingerprint verification
includes a variety of methods that are broadly categorized
into minutiae-based, image-based, and hybrid techniques.
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While minutiae-based methods primarily depend on minu-
tiae points, image-based methods extract features using
techniques such as Gabor filters (GFs) [3]–[5], curvelet
transform [6], and radon transform [7]. For image-based fin-
gerprint matching, GFs have been widely applied for two pur-
poses: (1) to enhance fingerprints [8] and (2) to extract Gabor
features from filter-bank responses in order to determine the
fingerprint quality [9], and for core point detection [10],
and matching [3]. GF variants such as curved GFs [11]
and orthogonal curved-line GFs [12] have been employed
to enhance fingerprints. In view of the success of GFs in
fingerprint verification, we employed GFs together with
histograms of gradients (HoG) for the description of finger-
prints. Hybrid schemes employ either different features or dif-
ferent techniques based on minutiae and images and fuse the
information using either feature-level-fusion or score-level-
fusion methods [4]–[13]. In addition, image-based fusion
has also been employed [14]. Although the most commonly
used fusion approach is score-level fusion, to the best of our
knowledge, weighted score-level-fusion based on the equal
error rate (EER) has not been used.

Only few research efforts have been made to overcome
the fingerprint sensor interoperability problem. Such research
efforts focused only on non-linear distortion [15], [16],
scaling of fingerprints [17]–[19], and fusion of existing
fingerprint-recognition methods [20]. The non-linear distor-
tion method [16] is based on modeling the deformation of
fingerprint using the thin-plate spline (TPS) model to register
a pair of fingerprints from different sensors. Fingerprint
scaling methods are used to explore the effect of adding a
step for scaling fingerprint using the fingerprint’s average
inter-ridge distance to compute the scale required to zoom
in on two compared fingerprints [17]–[19]. Fusion-based
methods explore the effect of combining existing fingerprint
systems [20] or fingerprint features based on a classifier [21].
To the best of our knowledge, only a few meth-
ods have focused on fusion for sensor interoperability
problem [10]–[13]. Alonso-Fernandez et al. [20], fused a
minutiae-based matcher with a ridge-based matcher using
a mean rule. Marasco et al. [21] fused some fingerprint
characteristics, such as fingerprint quality and average gray-
level with match scores using a classifier. In spite of these
efforts, fingerprint sensor interoperability is still a challeng-
ing problem.

When sensors of different types are used, the fingerprints
of the same subject have the same minutiae points and
ridge patterns but they differ in details such as local micro-
structures and texture patterns, which indicate that the dis-
criminative content in cross-sensor fingerprints consists of
ridge orientations, minutiae, and local ridge patterns around
a minutiae. These observations provide the motivation to
explore ridge orientations and multiscale local ridge pat-
terns around a minutia for cross-matching. In view of this,
we propose an automatic fingerprint verification method
based on three types of descriptors, which employ informa-
tion about minutiae, multiscale local ridge patterns, and ridge

orientations and reduce the effects of cross-matching. The
minutiae based descriptors proposed in this paper use binary
gradient pattern (BGP) and Gabor-based histograms of gradi-
ents (Gabor-HoG) to encodemulti-scale local ridge structures
and structural changes across ridge patterns around minutiae.
To encode ridge orientations, an orientation descriptor is
employed. To the best of our knowledge, the BGP-based
minutiae descriptor has not yet been applied to the problem
of fingerprint recognition or fingerprint sensor interoperabil-
ity. We argue that BGP is suitable for fingerprint recogni-
tion, as it is able to encode ridge structures and structural
changes across ridges. The Gabor-HoG descriptor extracts
detailed information about local orientations and scales of
ridges. Furthermore, the orientation descriptor is based on the
computation of dominant ridge orientations, which provide
a distinguishing description of the fingerprint ridge patterns
and can be computed with acceptable accuracy, even from
a noisy input image, as the ridge orientation is invariant to
rotation and translation [22]–[24]. These descriptors focus
on different characteristics and result in different similarity
scores, which are fused according to their verification per-
formance to take the final decision. The proposed method is
robust against sensor dependent variations as it encodes local
ridge structures at different scales with various orientations.
It tolerates spurious and missing minutiae because the ori-
entation descriptor does not depend on minutia information.
Small feature extraction errors and local distortion errors are
handled by BGP because it is a powerful descriptor that effi-
ciently captures the local structure around minutiae points.

The proposed method has been thoroughly evaluated using
benchmark datasets. The results and comparisons show that
the proposed method outperforms state-of-the-art methods
such as minutiae cylinder-code (MCC), MCC with scale,
VeriFinger—a commercial SDK, and thin-plate spline (TPS)
model.

The main contributions of this paper are as follows.
• An automatic fingerprint verification method that mini-
mizes the impact of the fingerprint sensor interoperabil-
ity problem is proposed.

• Two minutiae-based descriptors, which encode multi-
scale local ridge patterns around minutiae points, and an
orientation descriptor that encodes local ridge patterns
and orientation field are presented.

• A fusion scheme that combines scores obtained using
three different types of descriptors according to their
verification performances is proposed.

• A comprehensive method evaluation using two bench-
mark datasets and standard evaluation tools is presented
and compared with state-of-the-art methods.

• The impacts of different types of sensors are analyzed
and recommendations are made for developing a cross-
sensor automatic fingerprint verification method.

The remaining sections of this paper are organized
as follows. Section II presents the motivation for this
work whereas Section III details the proposed method.
Section IV presents details of the experiments, results,
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and discussion. The conclusions and future work are pre-
sented in Section V.

II. MOTIVATION
Previous studies on the problem of fingerprint sensor inter-
operability attempted to adjust the distortions resulting from
the deformations of fingerprints captured using different sen-
sors [15]–[19]. However, due attention has not been given
towards developing discriminative features for improving
cross-device matching performance; it is still a challenging
area of research.

To illustrate this challenge, Fig. 1 shows magnified views
of fingerprints of the same finger that were captured using dif-
ferent sensors. Each image depicts a different texture with the
same ridge patterns and minutiae points. This indicates that
ridge patterns and minutiae are the most evident structural
characteristics of a fingerprint [25], which can be used for
discrimination in case the fingerprints are captured with dif-
ferent sensors. For extracting features that are robust against
cross-sensor variability, it is important to focus on the ridge
patterns and minutiae and consider the types of features
that adequately capture rotation and scale variations, local
microstructures, and distortion patterns.

FIGURE 1. Magnified views of fingerprints captured with different
sensors. (a) AES2501 optical sweep sensor. (b) AES3400 capacitive sweep
sensor. (c) ATRUA capacitive press sensor. (d) FX3000 optical sweep
sensor. (e) FPC1011C capacitive press sensor. (f) TCRU2C capacitive
press sensor.

Orientation descriptors and Gabor-based histograms of
oriented gradients extract discriminative information from
ridge patterns and have been shown to give promising results
for fingerprint-matching when the same sensor is used for
enrolment and query [13]. On the other hand, the binary
gradient pattern is a new descriptor, which encodes the local
orientation information of an image, and can be employed
to encode ridge patterns [26]. Based on the characteristics of
these descriptors and our observation of the magnified views
shown in Fig. 1, which indicate that for cross-sensor match-
ing, discriminative information can be extracted from ridge
patterns and minutiae, we argue that these descriptors can
be effective in reducing the impact of sensor interoperability.
As a proof of concept, we conducted initial experiments with
three descriptors, and analyzed their discriminative potential
for cross-sensor matching. After refining the ridge patterns,

we encoded multi-scale ridge pattern information around the
minutiae points using BGP and Gabor-HoG. In addition,
the orientation descriptor was computed based on dominant
ridge orientations. We conducted four cross-device matching
experiments using multi-sensor optical and latent fingerprint
(MOLF) database (the detailed description can be found
in Section IV.A). Three experiments were conducted with
the orientation descriptor, BGP, and Gabor-HoG using one
descriptor for each. The fourth experiment was conducted
with three descriptors using score level fusion with sum rule.
The results of cross-sensor matching in terms of EER are
presented in Table 1. The results indicate that although each
descriptor performed relatively better for native matching
than cross-sensor matching, the overall performance was
poor; the score level fusion showed significant improvement.

Fig. 2 shows the distributions of genuine (in blue) and
impostor (in red) scores obtained by cross-sensor matching
with each descriptor and the score level fusion when the
LumidigmVenus IP65 Shell sensor is used for enrollment and
the Secugen Hamster IV sensor is employed for verification
(MOLF database). When using a single descriptor, the inter-
section region of the genuine and impostor score distributions
is very large compared to that of the score distributions corre-
sponding to the score level fusion. This finding is consistent
across all pairs of sensors we analyzed.

Our observations are: (1) the discriminative characteristics
of fingerprints captured using different sensors are ridge
patterns and minutiae, and descriptors such as BGP, Gabor-
HoG, and orientation, which encode these characteristics
can be effective for cross-sensor matching; (2) the perfor-
mance of each of the three descriptors (BGP, Gabor-HoG,
and orientation) is almost similar for native and cross-sensor
matching; (3) none of the descriptors when used alone is
effective for cross-sensor matching; and (4) the fusion of the
scores obtained by using the three descriptors minutiae result
in significant improvement for both native and cross-sensor
matching, i.e., the score level fusion minimizes intra-class
variance and maximizes inter-class variance. These obser-
vations motivated us to further investigate the effectiveness
of BGP, Gabor-HoG, and orientation descriptors and score
level fusion for the fingerprint sensor interoperability
problem.

III. PROPOSED CROSS-SENSOR FINGERPRINT
MATCHING SYSTEM
Based on our observations described in the previous section,
details of a cross-sensor fingerprint matching method based
on three types of descriptors and score level fusion is pro-
posed in this section. An overview of the system is shown
in Fig. 3. In the enrollment phase, a gallery fingerprint is first
enhanced and then processed to extract minutiae points. Next,
three different descriptors are extracted and the template is
stored in a database.

During the verification phase, the probe fingerprint is
enhanced and processed to extract minutiae points. Then,
the probe and template fingerprints are aligned to find
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TABLE 1. Performance of (a) BGP (b) Gabor-HoG (c) orientation descriptors, and (d) score level fusion in terms of EER on MOLF database.

FIGURE 2. Distributions of genuine and imposter scores obtained by cross-sensor matching using (a) BGP, (b) Gabor-HoG, (c) orientation descriptors, and
(d) score level fusion when Lumidigm Venus IP65 Shell sensor is used for enrollment and Secugen Hamster IV sensor (MOLF database).

minutiae correspondences, and three different types of fea-
tures are extracted from the probe fingerprint. The matching
process is performed separately for each descriptor by com-
puting the similarities between the extracted features. Finally,
the matching scores resulting from the three descriptors are
fused to produce the final matching score. In the following
subsections, details of different algorithms used for enhance-
ment, minutia extraction, feature extraction, andmatching are
presented.

A. ENHANCEMENT AND MINUTIAE EXTRACTION
As observed in Fig. 1, the discriminative information consists
of ridge patterns and minutiae. To emphasize these char-
acteristics and suppress irrelevant details, fingerprints are
preprocessed using a method based on short-time Fourier
transform (STFT) [27], which enhances the furrows and ridge
structures. In this method, a fingerprint is first divided into
small overlapping windows, and STFT is applied to each
window. The ridge frequency, ridge orientation, and block
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FIGURE 3. Overview of the proposed system: (a) enrollment phase, and (b) verification phase.

energy are estimated based on the Fourier spectrum. Next,
contextual filtering is applied to enhance the fingerprints. The
minutiae extraction method used in this work is based on the
binarization and thinning approach proposed in [8].

B. MINUTIAE ALIGNMENT
Probe and template fingerprints are aligned using minu-
tiae points before feature extraction from the probe finger-
print. For finding the correspondence betweenminutiae pairs,
the method by Tico and Kuosmanen [18] is applied. In this
method, the minutiae descriptor is constructed based on the
choice of sampling points that are arranged in concentric
circles around the minutiae; then, the orientation values for
these sampling points are calculated. For each probe minu-
tiae, qj ∈ Q = {q1, q2, . . . , qn} and for each template
minutiae, pi ∈ P = {p1, p2, . . . , pm}, the algorithm calculates
the value of a parameter (possibility value), which expresses
the probability of the two minutiae points, qj and pi being
similar. Then, all minutiae pairs are sorted in descending
order based on their possibility values. The probe minutiae
are transformed such that the possibility values are maximum
for all corresponding pairs in the template and the query
fingerprints. Next, a greedy algorithm is applied to identify
corresponding minutiae pairs that satisfy two conditions:
1) the Euclidean distance between the two minutiae does not

exceed a specific threshold1d , and 2) the difference between
the twominutiae directions does not exceed the threshold1θ .

C. FEATURE EXTRACTION
For cross-sensor matching, the discriminative information
includes ridge patterns and minutia points. To encode ridge
patterns and ridge orientations, three types of descriptors
were employed: Gabor-HoG, BGP and orientation descrip-
tors. BGP and Gabor-HoG descriptors encode multiscale
local ridge patterns and local ridge orientations around each
minutia point whereas the orientation descriptor extracts
ridge orientation from the foreground of the fingerprint.
A detailed account of these descriptors is given in the fol-
lowing paragraphs.

1) ORIENTATION DESCRIPTOR
We argue that the ridge orientation is a robust fingerprint
feature because it is invariant to rotation and translation and
can be computed with acceptable accuracy, even from a noisy
fingerprint. Ridge orientation offers a distinguishing descrip-
tion of a fingerprint that does not change even if fingerprints
of the same subject are acquired from different sensors.

For computing the ridge orientation, the foreground of
each enhanced fingerprint is divided into overlapping square
blocks Si, i = 1, 2, , b with 50% overlap and a fixed
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dimension D = 25. Each block is first normalized and then
the ridge orientation is calculated using the method proposed
in [8].

Normalization is carried out to minimize the variation in
the gray level values along furrows and ridges. It helps in
removing artifacts due to differences in finger pressure and
sensor noise. It is carried out using the following formula:

Ni(x, y) =



M0 −

√
V0 × (Si(x, y)−Mi)2

Vi
if I (x, y) > Mi

M0 +

√
V0 × (Si(x, y)−Mi)2

Vi
otherwise.

(1)

where Si(x, y) denotes the intensity value of the pixel at
position (x,y) of a block Si, Mi and Vi denote the computed
mean and variance of the block Si, respectively, and Ni(x, y)
is the normalized gray level value at pixel (x, y). M0 and V0
are the desired mean and variance. For our experiments, we
set M0 to zero and V0 to one.
The computation of the ridge orientation is affected by

noise. To counter the effect of noise, the ridge orientation is
computed using the least squares estimate of the local ridge
orientation. First, each block is divided into non-overlapping
windows of size w × w and a ridge orientation is assigned
to each window using the gradients-based approach. The
orientation of a window (i, j) is defined as follows:

θ (i, j) = tanh−1
(
Gyy(i, j)
Gxx(i, j)

)
(2)

where

Gyy(i, j) =
i+w/2∑

u=i−w/2

j+w/2∑
v=j−w/2

2(Gx(u, v)Gy(u, v)) (3)

Gyy(i, j) =
i+w/2∑

u=i−w/2

j+w/2∑
v=j−w/2

(G2
x(u, v)− G

2
y(u, v)) (4)

where Gx and Gy are the gradient magnitudes in the
x and y directions, respectively. To compute Gx and Gy,
Sobel operator is applied. The Sobel operator embeds
Gaussian like behavior and is inherently equipped with
denoising capabilities. For this reason, it has been exten-
sively used for computing image gradient, in particular for
fingerprints [28]–[30]. Owing to the existence of noise,
the orientation of a window is smoothed using a Gaussian
filter as follows:

θ ′(i, j) =
1
2
tanh−1

(
G(x, y) sin(2θ(i, j))
G(x, y) cos(2θ(i, j))

)
(5)

where G(x, y) is the Gaussian smoothing kernel.
For the orientation descriptor, a fingerprint is first divided

into blocks, and the orientation field of each block is calcu-
lated. Then, the histogram of the orientation field of each
block is computed. Finally, the orientation descriptor is

formed by concatenating the histograms corresponding to all
the blocks. Table 1 and Fig. 2 (c) present the effect of this
descriptor on cross-sensor matching.

2) MINUTIAE-BASED DESCRIPTORS
The local descriptors that encode the local ridge structure
around minutiae are characterized by invariance to global
transformations such as rotation and translation. Employ-
ing BGP [26] and Gabor-HoG, we propose minutiae-based
descriptors for encoding the local ridge structure. For this
purpose, a square window of size r×r is defined around each
minutia of the enhanced fingerprint and is normalized using
the same method described in the orientation descriptor.

a: BINARY GRADIENT PATTERN MINUTIAE DESCRIPTOR
Based on image gradients, the BGP [26] represents the local
orientation structure around a pixel in the form of a binary
string that encodes directional variation of gray-level values
in the local neighborhood of a pixel. BGP patterns can rep-
resent micro-edges along various directions such that it is
suitable for representing the local structure around a minutia
point.

The BGP considers a symmetric neighborhood around a
pixel and converts the neighboring gray-level values into bits
taking into account the differences among gray-level values
along multiple (k) directions. The computation of the basic
BGP code with eight neighbors and four directions is shown
in Fig. 4.

FIGURE 4. BGP operator: (a) a central pixel (of value 115) with eight
neighbors, (b) the corresponding directions: G1, G2, G3, and G4,
(c) principal (in red) and associated (in black) bits, the resulting
BGP code is 0111 (in binary form) or 07 (in decimal form). .

For each pixel, two types of bits —the principal (B+i )
and the associated (B−i ) —are calculated using the following
rules:

B+i =

{
1 if G+i − G

−

i ≥ 0
0 otherwise

. (6)

B−i = 1− B+i i = 1, 2, , k (7)

whereG+i andG−i are the gray-level values of the pixels in the
local symmetric neighborhood of the central pixel, as shown
in Fig. 4 (b). The code of the central pixel is calculated from
the resulting four principal bits using the following equation:

L =
k∑
i=1

2(i−1)B+i (8)

Patterns with zero or one-bit transition are defined as
structural BGPs, such as 0000, 0001, and 0011, while other
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patterns are referred to as non-structural patterns. Only struc-
tural BGP represents the local structure exploiting local edge
orientations; it has the distinguishing property that assists not
only in ruling out noise and outliers but also in reducing the
dimension of the extracted feature vectors because there are
only eight distinct structural BGP codes and only eight bins
are needed when constructing a structural BGP histogram.
The histogram of the structural BGP patterns of the window
around a minutia form a local BGP descriptor. The effect of
this descriptor on native and cross-sensor matching is shown
in Fig. 2(a).

b: GABOR-HoG MINUTIAE DESCRIPTOR
The Gabor-HoG descriptor encodes the orientation field of an
image by computing histograms of oriented gradients from
the responses of Gabor filters; it offers a detailed description
of the scales and the local orientation of the ridges. It was
first adopted by Nanni and Lumini [13] in their work on fin-
gerprint recognition. The difference between their work and
this work is twofold: first, this work adopted the descriptor as
a minutiae-based descriptor instead of applying it to encode
the foreground of a fingerprint, and second, this work used
eight orientations to obtain the filters instead of four. Using
eight orientations, Gabor-HoG captures richer information
about ridge orientation and ridge characteristics than when
only four orientations are considered.

The 2D Gabor filter proved its effectiveness in finger-
print analysis to capture local ridge characteristics, including
frequency information and the local orientation. In spatial
domain, it is a Gaussian kernel modulated by a sinusoidal
plane wave with the following general form:

G(x, y, f , σ, θ ) = exp(−
x
′2
+ y

′2

2σ 2 ) cos(2π fx ′) (9)

x ′ = x sin θ + y cos θ (10)

y′ = x sin θ − y cos θ (11)

where f is the frequency of the sinusoidal wave, θ is the
orientation, and σ is the standard deviation of the Gaussian
envelope.

A filter bank is usually constructed using Gabor
filters with different orientations and scales. We considered
four scales and eight orientations for each scale (θ = 0◦,
22.5◦, 45◦, 67.5◦, 90◦, 112.5◦, 135◦, 157.5◦). While θ can
be measured in radians or degrees, the use of degrees is
convenient when dealing with ridge orientations, which is
why these units have been extensively used in fingerprint
recognition [3], [4], [31].

HoG was first proposed by Dalal and Triggs [32] as an
image descriptor with the aim to represent an image using
local histogram that counts the occurrences of gradient ori-
entations in a local cell of the image. As the magnitude of the
gradient is large near the ridges, HoG is useful in encoding
ridge patterns.

For building the minutia-based Gabor-HoG descriptor, fea-
ture maps are first created by filtering the window around

a minutia point with the Gabor filter bank and HoG is then
computed from each feature map. Finally, HoG descrip-
tors from all features maps are normalized to reduce the
effect of variation in the gray level values along furrows and
ridges and to rule out artifacts due to sensor noise, and then
concatenated.

When fingerprints come from the same subject and are
captured with different sensors, the fingerprints have the
same ridge patterns, which differ in scales. In this sce-
nario, an ideal choice must be a descriptor that is robust
against scale. Gabor filter bank captures the ridge micro-
patterns at different orientations at various scales, and
HoG encodes orientation information from each feature
map, making it robust against sensor dependent variations.
In view of this discussion, we argue that the minutia based
Gabor-HoG descriptor captures the local ridge pattern and
is robust against sensor dependent variations. The effect of
this descriptor on native and cross-sensor matching is shown
in Fig. 2(b)

D. FINGERPRINT MATCHING
The similarity between two fingerprints is calculated (taking
into account the corresponding descriptors) in the form of
a matching score. An orientation descriptor is essentially a
histogram, and the similarity between two descriptors can
be measured using city-block distance, chi-square distance,
and histogram intersection. In our experiments, we found
that city-block distance and chi-square distance yield similar
matching results, which are better than histogram intersec-
tion. Further, we employed city-block distance since it is
computationally more efficient. The effects of different types
of metrics are discussed in Section IV.B.

Each minutia-based descriptor is also a histogram;
thus, city-block distance was employed for computing
the matching score. The similarity between each minutia
mTi (i = 1, 2, . . . , n) of the template fingerprint T and its
mate minutiae mIi (i = 1,2,. . . ,n) of the probe fingerprint I is
computed as city-block distance between the corresponding
BGP descriptors. The matching score between T and I is
the aggregate of the similarity scores of all pairs of minutiae
points. The matching score using the Gabor-HoG descriptor
is computed similarly.

E. SCORE-LEVEL FUSION
Table 1 and Fig. 2 indicate that the three types of descriptors
result in different matching scores and the matching perfor-
mance can be enhanced by fusion. There are three possibil-
ities for information fusion: feature level fusion (combining
the features), decision level fusion (combining the decisions),
and score level fusion (combining the scores) [33]. The fea-
ture level fusion suffers from two problems: (1) the three
types of features are not compatible, and (2) it leads to a
high dimensional feature space. Fusion at the decision level
has rigid and small information content. Score level fusion
is easily adopted and can be utilized in an effective manner.
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In view of this discussion, in this work, score level fusion was
used for matching.

As the scores of matchers based on different descriptors
have different ranges, it is necessary to normalize the scores
such that they have the same range before they are fused. The
scores are normalized using min-max normalization defined
by the following formula:

nSj =
Sj − minj
maxj − minj

(12)

where the min and max are the minimum and maximum
scores of the matcher j, Sj is the actual score, and nSj is the
normalized score.

The scores can be fused using different rules, such as
minimum, maximum, product and sum. It is intuitive to take
into account thematching performance of eachmatcher while
matching the scores. In view of this, we compute the final
score using the weighted sum rule defined by the following
equation:

Score = w1So + w2Sb + w3Sh (13)

where So, Sb, and Sh refer to the scores generated by the
orientation, BGP, and Gabor-HoG descriptors, respectively,
and w1, w2, andw3 are their respective weights defined using
the corresponding EER of each matcher as follows:

wi =
1

EERi
(14)

The weight of each matcher is the reciprocal of its EER;
this means that a matcher will get more weight if its
EER value is less. The EER value of each matcher is
computed using an independent dataset. The effect of the
weighted sum rule is discussed in Section IV.B. The details
of the enrollment module of the proposed method are sum-
marized in Algorithm-1 whereas the details of the matching
module are summerized in Algorithm-2.

Algorithm 1 Enrollment Module
Input:

T: Template fingerprint.
ID: subject ID.

Processing:
1 Extract minutiae from fingerprint T: (m1,m2, ...,mn)
2 for each minutiae mj, j = 1, ..., n do
3 Compute Bmj, the BGP descriptor of minutia mj.
4 Compute Gmj, the Gabor-HoG descriptor of minutia

mj.

5 Save mj, Bmj, Gmj, j = 1, ..., n to the subject with ID in
the template database.

6 Compute OT , the orientation descriptor of the template
fingerprint T .

7 Save OT to the subject with ID in the template database

Algorithm 2 Matching Module
Input:

I: Probe fingerprint.
ID: subject ID.

Output:
score: the matching score generated by the
proposed method.

Processing:
1 Extract the minutiae from fingerprint I.
2 Retrieve the minutiae of r fingerprints of the subject
with ID from the template database: T1,T2, ..,Tr

3 for i = 1 : r do
4 Initialize Si, soi , s

b
i , s

g
i to zero.

5 Align minutiae of I with
T1 : (mT1 ,m

I
1), . . . , (m

T
k ,m

I
k ), a set of matched

minutiae pairs.
6 for each minutiae pair (mTj ,m

I
j ), j = 1, k, do

7 Retrieve BmTj , the BGP descriptor of minutia mTj
8 Compute BmIj , the BGP descriptor of minutia mIj
9 Compute the similarity score

sbi = sbi + d(Bm
T
j ,Bm

I
j )

10 Retrieve GmTj , the Gabor-HoG descriptor of
minutia mTj

11 Compute GmIj , the Gabor-HoG descriptor of
minutia mIj

12 Compute the similarity score
sgi = sgi + d(Gm

T
j ,Gm

I
i )

13 Retrieve OTi, the orientation descriptor of the r th

gallery fingerprint with ID
14 Compute OI, the orientation descriptor of the probe

fingerprint I
15 Compute similarity score soi = soi + d(OI ,OTi)
16 Normalize scores using Eq. (12)
17 Fuse the scores Si = w1soi + w2 sbi + w3shi
18 Score = min{S1, S2, Sr }

return Score

IV. MODEL SELECTION AND EVALUATION PROCEDURE
First, we present details of the databases, which were used to
select the optimal parameters and validate the effectiveness
of the system for cross-sensor fingerprint matching. Then,
the results are presented, discussed, and compared with those
of state-of-the-art methods.

It should be noted that the proposed method was imple-
mented in theMatlab (R2016a) environment and experiments
were performed on a PC (Intel Core i7-4702MQ processor,
2.2 GHz, 4 cores) with 14 GB RAM and the Microsoft
Windows 10× 64 operating system.

A. CROSS-SENSOR FINGERPRINT DATABASES
Experiments were conducted using two public domain
cross-sensor databases: Multisensor Optical and Latent
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Fingerprint (MOLF) [31] and FingerPass [34]. These
databases contain a large number of fingerprints with vari-
ations in resolution, sensor type, and capture spectrum.

The MOLF database contains three datasets acquired
with three optical sensors: (1) Lumidigm Venus IP65 Shell,
(2) Secugen Hamster-IV, and (3) CrossMatch L-Scan Patrol.
The resolution of the fingerprints captured with CrossMatch,
Secugen, and Lumidigm is 500 dpi each, while the sizes are
1600× 1500, 258× 336, and 352× 544 pixels, respectively.
For each sensor, there are 1,000 fingerprint classes with four
impressions for each. The fingerprints were captured in two
sessions; two independent instances were captured in each
session and the total number of fingerprints in each dataset
is 4,000. Fig. 5 shows three impressions of the same fin-
gerprint from the MOLF database; these impressions were
captured with three sensors. The fingerprints show variations
in resolution, quality, and noise pattern due to different tech-
nologies of the sensors.

FIGURE 5. Three impressions of the same fingerprint from the MOLF
database. (a) Lumidigm Venus IP65 Shell optical sensor. (b) Secugen
Hamster-IV optical sensor. (c) CrossMatch L-Scan Patrol optical sensor

The FingerPass database contains nine datasets acquired
from nine different sensors. Table 2 presents details of each
sensor. The fingerprints were captured using capacitive sen-
sors and optical sensors, which are either sweep or press
sensors. For each dataset, there are 720 fingerprint classes
with 12 impressions for each fingerprint class. Therefore,
there are 8,640 fingerprints in each dataset, and the total
number of fingerprints in the FingerPass database is 77,760.

Fig. 6 shows fingerprints (from FingerPass captured with
different sensors) of the same finger. It is a challenging
database, as is obvious from the sample impressions.

B. EVALUATION PROTOCOL
For the evaluation of a matching system, the scores from two
matching scenarios are of interest. These scenarios include
1) regular matching (also called native device or intra-
device matching), which involves comparing two fingerprints
acquired by the same sensor to generate a native equal error
rate (EER), and 2) cross matching (cross-device or inter-
device matching), which involves comparing two fingerprints
captured with different sensors to generate an interopera-
ble or cross-EER.

The performance is measured using the well-known EER
measure, which is the operating point at which the falsematch
rate (FMR) and false non-match rate (FNMR) are equal.
The FMR is the rate at which the matching system falsely

considers two different fingerprints to be from the same
person while the FNMR is the rate at which the matching
system considers two fingerprints from the same person to
be different.

C. MODEL SELECTION
The proposed method involves four types of parameters:
(i) block size for the orientation descriptor, (ii) window size
for minutiae-based descriptors, (iii) a similarity measure for
comparing the descriptors, and (iv) theweights for score-level
fusion. The choice of a particular value of a parameter affects
the performance of the matching system. In the following
subsections, we discuss the effects of these parameters and
suggest optimal choices.

1) EFFECT OF THE BLOCK SIZE IN ORIENTATION
DESCRIPTOR AND THE METRIC FOR MATCHING
To assess the effect of the block size for the orientation
descriptor, three block sizes (25, 50, and 70 pixels) were
tested, and four similarity measures were used: chi-square,
histogram intersection, city-block, and Euclidean distances.
Fig. 7 reports the results of the orientation descriptor based
only on randomly selected fingerprints from 200 subjects
with 4 impressions for each obtained using two sensors
from the MOLF database. The fingerprints captured with
Lumidigm Venus IP65 Shell sensor are used for enroll-
ment whereas the fingerprints captured with the Secugen
Hamster IV sensor are used for verification.

Fig. 7 shows that the block sizes 25 and 50 produce similar
results, which are better than the result produced by the larger
block size of 70. This indicates that small block sizes are
better for the performance of the system as the descriptor
computed from smaller blocks captures the local structure in
a better way than that calculated using a bigger block size.
Based on these observations, the best choice for the block size
is 25.

Further, Fig. 7 shows that city-block distance is the best of
all four types of metrics. The effects of chi-square distance
and Euclidean distances are close to those of city-block dis-
tance, but the performance of histogram intersection distance
is the worst of all the four types of distances. This observation
suggests that the best choice for the metric is city-block
distance.

2) ANALYSIS OF THE EFFECTS OF DIFFERENT PARAMETERS
IN MINUTIA-BASED DESCRIPTORS
Minutia-based descriptors involve different parameters: win-
dow size (w) around a minutia, radius (R) and the number of
neighbors (P) in the BGP descriptor, the number of orienta-
tions (o) and scales (s) of the Gabor filters, and the number
of cells (c) for the HoG in the Gabor-HoG descriptor. In the
following paragraphs, we provide a detailed analysis of these
parameters, and justify the selection of the most suitable set
of values for these parameters using the same dataset that
was used in the previous section. Firstly, experiments were
conducted to estimate the window size for the minutiae-based
descriptors. We tested three window sizes, i.e., w = 25, 50,
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TABLE 2. Sensors and fingerprint details in the FingerPass cross-device-matching database.

FIGURE 6. Nine impressions of the same finger from the FingerPass database; opt and cap means optical and capacitive sensors, respectively; p and
s means press and sweep capture type, respectively.

FIGURE 7. Average EER of the orientation descriptor on MOLF database
with different block sizes and metrics.

and 70 pixels using four metrics; Figs. 8 and 9 display the
results for BGP with R = 1 and P = 8 and Gabor-HoG with
o = 8, s = 4, and c = 3, respectively.

Figs. 8 and 9 show that the window size for minutia behav-
ior is similar to the block size for the orientation descriptor.
As the window size increases, the system performance deteri-
orates; the most suitable window size for the minutiae-based
descriptors was determined to be 25 or 50. This indicates
that a smaller size helps to capture the local structure more
precisely, and our recommended best choice of w is 25.
Figs. 8 and 9 also support the earlier conclusion from the ori-
entation descriptor that city-block distance is the best choice.
Again, the histogram intersection distance method performed
the poorest among the four metrics studied.

BGP involves two parameters: radius (R) and the number of
neighbors (P). Typically,R takes an integer value andP is usu-
ally set to 8R. To assess the effects of (R,P), we tested three
frequently used configurations: (8, 1), (16, 2) and (24, 3),
using block size w = 25 and the city-block distance as a

FIGURE 8. Average EER of the BGP descriptor on MOLF database showing
the effect of window size.

FIGURE 9. Average EER of the Gabor-HoG descriptor on MOLF database
showing the effect of window size.

similarity measure. Fig. 10 illustrates the average cross-EER
results of the BGP descriptor on the MOLF database alone;
the configuration (8,1) produces better results than the other
configurations. This demonstrates that the best choice for the
BGP descriptor is (8, 1).
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FIGURE 10. Average EER of the BGP descriptor on MOLF database
showing the effect of radius (R) and the number of neighbors (P).

The minutia-based Gabor-HoG descriptor contains three
parameters: the number of orientations (o), the number of
scales (s), and the number of cells (c) in the HoG. For the
best performance, suitable values for o, s and c must be
selected. We first tested, three frequently used orientation
configurations: o = 2 (θ = 0◦, 90◦), o = 4 (θ = 0◦,
45◦, 90◦, 135◦), and o = 8 (θ = 0◦, 22.5◦, 45◦, 67.5◦, 90◦,
112.5◦, 135◦, 157.5◦) with three choices for scales s = 2, 4,
and 8 and three frequently used options for the number of
cells: c = 3 × 3, 5 × 5, and 7 × 7. Figs. 11–13 shows the
results using the Gabor-HoG descriptor alone on DB1, DB2,
and DB3 as a gallery and the other database as probe on
the MOLF database respectively. The results highlight that
the Gabor filter bank, with 8 orientations, 4 scales, and with
3 × 3 HoG cells, captures the discriminating information
about local orientations and the scales of the ridge patterns
around aminutiae in a better way than other parameter values.

FIGURE 11. Average cross-EER of the Gabor-HoG descriptor on DB1 as a
gallery from the MOLF database showing the effect of the number of
orientations,scales, and cells.

In summary, the above results and discussion reveal that
the selection of a specific parameter value has impact on
the performance of the proposed system. In view of the
analyses of the various parameters given above, the best set
of parameters values is: R = 1, P = 8 for the BGP descriptor,
and o = 8, s = 4, and c = 3 × 3 for the Gabor-HoG
descriptor, window size w = 25 and city-block distance for
computing the similarity. The results provided and discussed
in the following sections are based on this set of parameters.

FIGURE 12. Average cross-EER of the Gabor-HoG descriptor on DB2 as a
gallery from the MOLF database showing the effect of the number of
orientations,scales, and cells.

FIGURE 13. Average cross-EER of the Gabor-HoG descriptor on DB3 as a
gallery from the MOLF database showing the effect of number of
orientations,scales, cells.

3) EFFECT OF THE FUSION RULE
First, we select the fusion weights and then validate the effec-
tiveness of the proposed weighted sum fusion rule. To select
the weights, we treat the MOLF database as an independent
set. Each matcher corresponding to the descriptors described
in Section III was tested on the MOLF database, and the
results are reported in Table 1. In these experiments, the block
size for the orientation descriptor and the window size for the
minutiae-based descriptors were 25; the city-block distance
was used to measure the similarity.

As expressed in Section III, the weighted sum rule uses
weights for fusing the scores from individual matchers and
the reciprocal of the EER measure of each matcher is used
as its weight. The weights are calculated using the average
EER of each matcher. For example, w1 is the weight that
corresponds to the BGP descriptor and is computed by taking
the average of the nine EER values ([4.81 + 6.66 + 6.68 +
6.656+ 3.278+ 7.693+ 6.677+ 7.697+ 4.16]/9 = 6.034)
corresponding to the BGP descriptor (see Table 1), i.e., w1 =
1

EER = 0.164 similarly, w2 (corresponding to the Gabor-HoG
descriptor) is 0.183, and w3 (corresponding to the orientation
descriptor) is 0.177. These weights are used in subsequent
experiments.

To validate the effectiveness of the weighted fusion rule,
we examined commonly used fusion rules such as selecting
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TABLE 3. EER obtained by the (a) minimum rule, (b) maximum rule, (c) product rule, (d) sum rule, and (e) the proposed weighted fusion rule.

the minimum or maximum score, the sum of scores, and the
product of scores. The results are presented in Table 3; from
the reported results, it can be observed that the minimum and
maximum rules produce the worst results. The product rule
performs better than the minimum and maximum rules, and
the sum rule has the best results among the four rules. The
proposed weighted fusion rule that gives the best results is
based on the fact that this rule weighs each score according
to the performance of the associated descriptor.

4) EFFECT OF PRECISION
We implemented the proposed method in MATLAB,
which represents floating-point numbers in either double-
precision or single-precision format. Double precision may
improve the performance of the system, but at the expense of
memory. All of the above-mentioned experiments were per-
formed using single-precision floating-point numbers. To test
the effect of the double-precision format on performance,
we ran experiments in double precision. Table 4 reveals that
there is no noticeable improvement in results when using
double-precision floating-point numbers over single preci-
sion numbers.

TABLE 4. EERs obtained by the proposed method using
(a) double-precision, and (b) single-precision
floating-point numbers.

D. RESULTS AND DISCUSSION
In this section, the results of the proposed method obtained
on the two databases using the best choices of parame-
ters (as discussed in previous subsections) are presented.
Table 5 presents the EERs obtained on the MOLF database.
It can be observed that in general, the EER is low when the
probe and template fingerprints are acquired by the same
sensor; on the other hand, the EER is relatively high, but
acceptable, when the probe and template fingerprints are
acquired by different sensors.

Table 6 presents the verification results in terms of the
EER obtained by the proposed method on the FingerPass
database. The native EER (i.e., when the same sensor is used
for gallery and probe) is small (less than 1) for all sensors
except AEP and FPP. Furthermore, it can be observed that

TABLE 5. Verification results in terms of EER by the proposed method on
MOLF database.

TABLE 6. Verification results in terms of EER by the proposed method on
FingerPass database.

when AEP and FPP are used for gallery or probe, the cross
EER on average is highest among all sensors; FPP stands
next to AEP. Both AEP (AES3400) and FPP (FPC1011C) are
capacitive sensors with press interaction type and the image
sizes are 144×144 and 152×200 pixels, respectively. Note
that for FPP, the image size is comparatively higher, and the
cross EER is also relatively higher. The poor performance
of AEP and FPP when used for gallery or probe is likely
because the image size is small. In the case of AEP, there is a
significant difference between the ridge width and the valley
width (see Fig. 6) and distortion in the image; for this reason,
the descriptors do not capture the ridge structures properly.

If FXO (FX3000, an optical sensor with press interaction
type) is used for gallery, the cross EER is small (less than 1),
except when ATC, SWC, AEP, and FPP are used for probe.
Similar results are obtained when FXO is used for probe
and ATC, SWC, AEP, and FPP are used for gallery. One
likely reason is that FXO is an optical sensor, whereas ATC,
SWC, AEP, and FPP are capacitive sensors. Another reason
is that for ATC, SWC, AEP, and FPP, the image size is
lower and the distortion is more intensive than for FXO. The
highest cross EER is with AEP as discussed above. In the
case of URO (URU4000B, optical, press), the performance is
almost similar when ATC, SWC, AEP, and FPP are used for
gallery or probe.

When V3O (V300, optical, press) is used for gallery
or probe, the cross EER is small, except with ATC, AEP,
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and FPP. The likely reasons are the difference in the technol-
ogy type and the distortion. In the case of AEO (AES2501,
optical, sweep), the cross EER is almost similar when ATC,
AEP, and FPP are used for gallery or probe.

In most of the cases, the cross EER is greater than 1 irre-
spective of whether ATC, SWC, AEP, and FPP are used
for galley or probe; in case cross EER they can be ranked
(lowest cross EER first) as SWC, ATC, FPP, and AEP. If we
examine the image sizes of the corresponding fingerprints,
these sensors can be ranked as SWC (288× 384= 111Kpix-
els), ATC (124 × 400 = 48Kpixels), FPP (152 × 200 =
30Kpixels), and AEP (144 × 144 = 21Kpixels). It seems
that there is a correlation between the image size and the
cross EER. However, this is not the case when we check the
results for TCC. Interestingly, for TCC (TCRU2C, capacitive,
press), the cross EER is less than 1, irrespective of whether it
is used for gallery or probe, except AEP, despite resulting in
smaller size fingerprints (208 × 288 = 60Kpixels). A close
look at the fingerprints generated with TCC (see Fig. 6)
reveals that it creates less distortion than ATC, SWC, AEP,
and FPP. It indicates that the important factor is the amount
of distortion. It is interesting to note that the proposed system
performs well even if either the gallery sensor or the probe
sensor has distortion. The performance degrades when both
gallery and probe sensors result in severe distortion.

Fig. 14 shows the average cross EERs obtained by the
proposed system on each dataset of the FingerPass database.
It can be observed that the cross EER for all datasets is
under 5% and the cross EER is high for the AEP database
owing to the reasons discussed above. The overall results
indicate that the proposed descriptors are robust in capturing
the ridge patterns and the system gives good performance
when the amount of distortion is small. However, the perfor-
mance degrades when the fingerprints are badly distorted as
is in the case of AEP.

FIGURE 14. Average cross-EERs obtained by the proposed method on the
datasets of FingerPass database.

The FingerPass database allows testing of the perfor-
mances of a system based on the sensor technology type.
The datasets can be categorized into two groups based on
the sensor technology type: optical and capacitive. The opti-
cal group contains FXO to AEO (four sensors), while the

capacitive group includes the remaining five sensors. The
bar graph in Fig. 15 reports the average EER based on the
sensor technology type produced by the proposed system.
The native EER (when the sensors of the same technology
type are used, i.e., optical vs. optical and capacitive vs.
capacitive) of each group is computed as the mean of the
cross EER of the same sensor type from Table 6, whereas
the interoperable EERs (when sensors of different technology
types are used, i.e., optical vs. capacitive and vice versa)
are calculated as the mean of the cross EERs obtained when
sensors of different types are employed. As can be seen from
the graph, a lower native EER is obtained for the optical-vs-
optical group compared to the capacitive-vs-capacitive group.
The interoperable EER is higher in both cases. It is known
that capacitive sensors are prone to noisy artifacts, which
introduce deformations to the fingerprint images. It indicates
that the proposed system gives the best performance for the
optical-vs-optical group.

FIGURE 15. Average native and interoperable EERs obtained by the
systems.

E. COMPARISON WITH THE STATE-OF-THE-ART METHODS
To evaluate the performance of the proposed system we
compared it with four state-of-the-art methods: MCC [35],
VeriFinger [36], MCC+Scale [22], and thin-plate spline
(TPS) [16]. MCC is a state-of-the-art minutiae-based
matching algorithm and MCC+Scale is an enhancement
of MCC. VeriFinger is a well-known commercial-matching
algorithm developed by Neurotechnology. MCC and Ver-
iFinger are considered as the baseline for comparisons
by various research works for regular-matching and
cross-matching [22], [34].

1) RESULTS ON MOLF DATABASE
For comparison on MOLF, we used VeriFinger Extended
SDK 9.0 and MCC SDK Version 2.0. It should be noted
that VeriFinger uses its minutiae extraction algorithm. Minu-
tiae extraction is an integral part of MCC; it computes
cylinders using minutiae distances and angles. However, the
MCC SDK developed by the authors does not contain
a minutiae-extraction algorithm; consequently, in order to
make a fair comparison, we used the same minutia-extraction
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TABLE 7. Verification results in terms of EER by the three systems on MOLF database.

FIGURE 16. DET curves corresponding to the three systems on the MOLF database: (a) DB1 vs. DB1, (b) DB1 vs. DB2,
and (c) DB1 vs. DB3.

algorithm for the MCC computation as was used in the pro-
posed method (PM).

Table 7 presents the EERs obtained by the matching sys-
tems on the MOLF database. It can be observed that in
general, the native EER is lower than the cross EER for
the three methods. The overall performance of MCC is very
poor for regular matching and cross-sensor matching, and for
cross-sensor matching, the performance is worst. Although
the results by VeriFinger are better than the results by MCC,
it shows poor performance for case of cross-sensor matching.
The proposed approach yields the lowest native and cross
EERs compared to VeriFinger and MCC on all three datasets
of the MOLF database. Figs. 16-18 show the graphs of DET
curves for the three systems. The DET curves are consistent
with the results presented in Table 7. The proposed method
always achieves the best results in all cases in terms of DET
curves, and with significant difference.

Table 8 summarizes the average matching times of the
three systems on the MOLF database. The results show
that, in terms of matching, VeriFinger is faster than both
PM and MCC. Though PM is slower than VeriFinger and
MCC, its matching time is acceptable for real matching sce-
narios. The overhead of the proposed method is associated
with the alignment step; apart from this step, the average
matching time is 1.0469×10−4 seconds.We intend to explore
ways of removing this alignment step in future work.

TABLE 8. Average matching time (in seconds) on MOLF database.

2) RESULTS ON FINGERPASS DATABASE
For a fair comparison with the state-of-the-art on FingerPass
database, we selected four subsets from the database, which
were considered in [22]: URO (optical, press), AEO (opti-
cal, sweep), SWC(capacitive, sweep), and TCC (capacitive,
press). Table 9 presents a comparison of the four databases
in terms of EER, FMR100, FMR1000, and ZeroFMR;
FMR100 and FMR1000 are the minimum values of FNMR
when FMR 1% and FMR 0.1%, respectively, and ZeroFMR
is the lowest FNMR when no false match occurs.

The effects of using different sensors for gallery and
probe on the performance of the compared methods are
noticeable. For native matching, the proposed method (PM)
outperforms MCC and VeriFinger for URO and TCC, both
having the press interaction type; the performance of Ver-
iFinger is slightly better, however, the performance of MCC
is comparable with PM for AEO and SWC, both having the
sweep interaction type. A close look at Fig. 6 reveals that the
fingerprints have a small amount of distortion for URO and
TCC, whereas the amount of distortion is high for AEO
and SWC. This indicates that the performance of PM is
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FIGURE 17. DET curves corresponding to the three systems on the MOLF database: (a) DB2 vs. DB1, (b) DB2 vs. DB2,
and (c) DB2 vs. DB3.

FIGURE 18. DET curves corresponding to the three systems on the MOLF database: (a) DB3 vs. DB1, (b) DB3 vs. DB2,
and (c) DB3 vs. DB3.

better than that of VeriFinger and MCC when the amount of
distortion is small.

For cross-sensor matching, the performance of PM is better
than all the four methods with a large margin, except for
URO vs. TCC, where the performance of PM is significantly
better than MCC but shows slightly poor efficiency than
VeriFinger, MCC with scale, and TPS. Please note that the
VeriFinger system uses minutiae along with a number of
proprietary algorithm solutions, such as ridge count, while

MCC uses a neighborhood of fixed size around a minutia
to encode directional and spatial relationships, which are
represented by a cylinder whose height and base are related
to the directional and spatial information, respectively. MCC
with scale is based on scaling fingerprints before applying the
MCC method. The TPS method uses the thin-spline model
for registering a pair of fingerprints. The experimental results
indicate that the features adopted by these systems are not
robust against cross-sensor fingerprint matching.When using
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TABLE 9. Performance comparison of the proposed method with state-of-the-art methods on four datasets from FingerPass database, PM means
proposed method.

different sensors, the fingerprints of the same subject have
the same ridge patterns, but they differ in details such as local
micro-structures, rotations, and scales. These issues should
be considered in designing a cross-sensor fingerprint recog-
nition method; however, the designs used in other methods do
not take this information into account.

A closer examination of the FMR100, FMR1000, and
zeroFMR values in Table 9 reveals that the PM provides
smaller values of TCC and URO for native matching, and out-
performs the other methods for cross-matching, except when
URO is compared to TCC. Accordingly, the PM improves
cross-matching performance by reducing FNMR at different
levels of FMR to a great extent; i.e. the rate of genuine-
attempt denial is minimum at a certain security level. In par-
ticular, in most of the cases, it results in significantly lower
FNMR at zero false match than the other methods.

The PM reduces the effects of fingerprint sensor inter-
operability significantly; overall, it outperforms VeriFinger,
MCC, MCC with scale, and TPS. The results validate the

capability of the proposed method to reduce the effects of
the fingerprint sensor interoperability problem. The reason
is that the proposed system is based on descriptors that are
robust against variations in fingerprints due to using different
sensors such as details of local micro-structures and rotations.

Although the proposed method outperforms other meth-
ods, overall, the best verification performance is given by the
three methods in the case of the optical vs. optical group.
Based on this observation, we recommend the use of the
optical vs. optical group for best verification results.

V. CONCLUSION
In this paper, we proposed an automatic fingerprint verifi-
cation method to deal with the fingerprint sensor interop-
erability problem. The discriminative characteristics of the
fingerprints captured with different types of sensors were the
ridge structures and minutiae. The proposed method relies
on three types of descriptors: orientation, BGP, and Gabor-
HoG descriptors. The orientation descriptor extracts ridge
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orientations from the foreground of the fingerprint while the
BGP and Gabor-HoG descriptors encode multi-scale local
ridge patterns and local ridge orientations around a minutia.
The scores obtained frommatchers based on these descriptors
were fused using a simple weighted sum, which assigns
weight to each matcher in accordance with its matching
performance. The proposed system was robust against sensor
dependent structural variability, rotation, and scale variations.
Missing and spurious minutiae are tolerated because the
orientation descriptor does not depend onminutiae. Local dis-
tortion errors and small feature extraction errors are compen-
sated by the BGP descriptor because it effectively captures
the local structure. Intensive experiments were conducted
to evaluate the performance of the system using two public
domain databases: FingerPass and MOLF, which focus on
the fingerprint sensor interoperability problem, and the sys-
tem was compared with four state-of-the-art methods: MCC,
MCC with scale, VeriFinger, and TPS. The results indicate
that the proposed method significantly outperformed these
methods. MCC showed the worst performance; VeriFinger
gave a good performance for the optical vs. optical group;
the proposed method gave a good performance for almost all
cases. For best performance in the case of sensor interoper-
ability, the recommendation of this study is to use optical vs.
optical group.

Although the proposed system significantly overcomes
the fingerprint sensor interoperability problem, its perfor-
mance is not as good for different sensor technology types
for the optical vs. optical group. It showed poor perfor-
mance only when gallery or probe fingerprints were badly
distorted; the solution to this problem is the use of a
distortion correction method (for instance, the method by
Tico and Kuosmanen [18] before applying the proposed
method. One future direction to enhance the performance is
to employ deep learning for feature extraction and to explore
different feature levels and score level fusion techniques.
In addition, we plan to extend our approach to address the
compatibility between different types of interactions with
sensors such as press and sweep.
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