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ABSTRACT In this paper, a novel algorithm for the cylinder mass flow estimation in four-stroke spark
ignition (SI) gasoline engines is developed to improve the estimation precision under transient conditions.
The error of the cylinder mass flow is compensated by the error variable of the volumetric efficiency
caused by the calibration errors and ambient changes. Since the volumetric efficiency error in SI gasoline
engines is dependent on the intake manifold pressure, engine speed, and ambient temperature, a fuzzy
logic system (FLS) with three inputs is adopted to parameterize the volumetric efficiency error. With the
combination of the FLS and the gasoline engine air path system, an adaptive fuzzy sliding mode observer
is presented to estimate the states and parameters jointly and suppress the disturbance from the FLS
approximation error. With the conditions of persistent excitation and the given inequality, the convergence
of the proposed method is proven. The performance of the proposed method is validated in the environment
of a R4-cylinder SI gasoline engine from enDYNA during different driving-cycle conditions, demonstrating
that the estimation precision of the cylinder air inflow can be obviously improved by the proposed algorithm
under transient conditions.

INDEX TERMS SI gasoline engine, cylinder mass flow, volumetric efficiency, fuzzy logic system, adaptive
fuzzy sliding mode observer.

I. INTRODUCTION
Spark ignition (SI) gasoline engines are extensively used as
a power source for passenger vehicles because of their small
size, small vibration and stable operation, but have emissions
problems (HC, CO and NOx) limited by stringent emission
regulations and restrictive standards [1]–[3]. Three-way cat-
alysts (TWC) equipped on SI gasoline engines are applied
to reduce the emissions and satisfy stringent emissions reg-
ulations. In order to convert all HC, CO and NOx emis-
sions to the innocuous components water and carbon diox-
ide, the engine air-to-fuel ratio (AFR) has to be controlled
to very narrow AFR band around stoichiometry, in which
the maximum TWC emissions conversion efficiency is
achieved [4], [5].

AFR control is based on a combined feed-forward and
feed-back technique in the engine control units (ECUs) to
obtain both good transient and steady-state responses [6], [7].
In the feed-forward system, the cylinder mass flow is esti-
mated based on a combination of sensor measurements and

volumetric efficiencymap, and then the quantity of fuel injec-
tion is decided by ECUs to achieve the target AFR. There-
fore, accurate estimation of the cylinder mass flow under
all different operating conditions is required to inject proper
fuel [8]. For the feed-back control, the universal exhaust gas
oxygen (UEGO) sensor installed in the exhaust manifold is
adopted to measure the oxygen content in the exhaust stream
pre-catalyst, and provide feedback on AFR errors used to
adjust the fuel injection quantity, by which the feed-back
methods can work well during steady-state conditions. Due to
the time-varying transport delay from the exhaust confluence
point to the UEGO sensor as well as the sensor delay caused
by UEGO sensor response [9], the feed-back strategies are
limited under transient conditions. Therefore, under transient
conditions, the accurate estimation of the cylinder mass flow
in feed-forward is very important to avoid large AFR errors
and reduce the engine emissions.

Ideally, the cylinder mass flow is equal to the product of
the atmospheric air density and the cylinder displacement
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volume. However, the amount of air enters the cylinders is
less than the ideal amount, due to the short cycle time and
the flow restrictions from the air filter, intake manifold, and
intake valves. Therefore, the rate between the actual cylin-
der air mass flowing and the theoretical cylinder air mass
is defined as volumetric efficiency [4], [10]. An accurate
cylinder mass flow estimation model can be obtained through
the accurate volumetric efficiency. In fact, there is a nonlinear
function relationship between the volumetric efficiency and
the engine-related parameters [11]. To describe the volu-
metric efficiency in the engine ECUs, the map (or lookup
table [12]) with the advantage of the low computational load
is used to store the values of the volumetric efficiency at
each engine operating point. Using the engine dynamometer,
the map is calibrated under steady-state conditions and room
temperature ambient conditions [11], [13], [14].

Due to the ambient changes and the increased engine
complexity (such as variable valve timing), the volumetric
efficiency map is subjected to modeling errors, leading to
adverse impacts on the emission performance of gasoline
engines [8]. Naturally, an accurate compensation map for the
volumetric efficiency error can benefit the cylinder mass flow
estimation. However, a large number of static bench-test data
under steady-state conditions is required to calibrate the error
map, which is expensive because of the test bench occupation
and operator working time [15], [16]. To avoid error map
calibration and reduce the vehicle development cycle time,
an unknown input observer based on the intake manifold
dynamics is designed to estimate the additive error of the
volumetric efficiency in both steady-state and transient condi-
tions [17], [18]. However, owing to the volumetric efficiency
error considered as a constant in the unknown input observer,
the bound of the estimate error is proportional to the rate of
the volumetric efficiency error, in which the estimation preci-
sion of the volumetric efficiency error can be reduced under
rapid transient conditions. The sliding-mode technology has
been researched and used extensively [19]–[21]. In [22],
an adaptive sliding-mode observer is proposed to estimate
the cylinder mass flow using the sliding-mode methodology,
in which the large modeling error of the volumetric efficiency
can destroy the performance in terms of the accuracy and the
response time. In fact, due to the input-output relationship
of the volumetric efficiency map, the volumetric efficiency
error is a nonlinear function of engine-related parameters.
Therefore, under transient conditions, the estimation of the
volumetric efficiency error considered as a constant brings
adverse impacts on the estimation performance of the cylin-
der mass flow.

Fuzzy logic systems (FLSs) have been proved to be an
effective and flexible tool for approximation of the nonlinear
model, which have been widely used for nonlinear identifica-
tion and control and achieved good control performance (see,
for example, [23]–[25]). According to the Stone-Weierstrass
theorem, a universal fuzzy approximator can approximate any
real continuous function on a compact set to an arbitrary
degree of accuracy.

To improve the estimation precision of the cylinder mass
flow under engine transient conditions, a FLS (with the intake
manifold pressure, engine speed and ambient temperature as
three inputs) is adopted to parameterize the nonlinear func-
tion relationship of volumetric efficiency error, thus the func-
tion estimation of the volumetric efficiency error becomes the
problem of parameter estimation. With the combination of
the FLS and the engine air path system, an adaptive fuzzy
sliding mode is designed, which achieves the joint estima-
tion of the system state and the unknown parameters form
FLS, as well as the disturbance suppression for the approx-
imation error from the parameterization. Under the given
conditions, the convergence of the proposed algorithm is
proven. The simulation study of the proposed algorithm com-
pared with the unknown input observer in [17] and adaptive
sliding-mode observer in [22] is presented in the environment
of 2.0L R4-cylinder SI gasoline engine with 4-stroke from
enDYNA under FTP75 cycle and ECE cycle respectively.
The results demonstrate that the estimation precision of the
cylinder mass flow under transient condition is obviously
improved by the proposed method under transient conditions.

This paper is organized as follows. In Section 2, the volu-
metric efficiency error is parameterized by FLS, and the joint
estimation problem for the engine air path system is given.
In Section 3, the adaptive fuzzy sliding mode observer is
proposed, as well as the analysis of the convergence of the
parameter estimation. Simulation results from enDYNA are
presented in Section 4, and the conclusions are summarized
in Section 5.

FIGURE 1. Schematic of the naturally aspirated SI gasoline engine.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. PROBLEM FORMULATION
Fig. 1 shows themodel structure of a naturally aspirated spark
ignition (SI) gasoline engine, and the model can be expressed
as [5], [11]:

ṗim =
RaTim
Vim

(Wth −Wei) (1)

where

Wei=
ηvpimneVd
120RaTim

, Wth=
Cd (ne, uth)pambA(uth)9(5)

√
RaTamb

,

5 =
pim
patm
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Cd (ne, uth)

= c0b0

(
1+

b1
b0
ne

)
+ c1b0

(
1+

b1
b0
ne

)
uth

+ c2b0

(
1+

b1
b0
ne

)
u2th

A (uth) =
πD2

4
· (1− cos (uth + uth0))

9 (5)=



√
5

2
γ −5

γ + 1
γ ,

5 >

(
2

γ + 1

) γ

γ − 1√√√√( 2
γ + 1

) 2
γ − 1

−

(
2

γ + 1

)γ + 1
γ − 1

,

5 ≤

(
2

γ + 1

) γ

γ − 1

(2)

where Wth is the throttle mass air flow, Wei is the cylin-
der mass flow, ηv is the volumetric efficiency, ne is the
engine speed, uth is the throttle angle, γ is the air specific
heat capacity ratio, D is the diameter of the throttle body
throat, pamb,Tamb are the ambient pressure and temperature,
pim,Tim are the intake manifold pressure and temperature,
Ra is the gas constant, Cd is the flow coefficient of the
throttle body throat, uth0 is the offset angle of the throttle and
c0, c1, c2, b0, b1 are the model parameters.
Due to the ambient changes and the increased engine com-

plexity, the volumetric efficiency ηv is subjected to modeling
errors. Considering the model error of volumetric efficiency
ηv, ηv is recorded as:

ηv = ηvk +1ηv (3)

where ηvk is the modeled term of the volumetric efficiency,
and 1ηv is the error of the volumetric efficiency.
The volumetric efficiency ηv of the naturally aspirated SI

gasoline engine is mainly dependent on the intake mani-
fold pressure pim, engine speed ne and ambient temperature
Tamb [11], so the volumetric efficiency error 1ηv is also
dependent on the intake manifold pressure pim, engine speed
ne and ambient temperature Tamb, i.e., 1ηv (pim, ne,Tamb).
The purpose of this paper is the estimation of the unknown

error function 1ηv (pim, ne,Tamb) to compensate the vol-
umetric efficiency model ηvk and improve the precision
of the cylinder mass flow Wei. To improve the estimation
precision of the error function 1ηv (pim, ne,Tamb) under
engine transient conditions, the nonlinear function relation-
ship 1ηv (pim, ne,Tamb) is parameterized by the FLS with
unknown parameters in the following.

B. FUZZY LOGIC SYSTEM APPROXIMATION
AND SYSTEM TRANSFORMATION
The FLSs can be used as practical function approximators
from a mathematical point of view. Thus, a FLS can be used

to approximate a continuous function f (x) defined on some
compact set [26].

There are consists of four parts in a FLS: the knowledge
base, the fuzzifier, the fuzzy inference engine and the defuzzi-
fier. The knowledge base is composed of a collection of fuzzy
IF-THEN rules of the following form:
Rl : if x1 is F l1 and x2 is F l2 · · · and xn is F

l
n, then y is G

l ,
l = 1, 2, . . . ,N
where x = [x1, ..., xn]T is FLS input, and y is FLS output.

N is the number of inference rules. µF li (xi) and µGl (y) are

the membership functions of fuzzy sets F li and Gl , respec-
tively. Through singleton fuzzifier, center average defuzzifi-
cation and product inference, the FLS can be expressed as

y (x) =

∑N
l=1 ȳl

(∏n
i=1 µF li

(xi)
)

∑N
l=1

(∏n
i=1 µF li

(xi)
) (4)

where ȳl = max
y∈R

µGl (y). Define the fuzzy basis functions as

ϕl (x) =

∏n
i=1 µF li

(xi)∑N
l=1

(∏n
i=1 µF li

(xi)
) , l = 1, 2, . . . ,N (5)

Denoting θT = [ȳ1, ȳ2, ..., ȳN ] = [θ1, θ2, ..., θN ] and
ϕ(x) = [ϕ1(x), ϕ2(x), ..., ϕN (x)]T. Then, FLS (4) can be
rewritten as

y (x) = θTϕ (x) (6)

Lemma 1 [27]: For any continuous function f (x) defined
over a compact set� and any given positive constant ε, there
exists a FLS (6) and an ideal parameter vector θ∗ such that

sup
x∈�

∣∣∣f (x)− θ∗Tϕ (x)∣∣∣ ≤ ε (7)

According to Lemma 1, FLSs are universal approximators
to approximate any smooth functions on a compact space.
Therefore, the nonlinear terms 1ηv in (3) can be approxi-
mated by the following FLSs:

1ηv
(
υ|θ1η

)
= θT1ηϕ1η (υ) (8)

where υ = (pim, ne,Tamb). The optimal parameter vectors
θ∗1η is defined as

θ∗1η = arg min
θ1η∈�

[
sup
υ̂∈V

∣∣1η̂v (υ̂|θ1η)−1ηv (υ̂)∣∣] (9)

where � and V are bounded compact sets for θ1η and υ̂,
respectively.

The corresponding fuzzy minimum approximation error
ε1η is defined by

ε1η = 1ηv
(
υ̂
)
−1η̂v

(
υ̂|θ∗1η

)
(10)

By substituting (8)-(10) into (1), the system given in (1)
can be presented in the following form:{

ẋ = f (υ, uth)+ θT1ηϕ (υ)+ R1η
y = Cx

(11)
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where

x = pim, C = 1, ϕ (υ) = −
Vdpimne
120Vim

ϕ1η (υ)

f (υ, uth) =
RaTim
Vim

Wth (pim, ne, uth)−
ηvkpimneVd
120Vim

R1η = −
Vdpimne
120Vim

ε1η, υ = (pim, ne,Tamb)

Eq. (11) indicates that the estimation of the volumetric effi-
ciency error 1ηv (pim, ne,Tamb) becomes a joint estimation
of state x and unknown parameter θ1η for system (11) with
the disturbance R1η from the approximation error ε1η.

C. ADAPTIVE FUZZY SLIDING MODE OBSERVER DESIGN
Adaptive sliding mode observer is a recursive algorithm to
jointly the estimate system state and unknown parameters,
which can simultaneously reject the disturbance from the
model uncertainty and external signal [28], [29]. The adaptive
fuzzy slidingmode observer for the system (11) to jointly esti-
mate the system state and parameters is designed as follows:{
˙̂x = f (υ, uth)+ θ̂T1ηϕ1η (υ)+ L

(
y− Cx̂

)
+ α

(
t; x̂, y

)
˙̂
θ1η = 0ϕ1η (υ)P

(
y− Cx̂

)
(12)

where x̂ ∈ R is the state estimate, θ̂1η ∈ Rp is the parameter
estimate, L ∈ R3×3 is the feedback gain matrix, gain 0 ∈
Rp×p is the positive definite diagonal matrix, and a sliding
mode control law of

α
(
t; x̂, y

)
=

lα
(
y− Cx̂

)
2
∥∥(y− Cx̂)∥∥ ,

∥∥(y− Cx̂)∥∥ ≥ εα
0 ,

∥∥(y− Cx̂)∥∥ < εα

(13)

where lα is a positive gain and εα is a small positive constant.
As the intake manifold pressure pim, engine speed ne and

ambient temperature Tamb are continuous and bounded in
nature, and the model error ε1η is bounded, the following
assumption 1 can be satisfied to analyze the convergence of
the proposed observer.
Assumption 1: There is unknown positive constant dR such

that
∣∣R1η∣∣ ≤ dR.

The asymptotical stability of the presented method (12) is
analyzed in the following theorem.
Theorem 1: If ∃lα > 2ds, and the following condi-

tions 1) and 2) hold, then adaptive fuzzy sliding mode
observer (12) is asymptotically stable, i.e., for any initial
conditions x (0) , x̂ (0) , θ̂1η (0) and parameter vector θ1η ∈
Rp, the errors x̂−x and θ̂1η−θ1η tend to zero asymptotically
when t →∞.
1). There exist matrices L, P = PT > 0,Q = QT > 0, such

that the following linear matrix inequality (LMI) is feasible:

−CTLTP− PLC < −Q (14)

2). Regression vector ϕ (υ) is persistently exciting,
i.e., ∃δ1, δ2 > 0; ∃T > 0; ∀t ≥ 0:

δ1Ip ≤
∫ t+T

t
ϕ (υ (τ)) ϕ(υ (τ))Tdτ ≤ δ2Ip (15)

Proof: Set the estimation error

x̃ = x̂ − x, θ̃1η = θ̂1η − θ1η (16)

Notice that θ̇1η = 0, the error dynamic system between
(16) and (12) is{

˙̃x = (−LC) x̃ + θ̃T1ηϕ (υ)+ α − R1η
˙̃
θ1η = −0ϕ (υ)Px̃

(17)

The Lyapunov function candidate is considered as V =
x̃TPx̃ + θ̃T1η0

−1θ̃1η, and the derivative of V along with the
error dynamic system (17) is

V̇ = 2x̃TP ˙̃x + 2θ̃T1η0
−1 ˙̃θ1η

= 2x̃TP (−LC) x̃ + 2x̃TPα − 2x̃TPR1η (18)

According to Assumption 1 and Eq. (13), the following
inequalities hold:

−2x̃TPR1η ≤ 2dR
∥∥∥x̃TP∥∥∥

2x̃TPα = lα
x̃TP

(
y− Cx̂

)∥∥(y− Cx̂)∥∥ = −lα ‖Px̃‖ (19)

According to condition 1), Eqs. (18) and (19), the follow-
ing inequality holds:

V̇ = x̃T
(
(−LC)TP+ P (−LC)

)
x̃ ≤ −x̃TQx̃ < 0 (20)

That is V̇ < −ω (t) < 0, where ω (t) = x̃TQx̃.
Therefore, the equilibrium x̃ = 0 and θ̃1η = 0 are stable.

Now integrate V̇ < −ω (t) from zero to t yields

V (t)+
∫ t

0
ω (τ) dτ < V (0) (21)

This means that
∫ t
0 ω (τ) dτ < V (0) since V > 0.

So we have lim
t→∞

∫ t
0 ω (τ) dτ ≤ V (0) and this implies

that lim
t→∞

∫ t
0 ω (τ) dτ exists and is finite. By Barbalat ′s

Lemma [30], we know that lim
t→∞

ω (t) = 0 and this leads to
lim
t→∞

x̃ (t) = 0.
Under condition 2), the vector ϕ (υ) is persistently excit-

ing, that is lim
t→∞

θ̃1η (t) = 0 [30].
Remark 1: According to Theorem 1, the model error R1η

from ε1η considering as disturbance is suppressed by the
sliding mode item α

(
t; x̂, y

)
. The estimation error θ̃1η of

the unknown parameters tend to zero asymptotically when
t → ∞, meaning that the estimation of the volumetric effi-
ciency error 1ηv

(
υ|θ̂1η

)
obtained by the proposed method

satisfying inequality
∣∣∣1ηv (υ)−1ηv (υ|θ̂1η)∣∣∣ ≤ ε1η for

the any given positive constant ε1η. Then, the estimation of
the volumetric efficiency error 1ηv (υ) is achieved by the
proposed method, as well as the estimation of the cylinder
mass flow Ŵei =

(
ηvk +1ηv

(
υ|θ̂1η

))
pimneVd

/
120RaTim.
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TABLE 1. Engine specifications.

III. SIMULATION
In this section, the simulation study of the proposed method
to estimate the volumetric efficiency error is presented in the
environment of 2.0L R4-cylinder SI gasoline engine from
enDYNA provided by Tesis [31], [32], which is a profes-
sional software tool for the real-time simulation of internal
combustion engines. The specifications of the R4-cylinder
SI-engine are given in TABLE 1. In enDYNA, the volumetric
efficiency is depending on air density, intake manifold pres-
sure and intake manifold temperature, in which the ambient
temperature changes the intake manifold temperature.

FIGURE 2. The volumetric efficiency map identified from enDYNA data at
ambient temperature 20◦C.

A. VOLUMETRIC EFFICIENCY ERRORS AT DIFFERENT
AMBIENT TEMPERATURES
To analyze the effect of volumetric efficiency error on the
model accuracy of the cylinder mass flow at different ambient
temperatures, the volumetric efficiency map shown in Fig. 2
is employed as the known model item ηvk from Eqs. (3) in
this simulation, which is identified at ambient temperature
20◦C. Meanwhile, the cold start transient phase of the federal
test procedure 75 (FTP75) [33] is used here, under which the
throttle angle uth, engine speed ne, intake manifold pressure
pim and vehicle velocity are plotted in Fig. 3.

The comparison between the volumetric efficiency map
shown in Fig. 2 and the volumetric efficiency from enDYNA

FIGURE 3. Evolution of throttle angle uth, engine speed ne, intake
manifold pressure pim and vehicle velocity under FTP75 cycle.

TABLE 2. Mean absolute error of ηv and Wei at ambient temperatures
20◦C and −20◦C under FTP75 cycle.

at different ambient temperatures (20◦C and −20◦C, which
are the highest and lowest temperature in enDYNA respec-
tively) is presented in Fig. 4(a). Correspondingly, the com-
parison between the cylinder mass flow Ŵei computed by
volumetric efficiency map and the cylinder mass flow from
enDYNA at different ambient temperatures is presented
in Fig. 4(b). The mean absolute error between the volumetric
efficiency map shown in Fig. 2 and the enDYNA volumet-
ric efficiency is given in TABLE 2, as well as the mean
absolute error between the cylinder mass flow Ŵei with the
volumetric efficiency map and the enDYNA cylinder mass
flow. It demonstrates that the model accuracy of the cylinder
mass flow with the volumetric efficiency map identified at
ambient temperature 20◦C is deteriorated by the volumetric
efficiency error 1ηv at ambient temperature −20◦C, which
must be compensated to improve the estimation precision of
the cylinder mass flow Ŵei.

B. CYLINDER AIR FLOW ESTIMATION
To validate the effectiveness of the proposed method,
the observer architecture is illustrated in Fig. 5. Meanwhile,
one fuzzy system in the form of (8) is used to approxi-
mate the unknown volumetric efficiency error 1ηv (υ) with
υ= (pim, ne,Tamb) as input.

29562 VOLUME 6, 2018
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FIGURE 4. Evolution of the volumetric efficiency and cylinder mass flow
at ambient temperatures 20◦C and −20◦C under FTP75 cycle respectively.
(a) enDYNA volumetric efficiency, map and errors. (b) enDYNA cylinder
mass flow, model using map and errors.

Generally, the fuzzy variables are set in an interval
[a, b]. The fuzzy membership functions should be chosen so
that they can cover the interval [a, b] of the fuzzy variables
uniformly. According to the interval of the fuzzy variables
and the chosen number of the fuzzy membership functions,
the center can be determined. The width is chosen as a
constant by the designer.

According to the range pim ∈ [0, 100000] and ne ∈
[500, 3000] from Fig. 3, the fuzzy membership functions are

FIGURE 5. Schematic diagram for the estimation of volumetric efficiency
error.

defined for each variable υi (i = 1, 2, 3) as follows:

µ
F
k1
1
(υ1) = exp

(
−
1
2

(
υ1 − pim,k1

1666

)2
)

µ
F
k2
2
(υ2) = exp

(
−
1
2

(
υ2 − ne,k2

83

)2
)

µ
F
k3
3
(υ3) = exp

(
−
1
2

(
υ3 − Tamb,k3

3

)2
)

where

pim,k1 ∈ {10000k1| k1 = 1, 2, . . . , 10}

ne,k2 ∈ {500k2| k2 = 1, 2, . . . , 6}

Tamb,k3 ∈ {10 (k3 − 4)| k3 = 1, 2, . . . , 8}

The lth fuzzy rule is constructed as
Rl : if υ1 is Fk11 and · · · and υn is Fk33 , then 1ηv

is Gl where Fkii and Gl are fuzzy sets, i = 1, 2, 3,
l = 1, 2, . . . ,m, and m = 10 × 6 × 8 = 480 is the total
number of rules whose IF parts comprise all the possible
combinations of the Fkii

′s for i = 1, 2, 3.
Denoting j = 32 (k1 − 1) + 3 (k2 − 1) + k3, then for ki,

i = 1, 2, 3, j ∈ {1, 2, . . . , 480}. Collect j in the ordering for
j = 1, 2, . . . , 480, and let

ϕ1η,j (υ) =

µ
F
k1
1
(υ1) µF

k2
2
(υ2) µF

k3
3
(υ3)∑480

l=1 µF
k1
1
(υ1) µF

k2
2
(υ2) µF

k3
3
(υ3)

Then, ϕ1η(x) =
[
ϕ1η,1(x), ϕ1η,2(x), ..., ϕ1η,N (x)

]T, and
we have 1ηv

(
υ|θ̂1η

)
= θ̂T1ηϕ1η (υ).

The initial values of observer (12) used in the simulation
are x̂ (t0) = 9.8× 105 and θ̂ (t0) = 0. The design parameters
are chosen as L = 128, 0 = 10−7 · I ,P = 0.01, lα = 0.1,
εα = 10−15.

Transient condition is different from steady-state operation
(i.e., operation at the same engine speed and injected fuel of
the respective transient cycles). That is, both the engine speed
and the injected fuel change continuously during transient
operation [34]. In order to verify the effectiveness of the
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FIGURE 6. Evolution of the estimation of the cylinder mass flow Ŵei at
ambient temperature −20◦C under FTP75 cycle. (a) Cylinder mass flow
estimation; (b) Cylinder mass flow estimation between 235s and 240s;
(c) Estimation errors.

presented algorithm, the cold start transient phase of the
FTP75 and the urban driving cycle ECE are respectively used
as transient conditions in the following.

TABLE 3. Estimation errors of the unknown input observer, sliding mode
observer and the proposed method under FTP75 cycle.

FIGURE 7. Evolution of throttle angle uth, engine speed ne, intake
manifold pressure pim and vehicle velocity under ECE cycle.

Under the cold start transient phase of the FTP75 at ambi-
ent temperature −20◦C, the comparison of the cylinder mass
flow Ŵei from the unknown input observer [17], adaptive
sliding mode observer [22], and proposed adaptive fuzzy
sliding mode observer is presented in Fig. 6, in which the
volumetric efficiency shown in Fig. 2 is used as the modeled
term ηvk . Accordingly, the maximum absolute error andmean
absolute error of these three estimation approaches against
the enDYNA signal are given in TABLE 3. It is demonstrating
that the estimation precision of the cylinder mass flow Ŵei
using the proposed approach is improved noticeably under
FTP75.

To verify the effectiveness of the presented algorithm under
other driving cycle condition, one segment of urban driv-
ing cycle ECE (Economic Commission for Europe) is used
here [35], under which the throttle angle uth, engine speed
ne, intake manifold pressure pim and vehicle velocity are
plotted in Fig. 7. Accordingly, the comparison of the cylinder
mass flow from the unknown input observer, adaptive sliding
mode observer and proposed adaptive fuzzy sliding mode
observer is presented in Fig. 8, in which the volumetric effi-
ciency shown in Fig. 2 is also used as the modeled term ηvk .

29564 VOLUME 6, 2018
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FIGURE 8. Evolution of the estimation of the cylinder mass flow Ŵei at
ambient temperature −20◦C under ECE cycle. (a) Cylinder mass flow
estimation; (b) Cylinder mass flow estimation between 147s and 150s;
(c) Estimation errors.

Accordingly, the maximum absolute error and mean abso-
lute error of these three estimation approaches against the
enDYNA signal are given in TABLE 4. It is demonstrating

TABLE 4. Estimation errors of the unknown input observer, sliding mode
observer and the proposed method under ECE cycle.

that the estimation precision of the cylinder mass flow using
the proposed approach is improved obviously under ECE
cycle.

IV. CONCLUSION
An efficient method to improve the estimation precision of
the engine cylinder mass flow under transient condition was
developed in a 4-stroke SI gasoline engine. A FLS with
unknown parameters was employed to approximate the vol-
umetric efficiency error. With the combination of the FLS
regression model and SI gasoline engine air path dynamic
model, an adaptive fuzzy slidingmode observer was designed
to jointly estimate state and unknown parameters, as well as
suppress the disturbance from the FLS approximation error,
thus improving the estimation precision of the cylinder mass
flow, compared with the method of both the unknown input
observer [17] and adaptive sliding mode observer [22]. Under
the cold start transient phase of the FTP75 and the urban
driving cycle ECE, the effectiveness of the proposed method
was validated and verified in the engine software enDYNA.
The results demonstrate that the estimation precision of the
cylinder mass flow can be obviously improved by the pre-
sented method under transient conditions.
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