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ABSTRACT Fabric defect detection plays a key role in the quality control of textiles. Existing fabric defect
detection methods adopt traditional pattern recognition methods; however, these methods lack adaptability
and present poor detection performance. Because biological vision system has the ability to quickly locate
salient objects, we propose a novel fabric defect detection algorithm based on biological vision modeling
by simulating the mechanism of biological visual perception. First, a distinct, efficient, and robust feature
descriptor from the biological modeling of P ganglion cells, which was proposed in our previous work,
is adopted to improve the representation of fabric images with complex textures. To account for the low-rank
and sparsity characteristics of biological vision, the low-rank representation (LRR) technique is adopted to
model biological visual saliency, and it can decompose the fabric image into backgrounds and salient defect
objects. Meanwhile, dictionary learning and Laplacian regularization are integrated into the LRR model as
follows: 1) dictionary learning is used to denoise the saliency map; and 2) Laplacian regularization enlarges
the gaps between defective regions and the background. Finally, the linearized accelerated direction method
with adaptive penalty is adopted to solve the proposed model. The experimental results emphasize that the
proposed algorithm has good detection performance for plain or twill fabrics with simple textures as well as
for patterned fabrics with complex textures. Moreover, the proposed method is superior to the state-of-the-art
methods in terms of its adaptability and detection efficiency.

INDEX TERMS Fabric defect detection, biological vision modeling, image representation, dictionary
learning, low-rank representation.

I. INTRODUCTION
Fabric defect detection plays a key role in the quality control
of textiles and has historically been achieved via visual
inspections by skilled workers. Thus, the detection perfor-
mance depends on the experience and professional skills of
the workers. Manual inspection methods have many disad-
vantages, such as high error rates because of human fatigue,
high labor costs, and slow inspection speed. Moreover,
the skilled inspection workers can detect only 15-20 meters
per minute. To meet the requirement of industrial weaving,
fabric defect detection based on machine vision has become
a research focus.

Traditional fabric defect detection methods based on
machine vision are mainly divided into two categories:

detection methods for plain and twill fabrics, which include
statistical analysis methods [1], model-based methods [2],
spectral approaches [3] and dictionary learning-based meth-
ods [4]; and detection methods for patterned fabrics with
complex textures, which include the wavelet-preprocessing
golden image subtraction (WGIS) method [5] and ELO rat-
ing (ER) method [6]. The above two categories are designed
for specific types of fabric images; however, they lack adapt-
ability, and the detection performance is not ideal.

The biological vision system has the ability to rapidly
locate salient objects. Although the texture of fabric images
is complex, any type of defect is salient among the com-
plex texture background. Therefore, fabric defect detection
methods inspired by the biological vision system have been
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a promising research field. Currently, researchers have pro-
posed some defect detection methods based on the visual
saliency model [7], [8]. Using these methods, low-level fea-
tures are extracted, such as color, gradient, local texture and
spectrum, and then the ‘‘center-surround’’ contrast and con-
text analysis techniques are adopted to generate the saliency
map. Finally, the defective regions can be located by adopting
a threshold segmentation method. However, the techniques
such as feature extraction and saliency calculation, still adopt
traditional methods in pattern recognition. Therefore, these
methods still perform poorly for fabric images with complex
textures, and they cannot detect defects that present limited
differences from the normal background.

In this paper, we establish a novel fabric defect detection
framework inspired by the biological vision system, and it
includes fabric image representation and saliency calcula-
tions. Considerable progress has been achieved in visual
perception mechanism research, which shows that invariant
feature extraction is one of the most important information
processing tasks for the human visual system, and is also a
common characteristic of senior cortex cells in the process
of information integration. Therefore, the feature descriptors
based on the mechanisms of the human visual system are
more suitable for characterizing the complex textures of dif-
ferent fabric types. In previous work, we proposed an image
descriptor with highly distinctive and robust and presented
low complexity bymodeling P retinal ganglion cells in human
visual pathways [9]. This descriptor is suitable for describing
all types of texture images and superior to the traditional
hand-crafted feature descriptors. Therefore, it is adopted to
characterize the fabric image texture in this paper.

At the saliency calculation phase, the low-rank represen-
tation model is consistent with the low-rank and sparsity
features of the biological vision system. Therefore, this model
is utilized to simulate visual saliency, and it can decompose
the image into background and salient objects. Currently,
the low-rank representation model has been used for object
detection in natural scenes [10]. The background of a fab-
ric image is redundant, while the defects are sparse among
the background. Compared with object detection in a nature
scene, fabric defect detection can better conform to the low-
rank representation model. However, directly applying the
available low-rank representation model for defect detection
can produce results that are contaminated by noise, and this
model may not be able to detect defects that present limited
differences from the background.

Inspired by the hierarchical information processing mech-
anism in the biological vision system, we propose a novel
fabric defect detection method based on biological vision
modeling. First, we adopt the feature descriptor from the bio-
logical modeling of the P ganglion cells, which is proposed
in our previous work to characterize fabric texture. Then,
an improved low-rank representation model is proposed by
introducing dictionary learning and Laplacian regularization
to model visual saliency. The LADMAP method is utilized
to solve the proposed model with high efficiency. Finally,

an improved adaptive thresholding segmentation method is
used to segment the saliency map generated by the sparse
matrix to locate the defective regions.

II. RELATED WORKS
Current fabric defect detection methods can be divided into
two categories according to the types of fabrics, with one
category primarily focusing on plain or twill fabric images
with simple textures and the other category focusing on pat-
terned fabric images with complex textures. The proposed
methods that focus on fabric images with simple textures
include statistical analysis, model-based, spectrum analysis,
and sparse representation approaches.

Statistical analysis methods divide the test image into
image blocks. During the process of detection, the texture of
the normal image blocks is assumed to have the same sta-
tistical properties and occupy most of the image. The image
blocks with different statistical properties will be marked
as defective regions. The representative methods include the
differential counting box method [11], double-thresholding
method [12], and histogram characters analysis method [13].
However, different statistical methods are suitable for specific
fabric textures and may not be adaptable to various types of
fabrics and defects.

The model-based methods model fabric texture as a
stochastic process and the texture image can be regarded
as a sample generated by the process in the image space.
Defect detection is treated as a hypothesis test problem of
statistical information derived from this model. The adopted
models include the Gauss-Markov random field (GMRF)
model [14] and Gaussian mixture model [15]. These meth-
ods usually have high computational complexity, and their
detection results are not satisfactory for defects with small
size. Spectral analysis methods transform the fabric images
into the spectrum domain using Fourier transform [16], Gabor
transform [17] and wavelet transform [18], and they then
apply energy criteria for defect detection. Because these
methods utilize the overall characteristics of the images to
detect defects, they can achieve better detection performance
for a fabric image with a simple texture. However, the com-
putational complexity of these methods is high, and the
detection results depend on the selected filter banks; thus,
they have difficulty in detecting patterned fabric defects with
complex textures.

Dictionary learning-based methods first learn a dictionary
from the training images or test images, and then reconstruct
the defect-free fabric image using the learned dictionary,
thereafter, defect detection can be realized by subtracting
the recovered image from the test image [19], [20]. In a
different way, dictionary learning based methods also reduce
the dimension of an image block by projecting the image
block into a dictionary learning from reference image, then
the support vector data description (SVDD) is adopted to
discriminate whether an image block is a defect block [21].
However, if the dictionary is learned from the test images,
the reconstructed images may exist some defects; or the self
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adaptability of these methods are reduced if the dictionary
learns from the reference images.

Although the aforementioned defect detection methods
may achieve high detection accuracy for certain fabrics,
because of the complexity and sophisticated design of pat-
terned fabrics, these methods cannot be extended to detect
patterned fabric defects. Certain methods for patterned fabric
defect detection have been proposed, such as the wavelet-
preprocessing golden image subtraction method (WGIS) [5],
the Bollinger band method (BB) [22], the regular band
method (RB) [23], template matching for discrepancy mea-
sures (TMPM) [24], the pattern matching and subtrac-
tion approach [25]–[28], the hash function method [29],
the ELO rating (ER) method [6], and the low-rank recovery
method [30].

The WGIS method selects a defect-free sample as a win-
dow, and the window size should be greater than the size
of the repeated element of the fabric texture. The window
is moved on a defect-free sample image pixel by pixel. The
method requires a large amount of computation and is not
suitable for online implementation. The BBmethod considers
the patterned fabrics as consisting of many rows (columns),
and the pattern is designed along each row (column). The
weakness of this method is that it cannot detect defects with
a size smaller than one repetitive unit, and it is sensitive to
cases with a sizable contrast between defective regions and
background patterns. The RB method enhances the defective
regions with calculations of moving averages and standard
deviations. However, this method is unable to detect defects
on the borders of an image because of the definition of RB.
The TMPM method utilizes a golden image-like approach
to exploit a discrepancy measure as a fitness function to
detect defects among patterned textures. The pattern match-
ing and subtraction method perform a point-to-point com-
parison, which is inherently sensitive to noise, misalignment
and distortion, etc. The hash function method uses the offset
properties of defect-free and regular patterns to detect defects,
it is sensitive to noise, but also it cannot outline the shape of
any defects after segmentation. In the ER method, detecting
fabric defects is similar to conducting fair matches in the
spirit of good sportsmanship. However, this method relies on
partition size and the number of randomly located partitions.
The GHOG and low-rank recovery method utilize the GHOG
feature descriptor which is orientation aware, and can detect
star- and box-patterned fabric defect images, while it is not
satisfactory for dot-patterned fabrics because it lacks distinc-
tive orientation awareness.

The biological vision system can quickly locate salient
objects among the background. The normal fabric texture is
homogeneous, and the defects are salient among the normal
background. Combined with the biological visual perception
system, fabric defect detection has become an important
research topic. Recently, Guan et al. [8] proposed a saliency
model using wavelet transform and ’center-surround’ con-
trast technology to highlight the defective regions. However,
this method is not suitable for fabric images with complex

textures because even in normal regions, the output of ’center-
surround’ contrast has a higher saliency degree. Guan [31]
utilized bottom-up visual attention to generate an overall
saliency map to pop out fabric defects and adopted target
feature driven (task driven) top-down visual attention to
form regions of interest (ROIs) of fabric defects. However,
the top-down visual attention reduces adaptability. In our
previous work, we have proposed several saliency mod-
els based on context analysis and sparse representation to
detect defects [7], [32], [33]. These proposed methods have
achieved excellent detection results for fabric images with
simple textures, but cannot achieved the ideal detection per-
formance for the fabric images with complex texture, espe-
cially for the patterned images. Therefore, the mechanism of
biological visual perception must be further studied, and a
defect detection method with higher accuracy and adaptabil-
ity for all types of fabric defect images must be proposed.

III. PROPOSED METHOD
Current fabric defect detection methods lack adaptability, and
their detection results are not ideal. The biological vision sys-
tem can quickly locate salient objects among a complex back-
ground. Therefore, we propose a novel fabric defect detection
method based on a biological vision modeling by simulating
the biological vision processing mechanism. First, we adopt
the feature descriptor proposed in our previous work, which is
generated by modeling retinal ganglion cells and can be used
to efficiently characterize all types of fabric images. Then,
low-rank representation is utilized to model visual saliency
and to identify defective regions. Finally, threshold segmenta-
tion is adopted to locate the defective regions. In this section,
we discuss our proposed method, which includes four parts:
1) fabric image representations based on biological vision
modeling; 2) low-rank representation model construction;
3) optimization of the model; and 4) saliency map generation
and segmentation.

A. FABRIC IMAGE REPRESENTATION BASED ON
BIOLOGICAL VISION MODELING
Considerable progress has been made in visual percep-
tion mechanism research, which has been demonstrated that
invariant feature extraction is one of the most important
information processing tasks for the human visual system,
and is also a common characteristic of senior cortex cells
in the process of information integration. Therefore, feature
descriptors based on the mechanisms of the human visual
system are suitable for characterizing complex textures of all
types of fabric images. In our previous work, we proposed
an image representation descriptor based on the coding of
retinal ganglion cells denoted DERF, and it is highly dis-
tinctive, robust, and efficient [9]. In this paper, we adopt
this descriptor to characterize all types of fabric images. The
descriptor includes difference of Gaussian (DoG) filtering
and convolved gradient orientation map sampling. The spe-
cific descriptions are as follows:
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First, the convolved gradient orientation maps G of the test
image I are generated by the DoG method as follows:

Go =
(
∂I
∂o

)+
, 1 ≤ o ≤ H (1)

where o is the orientation of the derivative, H is the number
of orientations, and (·)+ is a nonnegative operator such that
(a)+ = max (a, 0). Each gradient orientation map is con-
volved S+1 times with Gaussian kernels of different scales to
generate Gaussian convolution orientation maps as follows:

G6o = G6 ∗
(
∂I
∂o

)+
(2)

where G6 is a Gaussian kernel with the scale 6. Different
6 scales correspond to different sizes of convolution regions.
For each generated orientation map, the final DoG-convolved
gradient orientation maps are generated by subtracting the
latter from the former for each pair of neighboring Gaussian
convolution orientation maps as follows:

D61
o = G61

o − G
62
o with 62 > 61 (3)

After obtaining the DoG-convolved gradient orientation
maps, we sample these maps to construct the DERF descrip-
tor by mimicking the structure of receptive fields of P gan-
glion cells in the range of 0◦ − 15◦ on the eccentricity of
the retina. These sampling points of the descriptor are located
in many concentric rings with different radii that increase in
an exponential manner. In this paper, we extract the DERF
descriptor of S (5) scales and T (8) orientations for each
ring, i.e., 5 concentric rings and 8 circles for each ring. The
sampling points are evenly distributed on these concentric
circles centered on the center point of an image block, and
the number of DoG filters is proportional to the radii of these
circles; i.e., σi = η · ri. We define h6(ξ0, ν0) as the vector
generated by the values at the position (ξ0, ν0) with the same
scale 6 in the DoG convolution orientation maps.

h6(ξ0, ν0) = [D61 (ξ0, ν0), · · ·D
6
i (ξ0, ν0), · · ·D

6
H (ξ0, ν0)]

(4)

where D6i represents the DoG convolution orientation map
with different orientations and the same scale. Let S denotes
the number of layers and T represents the number of sam-
pling orientations for each ring. Finally, the descriptor with
the interest point at location (ξ0, ν0) can be defined as the
concatenation of h vectors:

D (ξ0, ν0)

= [h∑
1
(ξ0, ν0) ,

h∑
1
(l1 (ξ0, ν0,R1)), · · · , h∑1

(lT (ξ0, ν0,R1))

h∑
2
(l1 (ξ0, ν0,R2)), · · · , h∑2

(lT (ξ0, ν0,R2))
...

h∑
S
(l1 (ξ0, ν0,RS)), · · · , h∑S

(lT (ξ0, ν0,RS))]T (5)

where li(ξ0, ν0,R) indicates the location with distance R
from (ξ0, ν0) in the i-th orientation.

To further improve the characterization ability of the
descriptor for fabric images, we utilize the characteristic
that the size of the receptive field of ganglion cells can be
adjusted dynamically to a certain extent [34] to obtain the
DERF descriptor in multi-scale cases. During the process
of descriptor extraction, we add two neighboring scales for
each sampling point in the single descriptor. The two newly
added scales are from the S(5) scales in the single-scale case,
and adjacent to the natural scale with the point of interest,
one of the scales is greater than the natural scale, while the
other is smaller than the nature scale. The DERF descriptor
of the multi-scale case D (ξ0, ν0) centered at location (ξ0, ν0)
is defined as follows:

D (ξ0, ν0)

= [h∑
1
(ξ0, ν0) , h∑2

(ξ0, ν0) ,

h∑
1
(l1 (ξ0, ν0,R1)) , h∑2

(l1 (ξ0, ν0,R1)) , . . . ,

h∑
1
(lT (ξ0, ν0,R1)) , h∑2

(lT (ξ0, ν0,R1)) ;

h∑
1
(l1 (ξ0, ν0,R2)) , h∑2

(l1 (ξ0, ν0,R2)) ,

h∑
3
(l1 (ξ0, ν0,R2)) , . . . , h∑1

(lT (ξ0, ν0,R2)) ,

h∑
2
(lT (ξ0, ν0,R2)) , h∑3

(lT (ξ0, ν0,R2)) ;
...

h∑
S−1
(l1 (ξ0, ν0,RS)) , h∑S

(l1 (ξ0, ν0,RS)) , . . . ,

h∑
S−1
(lT (ξ0, ν0,RS)) , h∑S

(lT (ξ0, ν0,RS)) ; ]T (6)

To achieve the task of fabric defect detection, the test fabric
image is uniformly partitioned into image blocks {Ii}i=1,2...N
with the same size of m×m, where N represents the number
of image blocks. For each block, the feature vectorDi (ξ0, ν0)
is generated as above. To improve efficiency while maintain-
ing highly distinctive features, principal component analy-
sis (PCA) technology is utilized to reduce the dimensions.
We generate P dimension feature vector fi, i = 1, 2, . . . ,N
after dimension reduction by PCA. Then, the feature matrix
F = [f1, f2, . . . , fN ] ,F ∈ RP×N is generated by assembling
the feature vectors of all image blocks to represent the test
fabric image, whereK represents the dimension of the feature
vector.

B. LOW-RANK REPRESENTATION MODEL CONSTRUCTION
The low-rank decomposition model is similar to the low-rank
and sparsity characteristics of the biological vision system,
and it can decompose a given image into low-rank elements
that correspond to the background and sparse elements which
correspond to the salient object. Even if the fabric texture is
complex and diverse, the background is homogeneous and
has great redundancy, whereas defective regions are salient.
Therefore, the low-rank decomposition model can better deal
with the task of fabric defect detection.
A given feature matrix F can be decomposed into a low-

rank matrix and a sparse matrix by optimizing the following
problem:

min
(L,S)

rank(L)+ γ ‖S‖0 s.t. F = L + S (7)
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where L and S indicate the low-rank and sparse elements,
respectively, and γ is a weighting parameter.
However, the above optimization problem is NP-hard and

therefore intractable. Thus, a convex surrogate is as follows:

min
(L,S)

‖L‖∗ + γ ‖S‖1 s.t. F = L + S (8)

where ‖·‖∗ denotes the nuclear norm of a matrix and is
defined as the sum of the singular values of the matrix, and
‖·‖1 denotes the `1 -norm and is defined as the sum of the
absolute value of all entries.

During fabric defect detection, defects account for only a
small proportion of the entire image; thus, only a small frac-
tion of blocks are salient. From this perspective, the salient
defects should be different from the normal background
blocks. A strong correlation is usually observed among the
feature vectors of normal background blocks, which indicates
that the background blocks are self-represented, whereas the
defects in the repeated patterns are different from the texture
of the background blocks. This finding suggests a more gen-
eral rank minimization problem [35]:

min
(Z ,S)

‖Z‖∗ + γ ‖S‖2,1 s.t. F = FZ + S (9)

where Z denotes the reconstruction coefficients matrix,
which should present a low-rank property; ‖·‖2,1 indicates
the `2,1-norm and is defined as the sum of `2 norms of the
columns of a matrix:

‖S‖2,1 =
∑
i

√∑
j

(S(j, i))2 (10)

where S(j, i) is the (j, i)-th entry of the matrix S because the
minimization of `2,1-norm encourages the columns of S to be
zero, which fits our fabric defect detection task well.

Although we directly adopt the low-rank representation
model of Eq. (9) to detect defects, the detection results may be
contaminated by noise, and the model cannot detect defects
that have small differences in the background. To address
the first problem mentioned above, the recently proposed
image denoising method K-SVD (K-means singular vector
decomposition) dictionary learning method is adopted. The
K-SVD dictionary learning method was first proposed by
Aharon et al. [36] and can effectively suppress additive Gaus-
sian white noises and better retain certain edge and texture
information, especially for fabric defect images. Therefore,
we utilize the K-SVD method to learn a relatively clean
dictionary D, which is a dictionary that linearly spans the
data space. The quality ofDwill influence the discrimination
of the representation; therefore, Eq. (9) can be formulated as
follows:

min
(L,S)

‖Z‖∗ + γ ‖S‖2,1 s.t. F = DZ + S (11)

The specific procedure of K-SVD is as follows: For a given
fabric image, we partition it into N image blocks with the
same size of

√
m ×
√
m (m is a number whose square root

can be solved), convert the image block into a row vector with

size of m × 1, and then stack all of these m row vectors into
a matrix Ytrain = [Y1,Y2, . . . ,YN ],Yi ∈ Rm×1 as the training
set. Based on the feature matrix Y , the problem of K-SVD
dictionary learning can be considered a joint optimization
problem to iteratively update the dictionary D and the sparse
coefficient α, and it can be described as follows:

min
D,α
‖Ytrain − Dα‖22 s.t. ∀i, ‖αi‖ ≤ ε (12)

On the other hand, if the texture of the fabric image is
complex, or the difference between the defects and back-
ground is not obvious, then the low-rank part will be highly
correlated with the sparse part. Therefore, when the back-
ground is cluttered or has a similar appearance with the
defective regions, previous LRR based methods cannot easily
separate them. To address this issue, we introduce a Laplacian
interactive regularization [37] to enlarge the distance between
the subspaces drawn from the low-rank part and sparse part.
We define the Laplacian interactive regularization as follows:

2(Z , S) =
1
2

N∑
i,j=1

∥∥zi − zj∥∥22ωi,j = Tr(ZMFZT ) (13)

where zi denotes the i-th column of the coefficient matrix
Z ; ωi,j denotes the (i, j)-th entry of an affinity matrix, which
represents the feature similarity of image blocks ; Tr (·) is the
trace of a matrix; and MF ∈ RN×N represents a Laplacian
matrix. The affinity matrix W is defined as follows:

ωi,j =

exp
(
−
‖fi−fj‖

2

2σ 2

)
, if (Ii, Ij) ∈ V

0 otherwise
(14)

where V represents the set of adjacent block pairs, which
are either neighbors (first-order) or ‘‘neighbors of neighbors’’
(second-order reachable) of the image. The (i, j)-th entry of
the Laplacian matrix MF is as follows:

(MF )i,j =

{
−ωi,j, if i 6= j∑

j6=i ωi,j, otherwise (15)

Laplacian regularization can increase the distance between
feature subspaces by smoothing the vectors in the coefficient
matrix according to the local neighborhood derived from
the feature matrix F . This approach encourages blocks with
similar pixels to share similar or identical representations
and encourages blocks with different pixels to have different
representations.

We improve on the previous LRR model by introduc-
ing K-SVD dictionary learning and Laplacian regularization,
to deal with the special task of fabric defect detection. The
specific model is described as follows:

min
Z ,S
‖Z‖∗ + λ ‖Z‖1 + β2 (Z , S)+ γ ‖S‖2,1

s.t. F = DZ + S,Z ≥ 0 (16)

where Z represents the coefficient matrix of the dictionary
projected into the low-rank space, and its coefficients can
well characterize the local similarity between feature vectors;
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the second term is a sparse constraint on the coefficient matrix
to retain the local similarity of feature vectors; 2(·) denotes
a Laplacian interactive regularization term to enlarge the
distance between the subspace of the low-rank part and sparse
part; and λ, β, γ are all trade-off parameters of the model that
represent the balance between the coefficient matrix sparsity
constraint term, Laplacian interactive regularization term,
defect sparsity regularization term and the subspace with the
properties of low-rankness, which are positive constants.

To facilitate the solution of the convex optimization prob-
lem, we introduce an auxiliary variable J to make the objec-
tive function separable; thus, Eq. (16) can be rewritten as
follows:

min
Z ,S
‖Z‖∗ + λ ‖J‖1 + βTr(ZMFZT )+ γ ‖S‖2,1

s.t. F = DZ + S,Z = J ,Z ≥ 0 (17)

C. OPTIMIZATION OF THE MODEL
Several algorithms have been proposed for solving LRR opti-
mization problems [38-40]. The alternating direction method
of multipliers (ADMM) has attracted considerable atten-
tion [41]. ADMM updates the variables by minimizing the
augmented Lagrange function in a Gauss-Seidel manner.
However, if we directly apply ADMM to solve the problem
of Eq. (16), it will result in certain problems as follows:

min
Z
‖Z‖∗ +

λ

2
‖C (Z )− X‖2F (18)

where C denotes a linear mapping, and ‖·‖F represents the
Frobenius norm defined as the sum of all the entries of a
matrix. If C is the identity mapping, then Eq. (18) has a closed
solution [42]; however, if C is not the identity mapping, then
Eq. (18) can only be solved iteratively.

To remedy the issue above issues and consider the
balance between efficiency and accuracy, we resort the lin-
earized alternating direction method with adaptive penalty
(LADMAP) [43] to solve the problem defined in Eq. (17).
The Lagrange function of Eq. (17) is as follows:

L (Z , J , S,D,Y1,Y2, µ)

= ‖Z‖∗ + λ ‖J‖1

+βTr
(
ZMFZT

)
+ γ ‖S‖1

+〈Y1,F − DZ − S〉 + 〈Y2,Z − J〉

+
µ

2

(
‖F − DZ − S‖2F + ‖Z − J‖

2
F

)
(19)

where Y1 and Y2 are the Lagrange multipliers, and µ > 0
controls the penalty for violating the linear constraints. The
optimization problem can be solved by updating the vari-
ables by minimizing the Lagrange function and keeping the
other variables fixed. The detailed algorithm is shown in
Algorithm 1, and its optimization steps are as follows:

1) Update Zk+1 by fixing the other variables:

min
Z
‖Z‖∗ +

〈
∇Zkq (Zk) ,Z − Zk

〉
+
ηµk

2
‖Z − Zk‖2 (20)

Algorithm 1 Optimization of LRR via LADMAP
Input: feature matrix F , Laplacian matrix MF and
regularization parameters λ, β, γ
Initialization:
Z0 = S0 = J0 = Y 0

1 = Y 0
2 = 0, ρ0 = 2.5,

µ0 = 10−6, µmax = 10−6,
ε = 10−2, η = 1.25× ‖F‖2
While not converged (k=0,1,) do
1) Update Zk+1 via Eq. (20).
2) Update Jk+1 via Eq. (21).
3) Update Sk+1 via Eq. (22).
4) Update Lagrange multipliers Y1 and Y2 via Eq. (23).
5) Update penalty parameter via Eq. (24).
6) Check the convergence condition if
‖F − DZk+1 − Sk+1‖ / ‖F‖ < ε1
orµk+1·max {η ‖Zk+1−Zk‖ , ‖Jk+1−Jk‖ , ‖Sk+1−Sk‖}<
ε2
End while
Output: Z∗,S∗.

where ∇Zkq (Zk) = β
(
ZkMT

F + ZkMF
)
+ µk(

Zk − Jk +
Y k2
µk

)
+ µkFT

(
DZk − F + Sk −

Y k1
µk

)
. There-

fore, Zk+1 = D(ηµk )−1
(
Zk −∇Zkq/η

)
, where D (·) represents

a singular value thresholding (SVT) operator.
2) Update Jk+1 by fixing the other variables:

Jk+1 = max
{
S λ
µk

(
Zk+1 +

1
µk

Y k2

)
0
}

(21)

where S λ
µk
(·) denotes the shrinking operator.

3) Update Sk+1 by fixing the other variables:

Sk+1 = S λ
µk

(
F − DZk+1 +

1
µk

Y k1

)
(22)

4) Update the Lagrange multipliers Y1 and Y2:

Y k+11 = Y k1 + µk (F − DZk+1 − Sk+1)

Y k+12 = Y k2 + µk (Zk+1 − Jk+1) (23)

5) Update the penalty parameter µk+1:

µk+1 = min(µmax, ρkµk ) (24)

where

ρk =

{
ρ0, µk ·max {ηk ‖Zk − Zk−1‖ , ‖Sk − Sk−1‖}≤ξ
1, otherwise

(25)

Next, with respect to the fixed Z , J , and S, we update the
dictionary D, which is the only variable in the optimization
problem of Eq. (19). Thus, Eq. (19) can be written as follows:

L (Z , J , S,D,Y1,Y2, µ)

= 〈Y1,F − DZ − S〉

+
µ

2
‖F − DZ − S‖2F +A (Z , J , S, q) (26)
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Algorithm 2 Dictionary Learning Process by ADMM
Input: feature matrix F , and
regularization parameters λ, β, γ
Initialization:
initial dictionary D0,ξd = 10−5 While not converged
k ≤ maxIterD do
Update D by fixing the other variables:
Dupdate = 1

µ
(Y1 + µ (F − S))ZT

(
ZZT

)−1
Dk+1 = αDk + (1− α)Dupdate

Check the convergence conditions:∥∥Dk+1 − Dk∥∥
∞
< ξd

End while
Output: D.

where A (Z , J , S, q) is a fixed value. We can derive an opti-
mal dictionary D update immediately:

Di+1 = αDi + (1− α)Dupdate (27)

where α is a parameter that controls the step of the iter-
ation. The dictionary learning process is summarized as
Algorithm 2.

D. SALIENCY MAP GENERATION AND SEGMENTATION
According to the above method, we decompose the feature
matrix into a low-rank part that corresponds to the back-
ground and sparse part that corresponds to the defect. The
corresponding saliency map S is then generated by the sparse
matrix S:

M (Ii) = ‖S (:, i)‖22 =
∑
j

(S (j, i))2 (28)

We denoise the saliency map M to obtain a smoothed

saliency map
∧

M :

∧

M = g ∗ (M ◦M) (29)

where g is a circular smoothing filter, ‘‘◦’’ indicates the
Hadamard inner product operator, and ‘‘*’’ represents the
convolution operation.

Next, the saliency map
∧

M is converted to a grayscale
image G:

G =

∧

M −min
(
∧

M

)
max

(
∧

M

)
− min

(
∧

M

) × 255 (30)

Finally, G is segmented via an adaptive threshold
method [44] to locate the defective regions.

IV. EXPERIMENT
To evaluate the effectiveness of our proposed method,
we conduct a series of experiments using two public fabric
image databases, and compare the experimental results with
State-of-the-Arts.

A. EXPERIMENTAL SETUP
1) FABRIC IMAGE DATABASES
In this paper, we selected two public fabric database for
evaluation in our experiment. One is TILDA fabric images
dataset [45], which mainly includes plain or twill fabric
images with simple textures. It has 3200 defective samples,
such as broken ends, holes, multiple netting, thick bars and
thin bars.

The other fabric database is from the Research Asso-
ciate of Industrial Automation Research Laboratory, Depart-
ment of Electrical and Electronic Engineering, Hong Kong
University. It mainly includes the patterned fabric images
with complex texture from the star-, box-, dot-patterned
fabric database. The star-patterned fabric database contains
30 defect-free and 26 defective images, the box-patterned fab-
ric database contains 25 defect-free and 25 defective images,
and the dot-patterned fabric database contains 110 defect-free
and 120 defective images.

2) PARAMETER SETTINGS
The parameters in the implementation of our proposed
method are set as follows. In fabric image representation,
the reduced dimension of feature vector P is set to 64; In
low-rank recovery, we empirically set the model parameters
λ, β and γ to 0.1, 0.1 and 0.1, and the K of K-SVD to 128,
respectively.

All parameters are fixed for all the experiments to demon-
strate the robustness and stability of our method. All the res-
olution of images is 256 pixel 256 pixel,Our test environment
is a HP desktop with an Inter(R) Core(TM) i3-2120 3.3 GHZ
CPU, and the simulation software is MATLAB 2015a.

B. QUALITATIVE COMPARISON RESULTS
To verify the validity and robustness of the proposed method,
we compare our method with other state-of-the-art fab-
ric defect detection methods that include TDVSM [46],
PGLSR [47], and LSF-GSA [48]. All of the saliency maps
are shown in Fig. 1 - Fig. 4, which show comparisons of
plain or twill fabrics, star-patterned fabrics, box-patterned
fabrics, and dot-patterned fabrics. In Fig. 1 - Fig. 4, the first
row is the original fabric image, and the second to the last
rows are saliency maps generated by the TDVSM, PGLSR
and LSF-GSA methods and our proposed method.

The TDVSM method generates saliency maps by compar-
ing the texture difference between defects and backgrounds.
The method is effective for plain or twill fabrics with sim-
ple textures or large texture differences between defects and
backgrounds. However, the method is less effective for pat-
terned fabrics with complex textures or limited differences
between defects and backgrounds as is shown in the second
rows of Fig. 2 - Fig. 4. The PGLSR method detects fabric
defects by utilizing the local features learned by the image
itself, and it is effective for most fabric images and can
locate the position of defective regions. However, this method
cannot completely outline the specific shape of defects, espe-
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FIGURE 1. Comparison of the saliency map for plain or twill fabrics:
(1st row): original images; (2nd row): TDVSM; (3th row): PGLSR; (4th row):
LSF-GSA; and (last row): Ours.

FIGURE 2. Comparison of the saliency map for star-patterned fabrics. ;
(1st row): original images; (2nd row): TDVSM; (3th row): PGLSR; (4th row):
LSF-GSA; and (last row): Ours.

cially for broken end defects. The LSF-GSA method detects
fabric defects using local features and the overall irregularity
of the image, and the method relies on the selected blocks to
a certain extent and can detect defects; however, the results
always contain noise, which leads to unsatisfactory detection
results. The saliency map generated by our proposed method
highlights the position of defective regions and outlines the
shape of defects for all types of fabric images.

To further demonstrate the effectiveness and accuracy
of our proposed method, an improved adaptive thresh-
old segmentation method is utilized to segment the gen-
erated saliency map in order to obtain the final detection
results, and then the results are compared with the results

FIGURE 3. Comparison of the saliency map for box-patterned fabrics. ;
(1st row): original images; (2nd row): TDVSM; (3th row): PGLSR; (4th row):
LSF-GSA; and (last row): Ours.

FIGURE 4. Comparison of the saliency map for dot-patterned fabrics. ;
(1st row): original images; (2nd row): TDVSM; (3th row): PGLSR; (4th row):
LSF-GSA; and (last row): Ours.

of other methods as shown in Fig. 5 - Fig. 8 (comparison
of plain or twill fabrics, star-patterned fabrics, box-patterned
fabrics, and dot-patterned fabrics). The previous analysis that
the TDVSMmethod is not suitable for patterned fabric defect
detection. Therefore, the TDVSM method is not adopted
in Fig. 6 - Fig. 8. In Fig. 5, the first row is the original fabric
images, and the second to the last rows show the detection
results by the TDVSM, PGLSR and LSF-GSA methods and
our proposed method. In Fig. 6 - Fig. 8, the first row is the
original fabric image, the second to the fourth rows are the
detection results based on the PGLSR and LSF-GSA method
and our method, and the last row is the binary ground-truth
images. As shown in Fig. 6 - Fig. 8, our proposed method can
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FIGURE 5. Comparison of the detection results for plain or twill fabrics.
(1st row): original images; (2nd row): TDVSM; (3rd row): PGLSR; (4th row):
LSF-GSA; and (Last row): Ours.

FIGURE 6. Comparison of the detection results for star-patterned fabrics.
(1st row): original images; (2nd row): PGLSR; (3rd row): LSF-GSA;
(4th row): Ours; and (Last row):GT images.

better locate the position of defective regions and outline the
shape of defects.

C. QUANTITATIVE EVALUATIONS
To perform a comprehensive evaluation, we use several met-
rics, including the receiver operating characteristic (ROC)
curve, precision-recall (PR) curve, and the F-measure curve.
These performance metrics are calculated in terms of true
positive (TP), true negative (TN), false positive (FP), and
false negative (FN), where true positive is the number of
defective periodic blocks identified as defective, true negative
is the number of defect-free periodic blocks identified as
defect-free, false positive is the number of defect-free blocks

FIGURE 7. Comparison of the detection results for box-patterned fabrics.
(1st row): original images; (2nd row): PGLSR; (3rd row): LSF-GSA;
(4th row): Ours; and (Last row):GT images.

FIGURE 8. Comparison of the detection results for dot-patterned fabrics.
(1st row): original images; (2nd row): PGLSR; (3rd row): LSF-GSA;
(4th row): Ours; and (Last row):GT images.

identified as defective, false negative is the number of defec-
tive blocks identified as defect-free. Because of the lack of
GT images in the TILDA fabric database, we only presented
the quantitative evaluation for the patterned fabric databases.
We compared our method with the TDVSM, PGLSR, and
LSF-GSA fabric defect detection methods. The ROC curve
generated from true positive rates and false positive rates is
as shown in Fig. 9. The true positive rate (TPR) and false
positive rate (FPR) are defined as follows:

TPR =
TP

TP+ FN
(31)

FPR =
FP

FP+ TN
(32)
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FIGURE 9. Comparison of the ROC curves for (a) star-patterned, (b)
box-patterned, and (c) dot-patterned fabrics.

FIGURE 10. Comparison of the PR curves for (a) star-patterned, (b)
box-patterned, and (c) dot-patterned fabrics.

FIGURE 11. Comparison of the F-measure for (a) star-patterned, (b)
box-patterned, (c) dot-patterned fabrics.

Fig. 9 (a-c) represents the ROC curve comparisons of
star-, box-, and dot-patterned fabrics, and it shows that our
proposed method performs better than the other three state-
of-the-art methods for the three patterned fabric databases.

To obtain an accurate evaluation of the proposed method,
the criteria of precision and recall are also employed:

precision =
TP

TP+ FP
(33)

recall =
TP

TP+ FN
(34)

As is shown in Fig. 10, our proposed method has the high-
est rate of recall and presents a balanced performance with
respect to precision. In addition, the F-measure is adopted
by taking both precision and recall into account as shown
in Fig. 11, which demonstrates the effectiveness, robustness

and superiority of our proposed method.

F = 2
precision · recall
precision+ recall

(35)

D. TIMING SPENT ANALYSIS
In this paper, LADMAP instead of ADMM is adopted to
solve the constructed model for improving the efficiency
of the proposed method. In order to verify its efficiency,
we test the timing spent for the two methods. For ADMM
solution, the spent time is 0.56 s for detecting one image in
our simulation environment; otherwise, the spent time for the
LADMAP solutionmethod is 0.23 s. Therefore, our improved
method can efficiently reduce the spent time, thus it is helpful
for the real-time inspection demands.

V. CONCLUSION
In this paper, we propose a novel fabric defect detection
method based on biological vision modeling and low-rank
representation by simulating biological vision, which has
the ability to quickly locate salient objects. The main fea-
tures of our method are summarized as follows. 1) Inspired
by the hierarchical information processing of the biological
visual system, which can quickly locate the salient object,
we establish a fabric defect detection framework by modeling
the biological vision. The descriptor based on coding reti-
nal ganglion cells is used to characterize all types of fabric
textures; and low-rank representation is adopted to model
visual saliency. 2) Dictionary learning is integrated into the
low-rank representation model to denoise the saliency map.
3) A Laplacian regularization term is integrated into the low-
rank representation model to enlarge the gaps between the
defect region and the background. 4) In order to improve
the efficiency of the proposed method, LADMAP instead of
ADMM is adopted to solve the constructed model.

We also compare the performance of the proposed
approach with that of previous approaches, such as the WT,
TDVSM, PGLSR, and LSF-GSA methods. The qualitative
and quantitative experimental results demonstrate that our
proposed method is more effective, robust and adaptable
than other state-of-the-art methods for plain and twill fabrics
with simple textures as well as for patterned fabrics with
complex textures. In addition, the proposed method provides
a new solution for detecting surface defects of other industrial
products.
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