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ABSTRACT Recovering fine-scale surface shapes is a challenging task in computer vision. Multispectral
photometric stereo is one of the popular methods as it can handle non-rigid/moving objects and produces
per-pixel dense results. However, the colored images captured by practical multispectral photometric stereo
setups are aliased in RGB channels. Existing solutions require prior information to calibrate few points
and estimates whole surface normal by the calibration, while prior information is not always available
and accurate. Differing from previous solutions which require calibration or other prior information,
we first formulate the problem in a learning framework, which directly seeks the per-pixel mapping of
the aliased and spectrum-multiplexed pixel response to the anti-aliased and demultiplexed counterpart.
In this paper, we propose to use a novel deep neural networks framework as the ‘‘demultiplexer’’. By using
‘‘demultiplexer’’ and classic photometric stereo, our method can reconstruct a dense and accurate surface
normal from a single-frame colored image without any prior information nor extra information injected.
We build an imaging device to collect images of different materials under colored lights and white lights.
We conducted extensive experiments on our data set and a public data set. The results show that the proposed
fully connected network successfully demultiplexes the colorful image and produces satisfactory surface
estimation.

INDEX TERMS Multispectal photometric stereo, spectrum demultiplexing, normal estimation, deep neural
networks.

I. INTRODUCTION
Recovering 3D shapes of objects is a challenging problem in
computer vision. In the past few decades, many reconstruc-
tion algorithms and improvements were proposed, including
photometric stereo [1], structured light [2], binocular stereo
vision [3], [4], and structure from motion [5]–[7]. Among
these methods, photometric stereo is highlighted by its per-
pixel resolutions and finer reconstruction details. However,
traditional photometric stereo methods require multiple
images captured with different illumination directions while
the camera and the target object should hold stationary.
This limits its use in dynamic applications such as non-rigid
objects andmoving objects. To solve this problem,multispec-
tral photometric stereo technologies were proposed [8], [9],
where three colorful lights (red, green and blue) simultane-
ously illuminate the target from different directions and one

single color image is captured. Ideally, the image intensity
in each RGB channel corresponds to the reflected radiance
from the respective colorful lights. From the communica-
tion perspective, the traditional photometric stereo takes a
time-division multiplexing strategy, whereas the multispec-
tral photometric stereo takes a spectral-division multiplexing
strategy. In practice, the intensity in each channel of the
captured image is aliased, which is the tangle of illumina-
tion, surface reflectance and camera response (more details
will be discussed in the later sections). There is no satis-
factory solutions to demultiplex this aliased signal yet, and
the existing methods utilize image itself [8], employ pre-
calibration [10] or require initial surface normal [11].

In many cases, such pre-calibration or initial inputs
are expensive or impractical. These previous methods use
priori information to calibrate the reflectance properties and
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FIGURE 1. The overview of the proposed method. It consists of training and estimating stages. The circles on the left of the dataset represent the
illumination situations, the color of circles represent the color of illumination, while black circles mean the lights are turn off. The first one means the red,
green and blue colored lights turn on simultaneously, and the last three mean turn on one white light respectively.

illumination of some pixels, and use these pixels to estimate
the whole surface normal, while prior information is not
always available and accurate. It is therefore still an open
question to accurately and robustly recover surface shapes
only from a single colorful image in multispectral photo-
metric stereo. Is it possible to transform a single colored
image into three grayscale images as captured by three lights
under different directions? We therefore propose to build a
‘‘demultiplexer’’ which can divide a single colored image
into three grayscale images illuminated by the three white
lights at the same position withminimum errors. In this paper,
we employ deep neural networks (DNN) as the ‘‘demulti-
plexer.’’ DNN has been broadly used for various computer
vision tasks and has shown state-of-the-art performance due
to its powerful learning capability. Researchers in 3D recon-
struction have used it to estimate surface normal [12], [13]
and scene depth [14]. Motivated by these successes, we here
propose to use it as ‘‘demultiplexer.’’

Given an image of a target object illuminated by three
colored lights (red, green and blue), we want to learn a
per-pixel mapping to three corresponding grayscale images
of the object illuminated by white lights rather than cali-
brating some points by priori information. We can then
recover surface normals using traditional photometric stereo
techniques. The overview of the proposed method is shown
in Figure 1. This mapping was realized by employing the high
regression power of DNN. We collected an image dataset
for training and estimating the network, which consists of
many materials under colored lights and white lights. The
illumination situations are shown on the left of the examples.
The images of the colored lights are the input, and the corre-
sponding images of the white lights are the output. A public
dataset DiLiGent [15] was also used to test the generalization
of our method.

The main contributions of this work are the following:

1) A learning based framework is proposed to solve the
demultiplexing problem in multispectral photometric

stereo firstly, establishing the per-pixel mapping of the
aliased and spectral multiplexed pixel response to the
anti-aliased and demultiplexed counterpart.

2) A novel fully connected deep neural network is
proposed as the ‘‘demultiplexer’’. Given an image
of the target object illuminated by colorful lights,
the network predicts three grayscale images of the
object illuminated by an identical light separately.

3) A new and a modified image dataset are built for the
multispectral photometric stereo process, which were
used to train the proposed network and evaluate the
existing methods.

The rest of the paper is organized as follows. We introduce
the related work in Section 2, followed by the basic theory
summarized in Section 3. Section 4 presents our proposed
method. The training datasets for multispectral photometric
stereo are introduced in Section 5. Section 6 reports the
experimental results. Section 7 concludes this paper.

II. RELATED WORK
Although traditional photometric stereo [1] provides dense
surface reconstruction, it cannot well handle deforming
surfaces or dynamic scenes. To solve this problem, multi-
spectral photometric stereo was proposed [9]. However,
the problem in multispectral photometric stereo is that the
intensity in each channel of the captured image is aliased,
related to the tangle of illumination, surface reflectance and
camera response. Early methods demultiplexed the aliasing
using the image itself [8], but it is difficult to handle multi-
color objects. Kim et al. [16] optimized system implemen-
tation exploiting the physical properties of typical cameras
and LEDs.

Hernandez et al. [10] utilized a calibration method which
is planar with special marking that allows the plane orien-
tation to be estimated. By placing the fabric in the center
of the tool, accurate surface normal can be obtained using
this pre-calibration method. However, this method requires
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to calibrating every kind of reflectance properties on the
surface as prior knowledge. On the one hand, this calibra-
tion is very complex and needs very high environmental
requirements. On the other hand, it is difficult to separate
the surface with different reflectance properties in practical
application.

Other than calibration, some researchers employed a
coarse surface estimation as the initial input and itera-
tively searched for an optimized solution, where the initial
input can be the depth obtained by Kinect or binocular
stereo [11], [17], [18]. However, the initial input is not always
available and in some circumstances is inaccurate, such as
underwater.

Previous methods heavily rely on prior information to
solve the aliasing problem in multispectral photometric
stereo. The challenge is to robustly and accurately estimate
surface normals without such priors. There is no close-form
solution to this ill-posed problem yet, because the single
colorful image is not enough to calculate all the unknown
parameters.

Instead of solving the underdetermined problem dire-
ctly, many works adopted learning-based solutions.
Santo et al. [13] proposed the Deep Photometric Stereo
Network (DPSN) to estimate surface normal as a regres-
sion learning problem rather than the traditional constrained
model. A dropout layer was used to handle shadows and non-
Lambertian conditions. Nguyen et al. [19] and Jia et al. [20]
used neural networks to predict hyperspectral image from an
rgb-channels image.

In this paper, we employed deep neural network to demul-
tiplex the color image in multispectral photometric stereo.
We propose a novel fully connected network as the ‘‘demulti-
plexer’’, which outputs three corresponding grayscale images
from the colorful image. Then the normal map of the object
can be recovered using a traditional three-source photometric
stereo method.

III. THEORY BACKGROUND
Unless otherwise stated, we use boldfaced uppercase and
lowercase letters to denote matrices and column vectors
respectively.

When we take a picture of a Lambertian surface illumi-
nated from direction l, the intensity of pixel (x, y) in each
channel can be written as:

ci = lTn
∫
E(λ)R(λ)Si(λ)dλ (1)

where ci is the intensity of pixel (x, y) in channel i
(i ∈ {r, g, b}), E(λ) represents the energy distribution of
illumination as a function of wavelength λ, R(λ) represents
the spectral reflectance function of the surface., Si(λ) is the
camera sensor for channel i and n is the surface normal at
pixel (x, y).

As E(λ) and S(λ) are difficult to measure, we usually use
the ‘scaled albedo’ ρ to represent the integration in Eq.1:

ci = ρilTn (2)

The normal n can be recovered given at least three
images captured under illuminations whose directions are
non-coplanar.

In multispectral photometric stereo, the objects are illu-
minated simultaneously by three non-coplanar lights which
are red (R), green (G) and blue (B). The direction of the
three lights can be written as lk (k ∈ {R, G, B}). Let Ek (λ)
(k ∈ {R, G, B}) be the energy distribution of three lights
respectively. Then, the intensity of the pixel (x, y) in channel i
can be expressed as the summation of the contributions from
all the lights [8]:

ci =
∑
k

lTk n
∫
Ek (λ)R(λ)Si(λ)dλ (3)

Let ρik =
∫
Ek (λ)R(λ)Si(λ)dλ, where ρik represents the

(i, k)th element of the matrix Pm. ci can be combined into
a vector c=[cr, cg, cb]. lk can be combined into a matrix
L=[lR, lG, lB]T. Then, Eq.3 can be written as follows:

c = PmLn (4)

When a Lambertian surface with normal n is illumi-
nated by three identical lights Lw=[l1, l2, l3]T respectively,
the measurement cw can be described as follows:

cw = PdLwn (5)

where cw=[c1, c2, c3], c1, c2, c3 represent the grayscale
value of pixel (x, y) in the image illuminated by l1,
l2, l3 respectively. Pd=diag3×3(||L−1cw||) is used to
substitute Pm [1].

IV. PROPOSED METHOD
If we used classic photometric stereo to calculate the colored
image directly, the results would be wrong.We cannot demul-
tiplex the colored image by directly separating the three
channels. In fact, the intensity in each channel is not only
affected by the corresponding colored light but also contami-
nated by the other two colorful lights. We show this problem
by feeding the colored image as three grayscale images (by
channel) to the classic photometric stereo. Figure 2 shows the
results. It can be seen the errors in the recovered normal are
significant.

To establish a per-pixel ‘‘demultiplexer’’, we change the
illumination from RGB lights to white lights while ensuring
that there is no change in the relative position between the
camera, lights and the target. Let white lights illuminate
the surface respectively, then the measurement cw can be
described as Eq.5. Since we do not change the direction
of the illuminations, we can replace L with Lw. Therefore,
the measurement cw can be written as:

cw = PdP−1
m c (6)

We confirm that every surface reflectance property corre-
sponds to an unique demultiplexingmatrix8=PdP−1

m . Thus,
a straight thought is to build a mapping function f :R3

→R3,
which can transform the single multispectral colored image c
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FIGURE 2. Fabric examples under the tri-colored light. In the experiment, we choose four kinds of fabric including white fabric, floral fabric, dichromatic
and fabric with color patches. ‘Direct’ means photometric stereo using multiplexing tri-colored lights image directly, while the Reference means
photometric stereo using three white lights illuminated serially on the same position of the tri-colored lights.

into three grayscale images cw illuminated by the three
white lights at the same position pixel by pixel. Faced with
the mapping containing almost unlimited surface reflectance
properties, there is a complex nonlinear relationship between
c and cw. The classical machine learning algorithms such
as support vector regression have limited the generalization
ability to represent complex problems with massive samples,
while DNN can be used to approximate such mapping func-
tion obviously. Through experimental validation, we employ
the DNN to learn a nonlinear transformation f .

A. NETWORK ARCHITECTURE
We present the details of our model in this section. Like
DPSN [13], we employ fully connected deep neural networks
to learn the per-pixel mapping from c to cw which fits demul-
tiplexing matrix 8.

The structure of our model is summarized in Figure 3.
The model consists of 7 fully connected layers. Each fully
connected layer includes a sigmoid activation function.
We introduce direct connections from the input layer to the
subsequent fully connected layers inspired by DenseNet [21].

Concatenating the input layer improves the robustness of the
networks. Furthermore, we observe that concatenation can
accelerate training convergence and enhance training opti-
mization. A more detailed discussion will be shown in the
network architectures’ comparison.

Our model is trained with mean squared errors (MSE) as
the loss function:

L(β) =
1
n

n∑
i=1

||f (xi, β)− yi||2 (7)

where n is the number of the training samples, each x, y ∈ R3

is a pair of c vector and corresponding cw in the training
set, and β are the network parameters that require to be
estimated for the f (x, β) to fit the training pairs (xi, yi). The
loss is minimized using stochastic gradient descent with the
standard backpropagation [22].

B. PREDICTION AND CALCULATE SURFACE NORMAL
In order to train the model, we learn the mapping from multi-
plexing a tri-colorful lights image c to white light grayscale
images cw. In the prediction phase, given a set of c, our model
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FIGURE 3. The structure of our model. FC means fully connected layers,
the number behind FC represents the number of dimension.
In concatenation, we concatenate the input layer to the fully connected
layer as a totality and propagate it to the next fully connected layer.

estimates the demultiplexed ĉw. Our model estimates ĉw per-
pixel and enables them to obtain the integrated grayscale
images.

With the estimated ĉw, we can calculate the surface normal.
In the proposed method, we use the classic photometric
stereo [1]. Although there are many improved algorithms
of photometric stereo, using the classic photometric stereo
shows better fitting ability of our method.

V. TRAINING DATASET
A. OUR DATASET
The training set for our model consists of colorful light
measurement c and the white lights measurement cw.
The white lights measurement cw is composed of three
grayscale values illuminated by three white lights respec-
tively. To establish the dataset, we build a lighting device,
composed of a camera and three stationary lights. The struc-
ture of our device is shown in Figure 4. In each light, there
are two kinds of colors which can transform between them.
Our device can be used to make the required training samples.
Each training sample contains a single image under simul-
taneous illumination of the colorful lights and three images
of single white illumination. We made sure that objects
remain motionless under the colorful lights illumination and

FIGURE 4. Schematic structure drawing of our device.

white light illumination. Since the positions of the colorful
lights are fixed, we can collect new training data when
rotating or remodeling the object, a large number of training
samples can be obtained.

In this dataset, we collect dozens of real-world obser-
vations. The observation consists of more than a hundred
varieties of colors and materials with diverse normals viewed
under pre-set tri-colorful illuminations and white illumina-
tion. Figure 5 shows some sample images of the training data.
The dataset looks random at the image-level, but it is useful
and plenitudinous at the pixel-level training samples.

B. PSEUDO-COLORED LIGHTS DATASET
There is no image dataset particularly for multispectral
photometric stereo. In addition to our dataset, it is difficult
to find a dataset containing multiplexing tri-colored lights.
DiLiGent [15] is a very significant and widely used dataset
in the field of photometric stereo. In order to demonstrate the
robustness of our method persuasively, we use the original
images in DiLiGent to generate the pseudo-colored light
images. The reason for selecting DiLiGent is that it contains
96 directions of lights, better simulating our dataset. In addi-
tion, images in DiLiGent are rgb tri-channels rather than
single channels.

Pseudo-colored light images can simulate the effect of the
tri-colorful lights’ images. We select three images of one
object with different white illuminations, then we extract the
r channel in the first image, g channel in the second image
and b channel in the third image. Finally, we combine these
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FIGURE 5. Examples of sample images of the training data set. A to D are examples of the dataset. Each training example contains a single image under
simultaneous illumination of tri-colored lights and three images of single white illumination. B and D are the remodeling of A and C. The images of
different materials and colors under different normal are available through rotation and remodeling.

TABLE 1. The combinatorial process of pseudo-colored lights images.

channels in purpose. In order to simulate the aliasing and
multiplexing effects, we combine one main channel and two
aliasing channels for each channel in pseudo-colored lights’
images. Quantificationally, we ensure the pixel value of each
channel in pseudo-colored lights images equals to 90% of the
main channel pixel value plus two 5% aliasing channel pixel
values, shown in Table 1.
We simulate the aliasing of the colored images with this

combination. It is worth noting that our combination simu-
lates the similar effect of multiplexing, but not the same as
the real situation, because we do not know the camera’s color
spectral sensitivities and exact the spectrum of the colored
lights.

Therefore, we understand that the inconformity between
pseudo-colored lights images and colored lights images is
mainly due to the diversity energy distribution between the
white illumination and colorful illuminations. We will show
experiments below.

Since there is no real colored lights image of DiLiGent,
it is difficult to analyze the error between the pseudo-colored

TABLE 2. SSIM [23] values of 32 examples.

lights image and the real colored lights image directly.We use
our dataset for verification firstly, comparing pseudo-colored
lights image with the real colored light image, as shown
in Figure 6 and Table 2.

Figure 6 illustrates three examples, including three kinds
of fabric. Each example shows the image, the corresponding
normal map and the histogram of the real condition and
the pseudo condition respectively. Looking at the first row
images, we find that the pseudo-colored light image is greener
than the corresponding real tri-colored light image, which
means the value of g channel may be large. This phenomenon
is caused by the inconsistent spectral energy distribution of
the white illumination and the corresponding colorful illumi-
nation in the colorful lights. To quantify the extent of this
inconsistency, we use Mean Pixel Value Error (MPVE) to
calculate the mean deviation of the pixels’ value between the
pseudo-colored lights image and the real colored light image.
The values of MPVE are shown at the bottom of the first row.
Also, we show the histogram of each image in the second
row. The histograms of the pseudo-colored light image and
the real colored light image are similar in general, while
there is some difference in a small range. Concretely, we
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FIGURE 6. Examples of comparison. Here, three out of more than 30 images are shown. Each example includes a real column and pseudo column,
which represent real colored lights condition and pseudo-colored lights condition respectively. The first row shows the real colored lights images and
pseudo-colored lights images. The numbers at the bottom of the first row are Mean Pixel Value Error (MPVE) between real and pseudo images.
The second row shows the histogram of the corresponding first row image. The third row shows the normal maps calculate by photometric stereo using
directly three-channels’ corresponding image in the first row. The numbers at the bottom of the third row are Mean Angular Error (MAE) in degree of the
real and pseudo normal maps.

show the normal maps calculate by photometric stereo using
directly the three-channel’s corresponding image in the first
row. TheMean Angular Error (MAE) of the two normal maps
in each example is shown at the bottom of the third row. The
values ofMAE are 24.18◦, 20.41◦, 23.82◦ respectively, which
are large. This is because the changes of the pixel values
significantly influence the normal in the shape from shading
algorithm. The deviation of the surface distortions caused by
the inconsistent spectral energy distribution are particularly
noticeable on the values of MAE.

However, in our method, we are concerned with the normal
error caused by the variety of the reflectance properties. This
error is reflected in the discontinuity of the normal compared
with the groundtruth. The two kinds of the normal maps in
the third row of Figure 6 both show this error. To prove the
error is similar between the real colored light image and the
pseudo-colored lights image, we introduce Structural Simi-
larity (SSIM) in Table 2. SSIM [23] is a full reference image
quality evaluation index which can evaluate the similarity of
this error effectively. SSIM is defined as:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ

2
y + C1)(σ 2

x + σ
2
y + C2)

(8)

where µx and µy are the means of image x and image y,
σx and σy are the variances of x and y, σxy is their corre-
sponding covariances, C1 and C2 are constants used to keep
stability. The SSIM value range is from 0 to 1, the larger
the value, the more similar the images. We calculate SSIM
values of 32 experimental examples of our dataset, and
Table 2 shows the maximum SSIM, minimum SSIM and
mean SSIM of all examples. The results show the extent
of normal errors caused by the variety of the reflectance
properties are almost the same on the normal calculate for the
real colored light image and the pseudo-colored light image.

Furthermore, this similarity is robust in all the experimental
examples.

The above shows the usability of the pseudo-colored lights
image. We then use DiLiGent [15] to compose the pseudo-
colored lights image dataset. Some examples of the dataset
are shown in Figure 7.

VI. EXPERIMENTS
In our experiments, we will firstly verify the ability of
our fully connected networks. Furthermore, we evaluate the
predicted results of our model with the groundtruth grayscale
using mean relative error (MRE) and compare the final
normal using MAE both in our dataset and pseudo-colored
lights dataset. Several mainstream single frame 3D recon-
struction techniques including deep learning methods are
selected to deliver the comparisons. We compare the
proposed method with multispectral photometric stereo [18]
using SLIC super-pixels segmentation [24] which can
provide better reconstruction results. To ensure that all the
methods do not have additional input information, we use
the initial depth obtained by photometric stereo using
the direct three-channels of multiplexing tri-colored lights
images. In addition, we also compare the proposed method
with DPSN [13]. To ensure no additional input informa-
tion, we reduce the input dimension in DPSN from 96 to
3 representing RGB channels. We also cancel the shadow
layer considering only three dimensions of the inputs in the
remodeled DPSN.

A. IMPLEMENTATION AND TRAINING SETTINGS
Our model was implemented using TensorFlow, and trained
for 15 epochs (our dataset) with the batch size of 100,
the leaning rate is to begin with 2× 10−2 and end with 10−5,
performed on an Ubuntu 14.04 machine with Tesla K40c.
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FIGURE 7. Pseudo-colored lights images from DiLiGent. A pseudo-colored lights image is shown on the top of each example.

The model which achieves the highest accuracy for the test
data is used for evaluation.

In our dataset, we generated 128×4 images for the training.
The resolution of each image is 960 × 540; then the total
number of training pairs in the training set {(c, cw)} becomes
about 6.6× 107.
DiLiGent [15] is a dataset with ten objects, and each

object has 96 illumination directions with different intensity.
However, for our method we generate only one pseudo-
colored image for each object, and the composed white
images have the same illumination direction. Due to the
limited size of the pseudo-colored lights dataset, we extract
approximately 1.6 × 107 useful pixel pairs from ten objects
and randomly select 2 × 106 pixel pairs to form the training
samples. Accordingly, we increase the epochs to 300 for
training the ideal model.

B. NETWORK ARCHITECTURES ANALYSIS
We evaluate our model in comparison with a plain net. The
plain net is of a similar architecture to our model. The only
difference is that the plain net has no concatenation. The
models are trained on our training set with the same training
parameters. The results are shown in Figure 8 and Table 3.
The training and test errors are calculated by MRE.

We compare the training errors during the training proce-
dure in Figure 8. It shows that our model has a faster conver-
gence rate and a lower error. We can observe that the error
curve of the plain net has large fluctuations in the early

FIGURE 8. Training on our dataset. Red curve denote training error of our
model, and blue curve denote training error of corresponding plain net.
Two models are trained with same training parameters.

stage of the training, while our model with concatenation
operations has a relatively small and stable error curve at
the beginning of the training, and stays ahead until the end
of the training. In fact, the differences between c and cw
in our dataset are limited. Therefore, the orientation of the
concatenating input information will accelerate the conver-
gence, improve the robustness of the system and reduce the
integration and entanglement of the output. Compared to
the plain net without concatenation, our model reduces the
test error by 0.33% as shown in Table 3, resulting from
the successfully reduced training error. Concatenating the
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FIGURE 9. Evaluation for our method. The number represents MRE. In each column, the first three images are groundtruth, the three images below the
groundtruth are the results of our method. On the top of each column, materials and their names are displayed. The position of the images is adjusted for
clear view.

TABLE 3. Test errors of our model (with concatenation) and plain net
(without concatenation).

input layer improves the robustness of the networks and
enhance optimization. We attribute this primarily to the
corresponding growth in model capacity. The operation
of each layer of the neural networks is equivalent to a
nonlinear transformation of the input. With the deeper
networks, the complexity of the transformation is also gradu-
ally increased. Compared with the plain networks completely
dependent on the highest complexity of the last layer, our
model can combine and utilize the input information with a
smooth output layer and hence achieves better generalization
performance. It improves the network optimization ability
and anti-overfitting.

We also compare our network with deep convolution
neural networks (CNN). We observe that CNN has a posi-
tive impact on the scene-level surface normal or depth
estimation [14], [25], [26]. However, CNN is not suitable for
our task. On the one hand, the feature maps extracted by
CNN over-focus on the structure, which is easily influenced
by the surface color. It is difficult to distinguish whether
the feature maps are activated by the normal or the surface
color in fine-level reconstruction. On the other hand, the pixel

mapping of the demultiplexing matrix will be only influenced
by the pixel itself if inter-reflection is not considered. The
surrounding pixel values should not be involved in calculating
the mapping for the center point and the demultiplexing
matrix is irrelevant to the geometric structure of the object.
Thus, using CNN would cause computational waste and even
worse results.

C. EVALUATION OF THE PROPOSED METHOD
To the best of our knowledge, this is the first study to
introduce the ill-posed demultiplexing task. Thus, we only
compare the results produced by ourmethodwith groundtruth
at the demultiplexing stage. Nevertherless, in the reconstruc-
tion experiments, the final output will be the surface normal,
and we will compare our surface normal with those produced
by several algorithms.

1) OUR DATASET
Firstly, we evaluate the performance of the proposed DNN
model using our dataset. Compared with the groundtruth,
we show the MRE of the three grayscale images in Figure 9.
MRE is themean ratio of the absolute error to the groundtruth,
which better reflects the credibility of the measurement.
In this experiment, we do not need to calculate the normal
of objects. Therefore, it is reasonable to evaluate the MRE of
pixels between groundtruth and our method.
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FIGURE 10. Evaluation of our method in the pseudo-colored lights dataset. The number represents MRE. In each column, the first three images are
groundtruth, the three images below the groundtruth are the results of our method. On the top of each column, the names of objects are shown.

Figure 9 shows the groundtruth and estimated grayscale
images. Here, we show 6 objects out of our test set.
Fabric1 and Fabric2 are made of rough clothes which is
almost lambertian, while Fabric3 and Fabric4 are made
of smooth clothes which may have slight reflection. For
Plastic1 and Plastic2, the surfaces are coated with a variety of
paints. TheMRE of the fabric objects are remains around 5%,
while the MRE of plastic objects are larger than the others.
It can be seen that the surface color of plastic objects are
darker than fabric objects, especially the Plastic2 (the colored
images are shown in Figure 11), while the dark samples in our
dataset are insufficient. It means that the training pairs in this
region are sparse, causing the local under-fitting in our model
and larger errors in estimation.

Meanwhile, it is worth noting that there is no plastic object
in our training set. This result shows that our model is robust
and achieves high accuracy for objects consisting of various

materials. Furthermore, we also find the performance is stable
even when colorful surface and rich texture are exhibited in
the test set. We believe this is because of the robustness of our
model. Our per-pixel trained deep fully connected network
does not learn the overall features, but demultiplex the image
from the pixel point itself.

2) PSEUDO-COLORED LIGHTS DATASET
Secondly, we evaluate the performance of our DNN model
using pseudo-colored lights dataset. Figure 10 shows the
groundtruth and estimated grayscale images of the pseudo-
colored lights dataset.

We show 6 objects out of 10 in the pseudo-colored lights
dataset. Thematerials and the colors of the objects are various
including wood, metal, ceramics and plastic (the colored
images are shown in Figure 12). The MRE of objects are
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FIGURE 11. Estimation results for our dataset. In each row, normal maps are shown on top of error maps. Reference means classic photometric stereo
using three white light illuminated grayscale images and below is the tri-colored lights images of the objects. The number represents Mean Angular
Error (MAE) in degree. The position of the images is adjusted for easy viewing.

mainly concentrated in 3% to 6%. The performance may
be due to the application of the input layer’s concatenation
operations in our DNNmodel. It shows the generalization and
fitting ability of our model.

For an object like Harvest, which does not fit most of
our training samples, the errors are still below 7%. In this
case, the non-Lambertian object surface contains mirror
reflection and directional reflection. We note that, though
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non-Lambertain does not strictly follow the assumption
shown in Eq.6, our method still manages to achieve satis-
factory results. For objects like Buddha with complex struc-
tures, some pixel values may be affected by inter-reflection.
Our model has inevitable deviations in these pixels, lacking
the consideration of inter-reflection. We also observe from
the experiment that the influence of inter-reflection is negli-
gible in most objects. More comparative experiments will be
discussed later.

D. STATE-OF-THE-ART COMPARISONS
Then we evaluate the performance of our method with multi-
spectral photometric stereo (MSPS) reported in [18] using
initial depths obtained by photometric stereo of the input
image separation and DPSN [13]. For DPSN, we made some
changes to make it suitable for our comparison experiments.
We reduce the input dimension in DPSN from 96 to 3 repre-
senting RGB channels to ensure no additional input informa-
tion. Furthermore, we cancel the shadow layer considering
only three dimensions of the input in the remodeled DPSN.
Firstly, in order to demonstrate our method, we input the
pixels of three grayscale images cw under white illumination
in DPSN, whereas we input the pixels of tri-colored lights
image c to our model. Secondly, in order to prove the value
of our model and single frame reconstruction, we also input
the same tri-colored lights image’s pixel c to DPSN.

1) EXPERIMENTAL RESULT OF OUR DATASET
We first train the model using our dataset, and the results
are shown in Figure 11. It shows the estimated normal maps
and the corresponding error maps for our model. We show
the normal obtained by multiplexing tri-colored lights based
image separation (Direct).

As shown in Figure 11, the estimated normal maps and the
corresponding error map for the proposed, DPSNW, DPSNT,
MSPS, Direct are displayed. The objects used are the same
as those shown in Figure 9. The values of Mean Angular
Error (MAE) are shown below each method. MAE is a quan-
titative evaluation method in the surface normal analysis,
it is often used in the comparison of the normal estimation
algorithms.

We observe the normal maps from our proposed method
are consistently accurate in all the objects. Compared to
DPSNW using white illumination grayscale images, our
proposed method achieves better accuracy in most objects
only except Fabric4. The comparison with DPSNW can be
considered as: The single-frame normal recovery framework
proposed by us has outperformed the three images multi-
frames DPSN method. This comparison shows the powerful
demultiplexing ability of our DNN model.

DPSNT uses the same input as our model, and the results
are worse than our method. DPSN achieved excellent results
with 96 inputs [13], while its performance may be deterio-
rated with the reduced input dimensions. When the inputs
are the same, the mapping from pixel values to pixel values
will be better learned than that from pixel values to normals.

We believe it may be difficult for DPSNT to distinguish
whether the change of the pixel value is caused by the change
of the normal or the change of the surface property. This is
why we took the two-step framework instead of an end-to-
end strategy like DPSNT.

Furthermore, we also compare our results with traditional
multispectral photometric stereo (MSPS). Since the initial
normal by tri-colored lights image separation (Direct) is
not accurate, the error of MSPS becomes rather large. This
experiment also illustrates that the traditional MSPS heavily
relies on prior information to solve the aliasing problem,
which is not robust. We also note that the performance of
all the methods is deteriorated on Plastic1 and Plastic2. The
reason is that the surface color is quite dark in these objects,
which causes a larger deviation in the mapping because of
the sparser samples in the model learning. Moreover, there is
no plastic object in our training set. Even so, our proposed
method still can yield the best estimation.

However, we also admit that the groundtruth used in the
normal experiment on our dataset are ‘‘reference’’ which
calculated by photometric stereo with three white lights.
While the ’’reference’’ groundtruth may lead to deviations
of MAE, the proposed method remains the best results
compared with the MAE of other methods. In order to
rigorously prove our method, we then performed the same
experiment on the Pseudo-colored lights datasets with real
groundtruth.

2) EXPERIMENTAL RESULT FOR PSEUDO-COLORED
LIGHTS DATASET
We also compare our proposed method with DPSNW,
DPSNT,MSPS, Direct on pseudo-colored lights datasets. The
evaluation results are summarized in Figure 12. The objects
are the same as those illustrated in Figure 10.

It is remarkable that many objects in DiLiGent [15] have
non-Lambertian surfaces. Although our method maintains
robust accuracy during mapping, the algorithm based on
classic photometric stereo still causes large errors. Simulta-
neously, as an end-to-end learning method, DPSN has the
advantage to learn the complex reflection model of non-
Lambertian surfaces. For objects like Harvest, which have
a strong non-Lambertian property, our method is obviously
worse in this case. We note that in our experiments DPSNW
is regarded as three images multi-frame normal estima-
tion method. Compared with our single-frame method, their
results are better than ours. When we compare our system
with DPSNT which uses the same input as our model, our
method shows better results in most objects except Harvest.

Furthermore, the ‘‘Direct’’ has very large errors caused
by problems of spectrum-multiplexed and non-Lambertain
surfaces simultaneously on pseudo-colored lights datasets.
Therefore, the initial needed MSPS has even larger errors.
The results illustrate the lack of robustness of traditional
MSPS, which heavily relies on prior information to solve the
spectrum-multiplexed problem.
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FIGURE 12. Estimation result for Pseudo-colored lights dataset. In each row, normal maps are shown on top of error maps. GT means
groundtruth and below Figures are pseudo-colored lights images of objects. The number represents Mean Angular Error (MAE) in degree
calculate with groundtruth. The position of images are adjusted for easy viewing.

VII. CONCLUSION
This paper presented a novel method to reconstruct surface
shapes, handling non-rigid/moving objects and producing
per-pixel dense results. Differing from previous solutions

which require calibration or other prior information, we first
formulated the problem in a learning framework, which
directly seeks the per-pixel mapping of the aliased and
spectrum-multiplexed pixel response to the anti-aliased and
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demultiplexed counterpart. In this paper, we employed neural
networks as the ‘‘demultiplexer’’. Experiments using our
dataset and a public dataset have verified the effectiveness
of our deep fully connected networks based mapping. Our
proposed method can better handle the multiplexing in multi-
spectral photometric stereo.

Our future work will try to establish an end-to-end model
for estimating surface normal from a single multispec-
tral photometric stereo image. Considering the spectrum-
multiplexed and less consideration of inter-reflection, we will
introduce both feature cues and photometric cues in our
end-to-end model. Moreover, it will solve the limitation of
calibrated and fixed light directions in this paper.
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