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ABSTRACT Rainfall estimation based on the impact of rain on electromagnetic waves is a novel method-
ology that has had notable advancements during the last few years. Many studies conducted on this topic in
the past considered only the electromagnetic waves with frequencies greater than 10 GHz since the rainfall
impact on the electromagnetic wave attenuation is reduced at lower frequencies. Over the last few years, some
authors have demonstrated that there can be a non-negligible attenuation even on the signals received on a
global system for mobile communications mobile terminal in presence of rain. In this paper, we propose
a new classification method based on a probabilistic neural network to obtain an accurate classification
between four rainfall intensities (no rain, weak rain, moderate rain, and heavy rain). The innovative rainfall
classification method is based on three received signal level (RSL) local features of the 4G/LTE: the
instantaneous RSL, the average RSL value, and its variance calculated by using a sliding window. The
proposed method exhibits good performance, obtaining an overall correct classification rate of 96.7%.
Almost all papers on this topic present in the literature focus on electromagnetic waves with frequencies
greater than 10 GHz, in which the rain impact is more relevant, according to the rain attenuation model.
However, only the 4G/LTE signal has such widespread geographic coverage, so the proposed classification
method can provide noticeable improvements in the creation of rainfall maps with higher spatial resolution.

INDEX TERMS Feature extraction techniques, LTE, probabilistic neural network, radio signal attenuation,
rainfall estimation.

I. INTRODUCTION
Rainfall monitoring is a topic of great importance for several
application contexts: hydraulic structure design, agriculture,
weather forecasting, climate modeling, etc. Today, the main
rainfall measurement methods are rain gauge, weather radar
and satellites.

A rain gauge is probably the most widespread rainfall
measurement device and can provide an accurate rainfall
estimation with a fine temporal resolution; in fact, rain gauges
record continuously the rainfall level even with short-time
intervals. Unfortunately, rain gauges provide only local infor-
mation, measuring the rainfall level in the specific geographic
location where gauge is installed. The rainfall information
in any other point must be obtained by interpolating the
available data provided by neighboring rain gauges with the

consequence that this information can be affected by a higher
error.

To improve the measurement accuracy, it is necessary
to increase the number of rain gauges along the territory
obtaining a global and more accurate view of the phenomena.
Since full coverage by local rain gauges is a very expensive
solution, weather radar and satellites represent a good solu-
tion to face this challenge.

Weather radar detects rain in the atmosphere by emit-
ting microwave pulses and measuring reflected signals from
raindrops, providing high temporal resolution precipitation
measurements. The distance to the rain is determined from
the round-trip time of radar microwave pulses.

Weather radar has the advantage of monitoring a larger
area than a rain gauge and determining the areal distribution
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of precipitation; however, it is affected by various types of
errors that decrease its accuracy, and it is also very expensive.

Satellite rainfall estimations assure greater spatial and
temporal resolution, but the rain intensity estimation is less
accurate. For this reason, a satellite rainfall estimation is often
used to fill the gaps in radar coverage and to assist with the
post-processing of radar outputs [1].

In order to improve the accuracy of the estimates obtained
by using the previouslymentioned approach, in Lazri et al. [2]
and Lazri and Ameur [3] have proposed a rainfall estimation
technique based on the application of image process algo-
rithms to the images provided by satellites. In particular, a
multi-spectral approach is employed, collecting images in
different spectral bands.

Lately, many papers have been published proposing alter-
native methods to estimate the rainfall intensity based on the
measurements of the received signal level (RSL) in commer-
cial wireless microwave links [4]–[6].

As known from the literature, electromagnetic waves are
attenuated in presence of rain, and many rain prediction
models are based on this phenomenon.

Many studies conducted on this topic in the past considered
only electromagnetic waves with frequencies greater than
10GHz, since the rainfall impact on the electromagnetic wave
attenuation is reduced at lower frequencies. Only a few papers
have analyzed the impact of the rain on the cellular system
performance, highlighting that even in these circumstances,
it is possible to formulate a rain level prediction based on the
electromagnetic wave attenuation in presence of rain [7], [8].
In particular, Fang and Yang [9] in a test campaign conducted
in Taiwan have demonstrated that there can be a notice-
able attenuation in the received signal on a LTE mobile
terminal in the presence of rain. This experimental evidence
is in contradiction with the attenuation model provided by
ITU-R [10].

Brito et al. [11] used a data mining technique to select
among the data collected from mobile devices on a rain-
fall alert system suitable for rainfall estimations. To clas-
sify the rainfall events, some classification algorithms such
as k-nearest neighbors, support vector machine (SVM) and
decision tree methodologies were adopted.

Beritelli et al. [12] proposed the first approach to rainfall
estimation based on the study of the RSL in an Long-Term
Evolution (LTE) mobile terminal, adopting a sliding window
filter to calculate the mean value and variance.

In this paper, we propose a new classificationmethod based
on a probabilistic neural network to obtain a more accurate
classification of four rainfall intensities (no-rain, weak rain,
moderate rain and heavy rain).

After this introductory section, the paper is structured as
follows: Section II provides an overview of some rain attenua-
tion models. Section III describes the testbed scenario and the
dataset structure, while Section IV provides the description
of the feature extraction process and the classical threshold
classificationmethod. SectionV illustrates the adopted neural
network and its rainfall classification performance, whereas

Section VI presents a comparison with some other methods
and, finally, Section VII draws conclusions.

II. THE IMPACT OF RAINFALL ON RADIO PROPAGATION
Methods for rain estimates based on radio propagation atten-
uation can be grouped in two categories: physical and empir-
ical methods.

Physical methods are theoretical (analytic) models that
attempt to describe the attenuation on radio propagation due
to rain [13], [14]. On the other hand, the empirical methods
are based on a database containing real measurements orig-
inating from stations located in different climatic zones
and consist of simple mathematical expressions obtained by
simple interpolations on these data.

Because in many circumstances not all the input parame-
ters required by the analytical models are available, empirical
methods are most commonly used. In fact, the rain atten-
uation model proposed by the International Telecommuni-
cation Union for the Radiocommunication (ITU-R) is an
empirical model that makes use of the following power-law
formula [10]:

γR = k · Rα (1)

where γR (dB/km) is the specific attenuation and R (mm/h) is
the rain rate.

The total attenuation A (dB) due to the rain rate R in a radio
propagation link of length L can be calculated as:

A = L · γR (2)

The empirical coefficients k (kH for horizontal polarization,
kV for vertical polarization) and α (αH for horizontal polar-
ization, αV for vertical polarization) are calculated as func-
tions of frequency f (GHz) in the range from 1 to 1000 GHz
and are displayed in appropriates tables in [10].

The relationship between the rain rate and electromagnetic
wave attenuation provided by the equation (1) is an empirical
approximation. In fact, the exact relationship depends on a
number of other parameters such as frequency, temperature,
drop size distribution (DSD), etc. However, in most cases,
equation (1) provides a good estimate [5].

In this work we presented a novel methodology in order to
move beyond the limits of both the theoretical and empirical
approach. The adopted solution makes use of a novel feature
extraction approach and a neural classifier that is capable to
devise the underlying model without a priori assumptions.
The model, presented in the following, has been extensively
tested on field data.

III. THE TESTBED SCENARIO
A. THE TEST CAMPAIGN
The test campaign was conducted by using a smartphone
with a dedicated application, called G-Mon, able to export
in CVS format a complete report during time regarding
several network and signal parameters such as the received
signal strength indicator (RSSI), the reference signal received
power (RSRP), the reference signal received quality (RSRQ),
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the signal-to-noise ratio (SNR), the location area code (LAC),
the cell ID (CID), and the connection type (LTE, HSPA,
UMTS, etc.). More specifically we have analyzed the RSSI
to evaluate the attenuation and the signal fluctuation. The
knowledge of the cell ID is very important because it allows
the verification of if the measured RSL is referred to the same
base station. The application allows the collection of data
with a programmable frequency. For this experiment, the data
were recorded at a frequency of 60 seconds.

FIGURE 1. Test-bed scenario.

To perform the calibration of the proposed experimental
apparatus we proceeded as follows: we placed four mobile
terminals (same models and software) in four different loca-
tions, each of them connected to the same base station
(see Fig. 1). Three mobile terminals, indicated with a dashed
line in the figure, were used to calculate the considered
features of the RSL, i.e. average value and variance, in no-rain
conditions, in order to calibrate the system and then normalize
the collected RSL values at different rainfall levels compared
to the no-rain condition. In order to establish a database the
mobile terminal with the dedicated measurement application
was located at approximately 200 m from the base station in
a way that the two points were in direct visibility. To relate
the data collected by mobile terminal with the real rain rate
a ‘‘tipping bucket rain gauge’’ placed at the same location of
the mobile terminal was used. Instead of weather station date,
due to their possible scarceness in other locations, as well as
their unpredictable density, we preferred this solution due to
its locality with respect to the collected data.

The tipping bucket rain gauge includes a rain-collecting
funnel, two triangular vessels mounted on a fulcrum, and
an electronic switch. Rain is channeled through the funnel
to one of the vessels. When the vessel is full, it becomes
overbalanced and tips down, emptying itself into the outer
shell of the gauge, as the other vessel is raised to a position
for the next reading.

To devise the proposed classification method, we have
created a database with the collected data. The database
includes power measurements collected in four different
weather conditions: no rain, weak rain, moderate rain, and
heavy rain. The database was divided into three groups:
a training set, a validation set and a test set. The database
composition is displayed in Table 1.

TABLE 1. Database composition.

B. DATA ANALYSIS
In this subsection, we will analyze the statistical properties of
the data collected in the database to discover those properties
that have discriminant power for the classification.

For our purposes, we will classify rainfall levels according
to the criteria shown in Table 2.

TABLE 2. Rainfall classification criteria.

Fig. 2 outlines samples of the RSL in different rainfall
conditions, while Fig. 3 represents the density probability
distributions of the RSL at various rainfall conditions.

The analysis of the probability density distributions (pdfs)
shown in Fig. 3 indicates that in different rain conditions,
i.e., no rain, weak rain, moderate rain and heavy rain, the pdf
of the RSLs has a different value for the mean and variance.
Therefore, the use of the local values of these quantities can
be effective for rainfall classification. In fact, it is clear that
there is a significant difference in the local average values
of the RSLs between the rain and no-rain conditions. There-
fore, by using only the local average values of the RSLs,
we can discriminate between rain and no-rain conditions.
Unfortunately, the local average values of the RSLs are not
sufficient to discriminate between weak, moderate and heavy
rain. To distinguish between these three rainfall conditions,
it is sufficient to observe that (see Fig. 3) weak, moderate and
heavy rainfalls present different local variance values.

In order to recognize and classify the rainfall levels,
in this paper, we use three RSL local features: the RSL
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FIGURE 2. A sample of the received signal level for a 1 hour duration in different rain conditions: (a) No rain, (b) weak, (c) moderate and (d) heavy rain
conditions.

FIGURE 3. Probability density distributions of the RSLs for no-rain, light
rain, moderate rain, and heavy rain.

instantaneous, the RSL average value and its variance. These
last two are calculated by using a sliding window.

The next section will briefly examine the effect of the
window size on the misclassification error. However, there
are several factors that can affect the received signal features,
e.g. the distance from the base station to the mobile terminal,
obstacles, fading, etc.

To observe rain effects, we need to differentiate between
any impact not due to the precipitation and the impact caused
by the precipitation phenomena. For this reason we need to
calibrate the system by measuring the RSL data in no-rain
conditions in order to calculate the reference RSL level that
includes the impact of all attenuation sources except the rain;

once the reference level is calculated, all the measured RSL
values must be normalized as shown by the equation :

RSLn = RSLm/RSLnr (3)

where:

• RSLn is the normalized RSL
• RSLm is the measured RSL
• RSLnr is the average RSL measured in no-rain
conditions

The idea is to geolocalize the collected RSL data in order
to identify the maximum area in which the RSL is almost
constant and then normalize all the collected RSL data in this
area.

IV. FEATURE EXTRACTION
Considering the three critical rainfall conditions (weak,
moderate, heavy), the first analysis of the misclassification
errors, where the sliding window size changes, is focused
on the minimization of the probability error of the variance
calculated using the window. By considering the problem of a
weak-moderate classification, the error probability in relation
to a fixed window size for a weak rain is:

Pe,w (t) = P (vw < t) =
∫ t

−∞

1

σw
√
2π

e
−(vw−µw)2

2σ2w dvw (4)
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while the error probability for a moderate rain is:

Pe,m (t) = P (vm > t) =
∫
−∞

t

1

σm
√
2π

e
−(vm−µm)2

2σ2m dvm (5)

where:
• vw and vm are the variance vectors for weak and
moderate rain, respectively.

• σw and σm are the standard deviations of vw and vm.
• µw and µm are the mean values of vw and vm
• t is the weak-moderate threshold.
The total error probability in the weak-moderate rain clas-

sification is given by:

Pe,w−m (t) = Pe,w (t)+ Pe,m

=

∫ t

−∞

1

σw
√
2π

e
−(vw−µw)2

2σ2w dvw

+

∫
−∞

t

1

σm
√
2π

e
−(vm−µm)2

2σ2m dvm (6)

while the total error probability in the moderate-heavy rain
classification is given by:

Pe,m−h (t) = Pe,m (t)+ Pe,h

=

∫
−∞

t

1

σm
√
2π

e
−(vm−µm)2

2σ2m dvm

+

∫ t

−∞

1

σh
√
2π

e
−(vh−µh)

2

2σ2h dvh (7)

By minimizing the error probabilities described by equa-
tions (6) and (7) with respect to the threshold and the window
size, we obtained a sliding window size of 30 samples.

Fig. 4 shows the normalized variance values of RSL for
the three rainfall conditions (weak, moderate, heavy) calcu-
lated by using two sliding windows of two different sizes:
(a) 15 and (b) 30 samples. The figure also shows the two
thresholds that minimize equations (6) and (7).

Analyzing Fig. 4, we observe that when using a sliding
window size of 15 samples, there is an overlap between
the curves representing moderate and heavy rain conditions,
whereas such an overlap does not occur when we use a sliding
window size of 30 samples. Only by using a sliding window
size of 30 samples can we correctly classify the three rainfall
conditions (weak, moderate, heavy).

Considering the discrimination thresholds obtained by
minimizing the error probabilities described by equa-
tions (6) and (7), we obtain a total misclassification error
of 15% (with a sliding window size of 30 samples) due to
weak and moderate rainfall ratings, while no-rain and heavy
rain conditions are always properly classified.

This approach provides good performance in terms of
the misclassification error rate, especially for the heavy rain
recognition, but it is based only on the variance values,
a parameter that can be influenced by other fading factors.

To improve the robustness of the method and reduce its
misclassification error, the authors of the paper propose

FIGURE 4. The normalized RSL variance values for the three rainfall levels
using two different window sizes: (a) 15 and (b) 30 samples.

a neural network-based approach that makes use of three
features: the RSL instantaneous value, the RSL average and
its variance.

V. THE PROPOSED NEURAL CLASSIFIER
A. THE SELECTED PNN
The proposed classifier is based on a probabilistic neural
network (PNN) that is designed and trained to provide a
correct classification of four rainfall conditions: clear weather
and weak, moderate and heavy rainfall. The dataset was
obtained under sunshine and under weak, moderate and
heavy rain, according to the rainfall classification proposed
in Table 1.

A PNN is related to Parzenwindowpdf estimator [15]–[20].
Moreover, a PNN consists of several subnetworks, each of
which is a Parzen window pdf estimator for each of the
classes. The input nodes are the input data. The second
layer consists of Gaussian functions in which the points
of the train set are used as the centers. The third layer
performs an average operation of the outputs from the second
layer for each class. The fourth layer performs a vote,
selecting the largest value. The associated class label is then
determined [21]–[23].

When an input data are presented, the input layer spreads
this sample to the pattern layer neurons (second layer).
In the second layer (pattern layer), each vector input
is processed by the function described in the following
way:

yk (x(t)) =
∑M

j=1
wk,j8j(x(t)) (8)
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FIGURE 5. The trained PNN classifier used to obtain an accurate classification between four rainfall intensities (weak rain,
moderate rain, clear weather and heavy rain).

with

8j(x(t)) = exp
{
−

1
2σj

(x (t)− µj)T6
−1
j (x (t)− µj)

}
(9)

where φj (x(t)) is the contribution of the j-neuron in the
k-class; yk is the transfer function and wk,j is the weight of
the j-neuron of the k-class.
In the output layer, each input sample is associated with the

class with the highest output [24], [25].
In the eq. (9), µj and

∑
j are the function center (mean

vector) and covariance matrix of the j-th basis function,
respectively, and σj is a smoothing parameter controlling the
spread of the j-th basis function.

For the sake of simplicity, we will assume that
∑

j is
diagonal so that we have four global smoothing parameters,
σ1, σ2, σ3, and σ4. The parameter σ1 is used in those basis
functions that have centers originating from a weak rain
condition; σ2 is utilized for those functions coming from a
moderate rain condition; σ3 is used for those basis functions
that originate from a clear weather condition and σ4 is used
for those functions that come from a heavy rain condition.

The determination of the smoothing parameters is
performed by calculating the spreads of the training data set
belonging to the reference classes for σ1, σ2, σ3, and σ4.

Adding and removing training samples simply involves
adding or removing neurons in the pattern layer, and a
minimal retraining is required. For the training of the neural
network, simply note that the centers and spreads are prede-
termined and then only the weights wkj are found.
The calculation can be performed by using the method of

least squares.

B. EXPERIMENTAL RESULTS
The dataset used to train and test the PNN consists of
more than 112 hours of data collected every minute. More
precisely, the dataset is organized as follows: 4800 samples
for no-rain condition, 620 for weak rain, 810 for moderate
rain, and 530 for heavy rain.

The training set has been drawn out from the entire dataset
randomly by choosing 2400 samples for the no-rain condi-
tion, 310 samples for the weak rain, 405 samples for the
moderate rain and 265 samples for the heavy rain. While the
validation set has been randomly drawn from the remaining
dataset; and after that, the entire dataset has been drawn out
of the training set. The remaining samples were used to form
the test set that was used to evaluate the pattern recognition
algorithm. The compositions of the training, validation and
test sets are shown in Table 1.
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TABLE 3. Rainfall classification methods comparison.

The training set is used to find the model parame-
ters in the used PNN network. These parameters are the
number of neurons for each class (weak rain, moderate rain,
clear weather and heavy rainfall), the smoothing parameters
σ1, σ2, σ3, and σ4, and the weight values.

The smoothing parameters are calculated as described in
the previous subsection, while the calculus of the optimal
number of neurons and the determination of their centroids
are described below:

1) If we use the samples of the training set as
neuron centers, then we will obtain a layer pattern
of 3380 neurons split up into four classes (2400 neurons
for the no-rain, 310 neurons for the weak rain,
405 neurons for the moderate rain and 265 neurons for
the heavy rain conditions).

By applying the least squares method on the training set,
we compute the weights wk,j.
2) We trim the neuron that has the lowest weight and

compute the network’s weights again by using the
validation set. This phase of the training process stops
when the error, in terms of correct classification on the
validation set, exceeds 1% with respect to the previous
step.

The obtained network after the training is shown in Fig. 5.
In the pattern layer, there are 143 remaining neurons (30 of
them are related to the weak rain condition, 36 are related
to moderate rain, 50 are related to clear weather, and 27 are
related to the heavy rainfall condition).

The trained PNN classifier was used on the test set,
and a misclassification error of 3.3% was obtained. This
error is because the network, under very difficult condi-
tions, confuses light rainfall with the moderate rainfall. More
specifically, the analysis of the confusion matrix obtained
with the outputs of the classifier, when applied on the test
set, shows (see Fig. 6) that the misclassification error equals
1.1% because the network confuses moderate rainfall with
light rainfall. The remainingmisclassification error of 2.2% is
because the network confuses the light rainfall with moderate

FIGURE 6. Confusion matrix relative to the results of the classification
between the four rainfall intensities (light rainfall, moderate rainfall, clear
weather and heavy rainfall) obtained by using the PNN classifier.

rainfall, while the clear weather and heavy rainfall conditions
are always properly classified.

Because this classification method provides good perfor-
mance with a correct classification rate of 96.7%, it can
provide noticeable improvements in the building of rain-
fall maps with higher spatial resolution thanks to the high
geographic coverage of the 4G/LTE signal.

VI. PERFORMANCE COMPARISON
To the best of our knowledge, except for a preliminary study
by Beritelli et al. [12] there are no papers in the litera-
ture based on 4G/LTE signal attenuation in the presence of
rainfall. Almost all papers on this topic, presented in the
literature, are based on the rain attenuation analysis of the
electromagnetic waves with frequencies higher than 10 GHz,
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where the rain impact is more relevant according to the rain
attenuation models.

Even if at frequencies higher than 10 GHz, all the rainfall
classification methods perform better because of the higher
impact of the rain on the radio propagation at this frequency.
Table 3 summarizes some of the most popular rainfall classi-
fication methods operating at these frequencies and compares
the performance with the classification method proposed by
the authors.

By analyzing the Table 3, we can state that even when
some of the other methods seem to outperform our method
for one measurement, looking at the overall classification
performance, the results of the proposed method are defini-
tively better. Furthermore, it is the only method that can
discriminate between weak rainfall, moderate rainfall and
heavy rainfall. Finally, it should also be noted that other
methods operate at frequencies higher than 10 GHz, so in
comparison, they have an advantage.

VII. CONCLUSION
In this paper we presented an novel rainfall classification
system based on RSL local features extracted from 4G/LTE
signal parameters: instantaneous RSL, average RSL value
and variance, which has been calculated bymeans of a sliding
window. The classifier system has been provided by imple-
menting a PNN in order to recognize the different precip-
itation levels. The classification system has been designe
to consider four possible rainfall classes: no-rain, weak,
moderate and heavy rain. Such classes has been defined
accordingly to the criteria shown in Table 2.

The proposed method obtained satisfactory performances,
with an overall rate of correct classifications of 96.7%.

It should be highlighted that the proposed approach is not
limited by any band-related constraint, therefore it could be
applied for all the LTE/4G frequency bands.

On the countrary, the major part of the papers presented
in the literature on this topic have set their focus on elec-
tromagnetic waves within a frequency range over 10 GHz,
in which the rain impact is more relevant, according to the
rain attenuation model. However, only the 4G/LTE signal
has such widespread geographic coverage, so the proposed
classification method can provide noticeable improvements
in the creation of rainfall maps with higher spatial resolution.

In an application context the 4G/LTE receiver can be
located in each base station and forced to connect to the
nearest neighbor cell, ensuring a minimum distance between
the transmitter and the receiver to guarantee an adequate rain
impact on the signal propagation.
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