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ABSTRACT Discrete-time adaptive control for ionic polymer-metal composite (IPMC) actuator is studied
in this paper. First, a new mathematical model in discrete-time domain is proposed for IPMC actuator. Then,
based on the obtainedmodel, a discrete adaptive control law is synthesized for IPMC actuators. The proposed
discrete adaptive controller can guarantee the global stability of the closed-loop system, and the position
tracking error of the IPMC actuator can be controlled by the design parameters. Finally, the proposed model
and control law are verified by IPMC actuator experiments.

INDEX TERMS IPMC, discrete-time adaptive control, hysteresis, Prandtl-Ishlinskii model.

I. INTRODUCTION
Ionic polymer-metal composite (IPMC) is an important
electroactive polymer which has promising applications
in bio-mechatronics field due to its actuation capabil-
ity [2], [15], [17]. A typical IPMC actuator is composed of
a pair of noble metal-based electrodes and a thin membrane
which has the function of ion exchange, where the electrodes
are plated chemically on both faces of the membrane. When
a voltage is applied, hydrated cations and water molecules
move within the IPMC, and this will lead to bending motion,
and thus the actuation effect of IPMC. Fig. 1 shows the
IPMC actuation mechanism under an applied voltage. IPMCs
receives much attention in biomedical device and biomimetic
robot fields recently [4], [7], [16] because of its biocompati-
bility, resilience, softness, and the large force and large defor-
mation generation capability under a low voltage. Recently,
IPMC are even expected to be applied in micro/nano manipu-
lation areas. However, themajor disadvantage of the IPMCs is
the existence of the hysteresis nonlinearity between the input
voltage and the output displacement. Themeasured relation is
shown in Fig. 2, where an IPMC actuator of Environmental
Robots Inc. is used, and the applied voltage is expressed as
2 sin(0.1πk)

1+ k
70

[V] for k = 1, 2, · · · , 120 and the sampling period

is 0.03 second. Since the hysteresis is highly nonlinear and
has nonmemoryless characteristics, it will inevitably cause
positioning errors which will severely affect the precision
and actuation speed of the IPMCs. Modeling of hysteresis

FIGURE 1. Actuation mechanism of IPMC actuators.

and elimination of the effects of hysteresis have received
extensive attention recently due to the development of smart
materials in which hysteresis usually exists, where traditional
control methods in [1] and [9] are insufficient and ineffective.

About the modeling and control design for the systems
with hysteresis, the mathematical characterization of the non-
linearities stands at the very important position [3], [7], and it
is still a well-known open problem. Until now, many famous
hysteresis models have been proposed in the literature.
However, a hysteresis model suitable for controller design
is highly desired to describe the hysteretic nonlinearities for
its possible application in synthesizing control laws. In this
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FIGURE 2. Measured hysteretic relation between the input voltage and
the output displacement.

paper, the hysteresis models which are based on operators
will be employed. The operator-based hysteresis models con-
sists of weighted aggregate effects of a group of elementary
hysteresis operators with similar mathematical structures.
Famous operator-based hysteresis models are Krasnosel’skii-
Pokrovskii (KP) model [3], [11], Prandtl-Ishlinskii (PI)
model [5], [10], Preisach model [11], [14], [21], etc.
KP model and Preisach model are parameterized by two
thresholds, whereas the PI model is relatively simple and is
parameterized by one threshold.

In this paper, a mathematical model of IPMC actuator
oriented in control design will be firstly constructed. Then,
the next work will be finding the appropriate control methods
to apply to the obtained models to minimize the effects of
hysteresis which is usually unknown in practice. However,
the results on this topic are very rare in [5] and [18]–[20]. The
most popular solution in dealing with hysteresis is construct-
ing its explicit inverse operator to cancel it in [10] and [20],
which is firstly proposed in [20]. An alternative approach is
to construct an implicit inverse of the hysteresis [5], [6]. This
approach is proposed in order to solve the problem existing
in the explicit inverse method in which the closed-loop sta-
bility cannot be analyzed and the tracking error cannot be
prescribed. The implicit inverse is derived online by finding
an appropriate value, which can be obtained by finite steps
of operation, at each instant to perform a prescribed control
index.

In this paper, firstly, a phenomenological model for IPMC
actuator is proposed in discrete-time domain. The model is
a linear discrete-time system preceded by a PI hysteretic
operator. A discrete adaptive control law is synthesized based
on the proposed model. Only the parameters in the con-
trol law expression are needed to be adaptively estimated.
The proposed discrete-time adaptive control guarantees the
global stability of the closed-loop system, and the track-
ing error of the end position of the IPMC actuator can
be controlled by tuning the design parameters. Experimen-
tal results for different desired position signals are pre-
sented to show the effectiveness of the proposed model and
control.

In the following of this paper, Section II states the problem,
where the mathematical model in discrete-time domain of the

IPMC actuator is presented. In Section III, the discrete-time
adaptive control and the analysis of the closed-loop system
are addressed. In Section IV, the proposed control law is
illustrated by experiments. Section V gives the conclusion of
the paper.

II. PROBLEM STATEMENT
A. PRANDTL-ISHLINSKII (PI) HYSTERESIS OPERATOR
By observing the behavior of the genuine input-output rela-
tion given in Fig. 2, it can be seen that a strong hysteretic
nonlinearity exists. In order to characterize this nonlinearity,
Prandtl-Ishlinskii (PI) hysteresis operator will be introduced.

The basic element of PI hysteresis is the so-called ‘‘play
operator.’’ For a given piece-wise monotonic function u(k)
and a value ω ∈ R, a new function pα : R×R→ R is defined
as

pα(u, ω) = max (u− α,min (u+ α, ω)), (1)

where α is the threshold satisfying α ≥ 0. Suppose the initial
value of the play operator is v−1 ∈ R and u(k) is monotone
for ki ≤ k ≤ ki+1, the play operator Pα [·; v−1] (k) can be
defined as

Pα [u; v−1] (0) = pα (u(0), v−1), (2)

Pα [u; v−1] (k) = pα (u(k),Pα[u; v−1](ki)), (3)

for any k satisfying ki ≤ k ≤ ki+1 Thus, the function
Pα [u; v−1] (k) is mainly determined by u(k) and α.
Now, let us denote the hysteresis relation between u(k) and

v(k) as v(k) = H [u](k). The details of this relation is a simple
version of PI model [3], [14],

v(k) =
r∑
i=1

γiPαi [u; v−1](k), (4)

where r is a positive integer denoting the number of play
operators needed in the PI model; γi are the corresponding
weights of the play operators satisfying γ1 > 0 and γi ≥ 0
for i ≥ 2; the thresholds αi meet α1 = 0 and αi < αj if i < j.

FIGURE 3. Hysteresis curve generated by (4).

Fig. 3 shows the generated curve between u(k) and
v(k) with r = 10, γi = e−0.1(0.2i−1)

2
, αi = 0.2i,
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u(k) = 2 sin(0.1πk)
1+ k

70
for k = 1, 2, · · · , 120, where a hysteresis

relation can be observed.
Lemma 1: Consider the operator H [·] given in (4),

there exist positive integer $ , density parameters βi with
β1 > 0, βi ≤ 0 for i ≥ 2 and thresholds λi satisfying λ1 = 0
and λi < λj if i < j such that

u(k) =
$∑
i=1

βiPλi [v; 0](k). (5)

Proof: See [14].
For compactness, denote Pαi [u, v−1] (k) by Pαi [u] (k) in

the following of this paper.
Lemma 2: For the relation of u(k) and v(k), there exist

constants K1 > 0 and K2 > 0 such that

|u(k)| ≤ K1 max
1≤τ≤k

|v(τ )| (6)

and

|v(k)| ≤ K2 max
1≤τ≤k

|u(τ )|. (7)

Proof: For any signal ψ(k), it is obvious that
|Pα[ψ](k)| ≤ max

1≤τ≤k
|ψ(τ )|. From this fact and Lemma 1,

relations (6) and (7) are obvious.

B. MODEL FORMULATION AND CONTROL PURPOSE
By observing Fig. 2 and Fig. 3 and comparing them, it is
obvious that the PI model cannot satisfactorily characterize
the hysteretic behavior in the input-output relation of the
IPMCactuator, particularly at the time instants when the input
signal changes its monotonic properties. Now, in order to
smoothen the sharpness at these instants, a filter

G(q−1) =
q−dP(q−1)
T (q−1)

(8)

with

T (q−1) = 1+ t1q−1 + · · · + tnq−n (9)

P(q−1) = 1+ p1q−1 + · · · + pmq−m (10)

is attached to the output side of the PI operator to characterize
the dynamics of the IPMC actuators, where q−1 is the time
delay defined as

q−1v(k) = v(k − 1) (11)

m, n and d are positive integers with m ≤ n; ti and pj are
constants for i = 1, · · · , n and j = 1, · · · ,m; P(q−1) and
T (q−1) are coprime Schur polynomials. Thus, the model of
the IPMC actuator is given in Fig. 4.

FIGURE 4. Model of IPMC actuator.

FIGURE 5. The generated relation of u(k) and y (k).

Figure 5 shows the generated relation of u(k) and y(k)
with G(q−1) = q−2(1+0.1q−1)

1−1.5q−1+0.75q−2−0.125q−3
where the PI oper-

ator used in generating Fig. 3 is employed. By comparing
Fig. 2 and Fig. 5, it is obvious that the behaviors of the input-
output relations are very similar. Thus, it can be argued that
the model given in Fig. 4 has the ability of describing the
input-output relation of IPMC actuators.

This paper aims to urge the displacement y(k) to follow a
desired signal yd (k) for the IPMC actuators.

III. ADAPTIVE CONTROL AND ANALYSIS
The discrete adaptive control law for IPMC actuators will be
designed by using the model given in Fig. 4.

A. SOME PRELIMINARIES
First of all, for the Schur polynomial described by

C(q−1) = 1+ c1q−1 + · · · + cnq−n (12)

define a new signal

s(k) = C(q−1) (y(k)− yd (k)) . (13)

It can be seen that lim
k→∞

s(k) = 0 implies lim
k→∞

(y(k) −

yd (k)) = 0.
From the theory in [1] and [9], there exist unique polyno-

mials B(q−1) and F(q−1) in the form

B(q−1) = 1+ b1q−1 + · · · + bd−1q−d+1 (14)

F(q−1) = f0 + f1q−1 + · · · + fn−1q−n+1 (15)

satisfying the following polynomial equation

C(q−1) = T (q−1)B(q−1)+ q−dF(q−1). (16)

By acting on y(k) of the both sides of Equation (16) and
using Equation (8) and Fig. 4, it yields

C(q−1)y(k + d) = H (q−1)v(k)+ F(q−1)y(k), (17)

where H (q−1) is defined as

H (q−1) = B(q−1)P(q−1)

= h0 + h1q−1 + · · · + hm+d−1q−m−d+1 (18)

and v(k) is the imaginary signal defined in Fig. 4.
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Replacing v(k) with the PI model (4) yields

C(q−1)y(k + d)

= F(q−1)y(k)+
r∑
i=1

h0γiPαi [u](k)+
r∑
i=1

h1γiPαi [u](k − 1)

+ · · · +

r∑
i=1

hm+d−1γiPαi [u](k − m− d + 1)

, ϕT (k)θ (19)

with

ϕ(k) =
[
Pα1 [u](k), · · · ,Pαr [u](k), · · · ,

Pα1 [u](k − m− d + 1), · · · ,Pαr [u](k−m− d + 1)

y(k), · · · , y(k − n+ 1)]T (20)

and

θ = [h0γ1, · · · , h0γr , · · · , hm+d−1γ1, · · · , hm+d−1γr ,

f0, · · · , fn−1]T . (21)

When all the parameters are available, it can be seen that,
if the input u(k) satisfies

r∑
i=1

h0γiPαi [u](k)

= C(q−1)y(k + d)− F(q−1)y(k)

+ ρ · s(k)−
r∑
i=1

h1γiPαi [u](k − 1)

− · · · −

r∑
i=1

hm+d−1γiPαi [u](k − m− d + 1) (22)

where ρ is a parameter with 0 < ρ < 1, then the output
tracking can be realized asymptotically. The introduction of
ρ · s(k) in (22) is to tune the response performance of the
closed-loop system.

B. ADAPTIVE ALGORITHM
In this paper, since the mathematical model of the IPMC
is built phenomenologically, all the parameters in θ are
unknown. Let

θ̂ (k) =
[
θ̂1(k), · · · , θ̂r(m+d)+n(k)

]T
(23)

denote the adaptive update value of θ at instant k , where θ̂i(k)
is the corresponding estimate of the i-th element in θ .

From (19), it can be seen that, by replacing θ with
θ̂ (k − 1), ϕT (k − d)θ̂ (k − 1) can be thought of the estimate
of C(q−1)y(k). Thus, the estimation error can be defined as

e(k) = C(q−1)y(k)− ϕT (k − d)θ̂ (k − 1) (24)

From (19) and (24), the defined error e(k) also has the form

e(k) = ϕT (k − d)
(
θ − θ̂ (k − 1)

)
(25)

The online estimation law of θ̂ (k) is constructed by the adap-
tation algorithms with constraints [9]

θ̂ ′(k) = θ̂ (k)+ σ
e(k)ϕ(k − d)

1+ ϕT (k − d)ϕ(k − d)
, (26)

θ̂i(k) =
∣∣∣θ̂ ′i (k)∣∣∣ for i = 1, · · · , r, (27)

θ̂j(k) = θ̂ ′j (k) for j = r + 1, · · · , r(m+ d)+ n, (28)

where σ is the adaptation gain with 0 < σ < 2. The initial
values θ̂i(0) should satisfy θ̂i(0) > 0 for i = 1, · · · , r and
θ̂j(0) ≥ 0 for j = r + 1, · · · , r(m+ d)+ n.
Lemma 3: For the algorithm defined in (26)-(28), it yields
(P1) θ̂ (k) is uniformly bounded;

(P2)
∞∑
k=1

e(k)ϕ(k−d)
1+ϕT (k−d)ϕ(k−d) <∞;

(P3) lim
k→∞

e(k)ϕ(k−d)
1+ϕT (k−d)ϕ(k−d) = 0;

(P4)
∞∑
k=υ

∥∥∥θ̂ (k)− θ̂ (k − υ)∥∥∥2
2
< ∞ for arbitrary finite

positive integer υ, where the norm ‖ζ‖2 of a vector ζ is
defined as

‖ζ‖2 =
(
ζ T ζ

) 1
2
.

Proof: See [9] (Lemma 3.3.2).

C. ADAPTIVE CONTROL DESIGN
For simplicity, by observing (22), let us define a new signal

V (k) = C(q−1)y(k + d)−
n−1∑
i=0

θ̂r(m+d)+i+1(k)y(k − i)

+ ρ · s(k)−
r∑
i=1

θ̂r+i(k)Pαi [u](k − 1)

− · · · −

r∑
i=1

θ̂r(m+d−1)+i(k)Pαi [u](k − m− d + 1)

(29)

It is clear that V (k) is available at instant k .
Now, let us derive the signal U∗(k) satisfying

r∑
i=1

θ̂i(k)Pαi [U
∗](k) = V (k) (30)

Remark 1: The introduction of (30) is motivated by (22).
It can be expected that, if the input u(k) is chosen as U∗(k)
which satisfies Equation (30), then s(k) will converge to zero
under the condition that e(k) approaches to zero.
As a matter of fact, finding a signalU∗(k) satisfying (30) is

almost impossible in practice since Pαi [·] is very complicated
nonlinear function. In this paper, for a prescribed admissible
error ε, the signal U∗(k) satisfying∣∣∣∣∣

r∑
i=1

θ̂i(k)Pαi [U
∗](k)− V (k)

∣∣∣∣∣ ≤ ε (31)

will be searched for.
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Without loss of generality, assume V (k) is monotonically
increasing with kj < k ≤ kj+1. Suppose umin and umax are the
possible lower and higher input voltage to the IPMC actuator
and define V (k) and V (k) as

V (k) =
r∑
i=1

θ̂i(k)Pαi [umax](k), (32)

V (k) =
r∑
i=1

θ̂i(k)Pαi [umin](k). (33)

Thus, it yields

V (k) ≤
r∑
i=1

θ̂i(k)Pαi [u](k) ≤ V (k) (34)

for any umin ≤ u(k) ≤ umax.
If V (k) > V (k), let U∗(k) = umax;
If V (k) < V (k), let U∗(k) = umin;
If V (k) ≤ V (k) ≤ V (k), the value of U∗(k) will be derived

with the next algorithm, where1 is a small positive constant.
Step 1: U (0)(k) := U∗(k − 1), l := 0.

Step 2: x(l)(k) :=
r∑
i=1
θ̂i(k)Pαi [U

(l)](k).

If
∣∣x(l)(k)− V (k)∣∣ ≤ ε, go to Step 4;

Else if x(l)(k) < V (k)−ε, letU (l+1)(k) := U (l)(k)+
1 and l := l + 1, then go to Step 2.
Else, let U (l)(k) := U (l−1)(k) and U

(l)
(k) :=

U (l)(k), then go to Step 3.
Step 3:

x(l)(k) :=
r∑
i=1

θ̂i(k)Pαi [U
(l)](k),

x̄(l)(k) :=
r∑
i=1

θ̂i(k)Pαi [U
(l)
](k),

U (l+1)(k) := U (l)
+1

V (k)− x(l)(k)
x̄(l)(k)− x(l)(k)

.

Let l := l + 1 and x(l)(k) :=
r∑
i=1
θ̂i(k)Pαi [U

(l)](k).

If
∣∣x(l)(k)− V (k)∣∣ ≤ ε, go to Step 4;

Else if x(l)(k) < V (k)−ε, letU (l)(k) := U (l)(k) and
U

(l)
(k) := U

(l−1)
(k), then return to Step 3;

Else, let U (l)(k) := U (l−1)(k) and U
(l)
(k) :=

U (l)(k), then return to Step 3.
Step 4: U∗(k) := U (l)(k) and stop.
Remark 2: It can be seen that finite times of operations will

result in the finding of U∗(k) satisfying (31), i.e. the index l
is finite when the searching operation is finished.
Remark 3: IfV (k) ismonotonically decreasing on kj < k ≤

kj+1, the algorithm of searching for U∗(k) can be similarly
formulated.

Upon the above preparations, the input voltage is chosen
as

u(k) = U∗(k). (35)

D. ANALYSIS OF THE CLOSED-LOOP SYSTEM
In this subsection, suppose V (k) ≤ V (k) ≤ V (k).
By observing (29), (31) and (35), it gives

ϕT (k)θ̂ (k) = C(z−1)yd (k + d)+ ρs(k)+ η(k) (36)

with

η(k) =
r∑
i=1

θ̂i(k)Pαi [U
∗](k)− V (k) (37)

satisfying

|η(k)| ≤ ε. (38)

Combining (19) and (36) yields

ϕT (k)θ = C(q−1)yd (k + d)+ ρs(k)+ η(k)

+ e(k + d)+ ξ (k), (39)

i.e.

F(q−1)y(k)+ H (q−1)v(k)

= C(q−1)yd (k + d)+ ρs(k)+ η(k)+ e(k + d)+ ξ (k)

(40)

with

ξ (k) = ϕT (k)
(
θ̂ (k + d − 1)− θ̂ (k)

)
. (41)

By (17) and (40), the dynamics of s(k) defined in (13) gives

s(k + d) = ρs(k)+ η(k)+ e(k + d)+ ξ (k). (42)

By integrating (8), (40) and (42) together, the global system
can be expressed T (q−1) −q−dP(q−1) 0

F(q−1) H (q−1) −ρ

0 0 1− ρq−d

 y(k)v(k)
s(k)


=

 0
1
q−d

 (e(k + d)+ η(k)+ ξ (k))+
 0
1
0


×C(q−1)yd (k + d). (43)

Theorem 1: For the IPMC actuator modeled in Fig.4 con-
trolled by the input (35), all the signals in the closed-loop are
uniformly bounded, lim

k→∞
e(k) = 0, and

lim
k→∞

sup |y(k)− yd (k)| = µε, (44)

where µ is a positive constant depending on ρ and C(q−1).
Proof: For system (43),

det

 T (q−1) −q−dP(q−1) 0
F(q−1) H (q−1) −ρ

0 0 1− ρq−d


= C(q−1)P(q−1)

(
1− ρq−d

)
28118 VOLUME 6, 2018
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is a Schur polynomial. Thus, by observing the uniform
boundedness of yd (k) and η(k), there exist constants C1 > 0
and C2 > 0 such that

‖φ(k)‖2 ≤ C1 + C2

{
max
1≤τ≤k

|e(τ + d)| + max
1≤τ≤k

|ξ (τ )|
}
,

(45)

with

φ(k) = [y(k), · · · , y(k − n+ 1),

v(k), · · · , v(k − m− d + 1), s(k)]T . (46)

Since |Pα[ψ](k)| ≤ max
1≤τ≤k

|ψ(τ )| for any signalψ(k), from

(20), it can be easily seen that

‖ϕ(k)‖22 ≤ r(m+ d) max
1≤τ≤k

u2(τ )+ y2(k)

+ · · · + y2(k − n+ 1). (47)

By Lemma 3, there exist constants C3 > 0 and C4 > 0 such
that

‖ϕ(k)‖22 ≤ C3 max
1≤τ≤k

v2(τ )+ y2(k)+ · · · + y2(k − n+ 1)

≤ C4 max
1≤τ≤k

(
y2(τ )+ · · · + y2(τ − n+ 1)+ v2(τ )

+ · · · + v2(τ − m− d + 1)
)

≤ C4 max
1≤τ≤k

‖φ(τ )‖2 . (48)

From (45) and (48), there exist constants C5 > 0 and C6 > 0
such that

‖ϕ(k)‖2 ≤ C5 + C6

{
max
1≤τ≤k

|e(τ + d)| + max
1≤τ≤k

|ξ (τ )|
}
(49)

By (41) and Lemma 3, there is a constant C7 > 0 such that

C6 max
1≤τ≤k

|ξ (τ )| ≤ C7 +
1
2

max
1≤τ≤k

‖ϕ(k)‖2 . (50)

Then, from (49) and (50), there exist constants C8 > 0 and
C9 > 0 such that

‖ϕ(k − d)‖2 ≤ C8 + C9 max
1≤τ≤k

|e(τ )| . (51)

So, [9, Lemma 6.2.1] can be applied to P3 of Lemma 3, and
it yields lim

k→∞
e(k) = 0. Thus, relation (51) implies that all

signals in the closed-loop are uniformly bounded. Further,
by recalling the expression of ξ (k) in (41) and Lemma 3,
it gives lim

k→∞
ξ (k) = 0. Then, by (38) and (42), the following

relation can be easily derived.

lim
k→∞

sup |s(k)| ≤
1

1− ρ
ε (52)

Therefore, relation (44) is valid by using the definition of s(k).
Remark 4: (44) implies that output tracking error is domi-

nated by the roots of C(q−1) and the parameters ε and ρ.
Remark 5: The introduction of ρ (0 < ρ < 1) in (29) is to

tune the system performance and to regulate the magnitude of
the input. The value of ρ needs to be enlarged if themagnitude
of the input is too big [6].

IV. EXPERIMENTAL RESULTS
Fig. 6 shows the experimental setup of the system, where the
used IPMC actuator is made by Environmental Robots Inc.
In this paper, the sampling rate is set as 0.03 second.

FIGURE 6. Experimental setup for IPMC actuator.

First, the experiment is conducted for yd1(k) = 0.2mm.
Experiments for various choices of d, n, and m have been
conducted. The best results have been obtained when d, n,
and m are chosen as d=2, n=3 and m=1, and the polynomial
C(q−1) is set to

C(q−1) = 1− 1.5q−1 + 0.75q−2 − 0.125q−3.

The value of r in (4) is chosen as r = 10. The initial values
θ̂i(0) of the parameter adaption algorithm are chosen as

θ̂10(j−1)+i(0) = 0.2e−0.1(0.2i−1)
2

for i = 1, · · · , 10 and j = 1, 2, 3;

θ̂l(0) = 0.1

for l = 31, 32, 33.
The design parameters in the control are chosen as that

shown in Table 1.

TABLE 1. Design parameters.

The control input for yd1(k) is shown in Fig. 7, and the
tracking error is given in Fig. 8 where the steady state tracking
error is within the range ±0.01mm.
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FIGURE 7. Control input for yd1(k).

FIGURE 8. Tracking error for yd1(k).

To test the robustness of the proposed control algorithm
and the control parameters, the same controller is applied to
desired output signals

yd2(k) = 0.2 sin
(
2π f (30× 10−3)k

)
[mm]

where f is the frequency. The control input for yd2(k) with
f = 0.1 is given in Fig. 9. The tracking error for this desired
output is illustrated in Fig. 10, where the steady state error
remains in the range ±0.015mm.
Fig. 11 shows the control input for yd2(k) with f = 0.3.

The tracking error for this desired output is given
in Fig. 12, where the steady state error remains in the
range ±0.02mm.

Fig. 13 shows the control input for yd2(k) with f = 0.6.
The tracking error for this desired output is illustrated
in Fig. 14, where steady state error remains in the
range ±0.04mm.

The experimental results show that the tracking error will
become larger and larger when the frequency of the desired
output signal becomes higher and higher. However, when
the frequency is near 1, the tracking error becomes 100%

FIGURE 9. Control input for yd2(k) with f = 0.1.

FIGURE 10. Tracking error for yd2(k) with f = 0.1.

FIGURE 11. Control input for yd2(k) with f = 0.3.

of the output which is no longer acceptable in practice. One
main reason is that the movement of the cations and water
molecules inside IPMC materials cannot be performed at a
frequency higher than 1.
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FIGURE 12. Tracking error for yd2(k) with f = 0.3.

FIGURE 13. Control input for yd2(k) with f = 0.6.

FIGURE 14. Tracking error for yd2(k) with f = 0.6.

V. CONCLUSIONS
This paper has addressed the modeling and adaptive control
problems for the IPMC actuators. Firstly, a newmodel, which
is expressed by a linear system preceded by Prandtl-Ishlinskii
operator, in discrete-time domain is proposed. Then, based on
this model, a discrete-time adaptive control law is synthesized
for IPMC actuators. The discrete-time adaptive controller
guarantees the overall stability of the controlled system, and
the position tracking error is controlled by the design param-
eters. Experimental results have verified the effectiveness of
the proposed model and control law.
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