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ABSTRACT Machine learning methods have been used to classify neurodegenerative diseases using gait
data. Recent works with Huntington’s disease (HD) patients have reported results up to 88.2% of correct
classification based on a probabilistic modeling approach for gait assessment. The aim of this paper was to
improve HD patients’ classification results while reducing the number of sensor devices to capture gait data
and identifying the related gait features. The proposed method is based on general assembles (Meta) classifier
algorithms’ approach, for the classification of HD affected gait versus healthy control (HC) subjects normal
gait. The proposed methodology was tested on gait data recorded on HD patients and HC subjects using raw
data from smart-phones movement sensors placed at both ankles. Best partial results of individual classifier
algorithms are taken at each iteration of the meta-classifier, to predict the final result by averaging results
and majority votes. Several instances of this combined approach were tested and validated. Obtained results
confirm an improvement in accuracy, since 13 subjects out of a total of 14 were correctly classified. All
seven Huntington’s disease patients were correctly selected with Logitboost & RandomForest combination.

INDEX TERMS Motion measurement, patients monitoring, pattern recognition, data mining and perfor-

mance analysis and evaluation.

I. INTRODUCTION

Huntington’s disease is an autosomal dominant hereditary
disorder characterized clinically by a triad of motor, cogni-
tive and psychiatric symptoms. Motor disorders are usually
the most frequent and the most notorious [1], [2]. They are
progressive and worsen with the severity of the disease, they
affect precision and speed of movement, cause loss of balance
and normal gait mechanics, and lead to falls [3], [4]. Features
of this disorders include excessive, spontaneous movements,
irregularly timed, randomly distributed and abrupt. Disorders
severity may vary from restlessness with mild, intermittent
exaggeration of gesture and expression, fidgeting movements
of the hands, unstable, dance-like gait to a continuous flow
of disabling, violent movements (chorea) [5]. The chorea
is usually the earliest abnormality of visible movement in
adults; it is confused with other ailments when movements
are isolated and incipient form [6]. Notwithstanding, chorea
in HD does not appreciably affect the center of gravity
during ambulation, and the consistency of gait profiles at

heel strike shows that the ultimate target is achieved in each
step despite random and frequent variability during the gait
cycle [7]. Patients with more advanced disease have poorer
balance and decreased gait mechanics, resulting in a state of
nonambulation [8].

The onset average age of the disease varies from 30 to
mid-50 years (fourth decade of life) [8]. After diagnosis,
a progressive worsening of symptoms is observed in a period
of 15 to 30 years until death [9]. There is no therapy or inter-
vention available that demonstrates delayed onset or slows
disease progression [10]. Disease mean duration to death is
estimated between 15 and 20 years after the onset of chorea.
Actual duration is probably much longer, based on biomark-
ers and clinical observations [11].

Medical evaluations to assess motor control include gait
tests with long walkways that reveal longer posture, tendency
to lean back on heels, decreased speed and stride length
variability; alterations in gait are used as a predictor of dis-
ease progression. Technological tools have been developed to
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evaluate such alterations as: image processing, walking bands
with sensors, pressure sensors and portable sensors based on
musculoskeletal models [12], [13].

Some recent works have focused to find evidence of alter-
ations in gait patterns, and compared with medical scales
to establish the Neurodegenerative (ND) disease progress
such as Parkinson Disease (PD) [14], [15], Huntington’s
Disease (HD) [16], [17], Hereditary Ataxias (HA) [18], [19].
PD patients have been identified completely with recording
speech signals using supervised learning with classification
algorithms [20].

In recent years, technology has played an important role
in supporting health-care specialists to perform neurode-
generative diseases diagnosis. This diagnosis is made by
direct medical observation of how people walk. Gait analy-
sis from movement sensors data has been extensively used
with healthy people, however its use in HD patients is not
widely documented. Movement sensors are implemented to
quantify and evaluate gait characteristics as in [21]-[23];
Its use includes devices with different measuring capacities,
from devices with single sensor [24] to smartphones with
multiple sensor types [25], [26]. Recent research shows that
sensors of iPhone smartphones, are ““sufficiently reliable and
accurate to evaluate and identify the kinematic gait patterns”
[26], [27], studies related to gait evaluation and health-
care have demonstrated sensors-enabled iPhone capac-
ity to accurately acquire quantified gait parameters with
a sufficient level of consistency, specifically in ankle
position, and in a comfortable, portable, and wearable
manner [28]—[30].

Raw data coming directly from the sensors must be pre-
pared for processing to improve classification results. This
pre-processing of data has been done with one of the follow-
ing approaches: extracting gait (kinematic) features related
to a single step or a sequence of them such as length, fre-
quency, speed, cadence, etc. [14], [17], [31], treating sensors
data as a digital signal (flow of information from a source)
and taking values as signal frequency, sampling frequency,
maximum and minimum values, etc. [14], [32] and taking
directly the stride cycles from raw data [33], [34], to establish
when a subject belongs to a pathology using classifier algo-
rithms; in this work we test the strength of the last approach,
in improving the accuracy of the classification, by reducing
human intervention and data preprocessing in data collection
protocol.

The classification stage may include the use of one or more
algorithms at a time. The use of meta, multiple or assem-
bly classifiers allows the improvement of classification
algorithms results by combining predictions of individual
classifiers set in some way to classify new examples. A meta-
classifier is a classifier that doesnt implement a classification
algorithm on its own, but uses another classifier to do the
actual work. The meta-classifier adds another processing step
that is performed before the actual base-classifier sees the
data. Examples of meta-classifiers are Logitboost, Random-
Committee and MultiBoostAB.
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In this work we show that the use of LogitBoost as meta-
classifier with RandomForest as base-classifier have better
performance compared with other tree decision algorithms.

Basic characteristics of this algorithms are include in this
section in order to clarify how well suited they are to classify
stride cycle data.

A. CLASSIFICATION AND REGRESSION

The term “‘regression” commonly refers to a particular kind
of parametric model (or process) for estimating a (numeric)
target variable. Classification problem can be solved with a
learner that can only produce estimates for a numeric target
variable.

Given a class variable G that takes on values 1, ..., J.
The idea is to transform this class variable into J numeric
“indicator” variables G, ..., Gy to which the regression
learner can be fit.

The indicator variable G; for class j takes on value 1 when-
ever class j is present and value 0 everywhere else. A separate
model is then fit to every indicator variable G; using the
regression learner. When classifying an unseen instance, pre-
dictions uy, ..., u; are obtained from the numeric estimators
fit to the class indicator variables, and the predicted class is:
J* = argmax uy. This transformation process is used several

times, fo% example when using model trees for classification.
Transforming a classification task into a regression problem
can be done using standard linear regression model. Linear
regression fits a parameter vector 8 to a numeric target vari-
able to form a model f(x) = ,BTx. where x is the vector of
attribute values for the instance (assuming a constant com-
ponent in the input vector to accommodate the intercept).
Linear logistic regression Pr (1), models the posterior class
probabilities for the J classes via linear functions in x and
ensures that they sum to one and remain in [0, 1].

e

PriG=jlX =x)= ———,
(G =l ) ST

where Fj(x) = ﬂjT - X
(1

Fitting a logistic regression model means estimating the
parameter vectors B;. The statistics standard procedure is to
look for the maximum likelihood estimate, i.e. to choose the
parameters that maximize the probability of the observed data
points. For the logistic regression model, there are no closed-
form solutions for these estimates. Instead, numeric optimiza-
tion algorithms have to be used to approach the maximum
likelihood solution iteratively and reach it in the limit. One
such iterative method is the LogitBoost algorithm [35], shown
in Figure 1, the LogitBoost algorithm has being proposed
for fitting additive logistic regression models by maximum
likelihood.

In each iteration, it fits a least-squares regressor to a
weighted version of the input data with a transformed target
variable. Here, y;; (2) are the binary pseudo-response vari-
ables which indicate group membership of an observation

30943



IEEE Access

F. D. Acosta-Escalante et al.: Meta-Classifiers in HD Patients Classification

LogitBoost (J classes)

1. Start with weights wi; =1/n, i=1,...,n, j=1,...,J, Fj(z)=0

and p;(z) = 1/J Vj
2. Repeat form=1,...,M :

(a) Repeat for j =1,...,J:
i. Compute working responses and weights in the jth class

_ Y —pi(w)

s (@) (1 — pj(z:))

Zij

wij = pj(z:)(1 — pj(xi))
ii. Fit the function fm;(z) by a weighted least-squares regression
of zi; to x; with weights w;;
(b) Set fm;(2) — L5 (fms(z) — % 31_, fur(2)), (@) — Fy(@) + fms (@)
JFj (@)

Zk—] k()

3. Output the classifier argmax Fj(z)
J

(c) Update p;(z) =

FIGURE 1. LogitBoost meta-classifier algorithm [35].

like this:

" 1 ify; =j wherey; is the observed class
=0 i 21 fori | 6)
if y; #j for instance x;

When constraining f,; to be linear in x, linear logistic
regression achieve if the algorithm is run until convergence.
When further constraining f;,; to be a linear function of only
the attribute that results in the lowest squared error, then the
algorithm performs automatic attribute selection. By using
cross-validation to determine the best number of LogitBoost
iterations M, only those attributes that improve the perfor-
mance on unseen instances are included.

B. CLASSIFICATION ALGORITHMS

Classification algorithms used in this study are based on
decision tree learning method, which goal is to create a model
that predicts the value of a target variable based on several
input variables. In data mining a decision tree is a predictive
model, where each interior node corresponds to one of the
input variables; there are edges to children for each of the
possible values of that input variable. Each leaf represents
a value of the target variable, given the values of the input
variables represented by the path from the root to the leaf.
Decision tree learning uses the decision tree to go from
observations about an input variable to conclusions about the
variable’s target value. Tree models, where the target variable
can take a discrete set of values are called classification trees.
Values are classified by navigating from the root of the tree
down to a leaf, according to the outcome of the tests along the
path [36].

C. RANDOM FORESTS ALGORITHM

Random forests or random decision forests [37], [38] are an
ensemble learning method for classification, regression and
other tasks. Random forest classification algorithm, as the
name suggest, creates a forest with a number of trees.

30944

The idea behind the algorithm is that building a small
decision-tree with few features is a computationally cheap
process. A strong learner can be formed, combining many
small, weak decision trees by averaging or taking the majority
vote. This combination has to be made in such a way that
the model produced by several learners into an ensemble,
performs better than the original one. One way of combining
learners is bootstrap aggregating or bagging, which shows
each learner a randomly sampled subset of the training points,
so that learners produces different models that can be sensi-
bly averaged. In bagging, one samples training points with
replacement from the full training set.

Random forest algorithm uses ensemble method bootstrap
aggregated (or bagged) to build multiple decision trees by
repeatedly re-sampling training data with replacement, and
voting the trees for a consensus prediction [39]. Random
decision forests correct for decision trees’ habit of over-fitting
to their training set. This is because trees that are grown
very deep tend to learn highly irregular patterns: they over-fit
their training sets, i.e. have low bias, but very high variance
(bias-variance tradeoff). Random forests overcome this by
averaging multiple deep decision trees, trained on different
parts of the same training set, with the goal of reducing the
variance. This comes at the expense of a small increase in the
bias and some loss of interpretability, but generally greatly
boosts the performance in the final model [40].

Random Forests algorithm in fig. 2 works in 2 steps (func-
tions): in first step, a bootstrap sample from training set S is
selected for each tree in the forest, where S® denotes the ith
bootstrap. In second step a decision-tree is learned, using a
modified decision-tree learning algorithm RamdomizedTree-
Learn. The modified algorithm, instead of examining all
possible feature-splits at each node of the tree, selects some
subset of the features f C F, where F is the set of features.
The node then splits on the best feature in f rather than F.
In practice f is much, much smaller than F. Deciding on
which feature to split is oftentimes the most computationally
expensive aspect of decision tree learning. By narrowing the
set of features, the learning of the tree is drastically sped up.

Precondition: A training set S := (x1,y1),.. -, (Xu>¥u), features F, and number
of trees in forest B.

1 function RANDOMFOREST(S, F)

2 H«0

3 foriel,..., Bdo

4 S@ « A bootstrap sample from §

5 hi « RANDOMIZEDTREELEARN(S @, F)

6 H e HU{h)

7 end for

8 return H

9 end function
10 function RANDOMIZEDTREELEARN(S, F)
11 At each node:

12 f « very small subset of F
13 Split on best feature in f
14 return The learned tree

15 end function

FIGURE 2. Random forests algorithm.
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TABLE 1. Results of classification algorithms for HD obtained in previous works.

Date | Ref. | Dataset Type Methods HD | Accuracy

2011 | [44] | Public Pressure sensors Classification algorithms 20 85.71%

2012 | [43] | Public Pressure sensors Classification algorithms 15 50.00%

2014 | [45] | Public Pressure sensors Meta-classifier algorithms 10 88.67%

2015 | [34] | Ownership | Accelerometers Meta-classifier algorithms 13 78.78 %

2016 | [35] | Ownership | -ccelerometer and |y ication algorithms 17 | 88.20%
Gyroscope

In order to better understand why this algorithms combina-
tion is well suited to our study, let us review the base notions
of machine learning. In supervised learning, we are given a
data set and already know what our correct output should look
like, having the idea that there is a relationship between the
input and the output.

Supervised learning problems are categorized into
“regression’’ and “‘classification” problems. In a regression
problem, we are trying to predict results within a continuous
output, meaning that we are trying to map input variables
to some continuous function. In a classification problem,
we are instead trying to predict results in a discrete output.
In other words, we are trying to map input variables into
discrete categories. Thus, while Logitboost approaches by
means of a linear logistic regression, the most likely solution
by selecting only those attributes that improve performance in
unseen instances; Random forests performs the classification,
predicting whether a subject is control or sick.

Published results from recent works on neurodegenerative
disease patients classification, were obtained with pressure
sensors data from public dataset “PhysioNet” [41] or they
have captured and build their own private dataset.

Results based on the public dataset ‘“PhysioNet™, include
those from Iram et al. [43] who found that Quadratic
Bayesian Normal classifier had a lower error rate overall
65% (23/40) and their best results in classifying Hunting-
ton’s Disease patients was 50% (5/10); Banie et al. [44]
have obtained 86.957% of recognition of all classes with
Quadratic Bayesian Normal classifier and for Hunting-
ton’s Disease patients reached (85.714%) with Decision Tree
classifier. A result of 88.674% of precision in classifying
Huntington’s Disease patients was obtained with com-
bined meta-classifiers algorithms: RandomSubSpace &
Bagging, Bagging & PART and CVParameterSelection &
Bagging [44].

Recent results obtained with five movement sensors data
from ownership dataset can be found in [33], where 81.04%
of correctly classified data was obtained, recognizing the
largest number of patients according to their pathology, result
for HD patients was 78.78% using Logitboost & Random-
Subspace meta-classifiers. Mannini et al. [35] used Hidden
Markov Models (HMM) and Support Vector Machine (SVM)
classifier, with a dataset of movement sensors placed at waist
and shanks to reach 90.5% of recognition gait data for all
groups, however, for HD patients was lower scored (88.2%).
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We can observe in Table 1, how results obtained in pre-
vious studies have been continuously improving depending
on dataset and treatment algorithms. In last work with pres-
sure sensors (row 3) best results were obtained with meta-
classifier algorithms. Results with classification algorithms
(row 5) were better than those treated with meta-classifiers
(row 4), when richest input information from movement sen-
sors dataset were used.

Based on the idea of the sum of strengths obtained from the
combination of individual algorithms, we wanted to verify
the performance of classifiers combination when classify-
ing HD patients with raw gait data dataset. We show that
in Binary classification, the combination of Logithoost &
RandomForest had outcomes high overall accuracy (94.4%)
compared with those reviewed in the literature (88.674%)
and the performance in correct classifying HD patients
reached 96.6%.

This work represents the first step towards achieving
the long-term goal of continuous real-time monitoring dis-
ease progression of HD patients. Aiming in that direction,
the objective of this work is threefold, the improvement of
recent results in HD patients classification versus Healthy
Control (HC) subjects, while reducing the number of sen-
sor devices to capture gait data and identifying the gait
features involved in the process. To achieve this objec-
tive we used gait dataset obtained from Mexican patients
and healthy people, using two wearable movement sensors
devices attached to each of the subjects’ ankles. Also, real-
time continuous monitoring needs automatic data acquisi-
tion procedures with no human intervention and if possible
using algorithms with good classification results over raw
data.

Il. SUBJECTS, MATERIALS AND DATA COLLECTION

Gait laboratory was installed at Instituto Nacional de
Neurologia y Neurocirugia ‘“Manuel Velasco Sudrez”
(INNN-MVS) in a space of 20m long by 3m wide, this is large
enough to capture gait characteristics.

Raw gait data was collected with the movement sensors
of two Smartphones iPhone 5S (accelerometer and gyro-
scope three axes, rate 100Hz) [45] affixed to each subject
ankle. Raw data were processed on a Dell computer with
a Xenon Intel processor, 12 GB of ram memory, running
Linux(Fedora 25) operating system. Processing time for
raw gait dataset with two algorithms was between 24 and
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36 hours, depending on the pair of algorithms used in each
experiment.

There were 14 voluntary participants from INNN-MVS:
seven with Huntington’s Disease (HD) and seven Healthy
Control (HC) subjects. Patients have clinical evaluations
using the unified scale, (UHDRS, Unified Huntington’s Dis-
ease Rating Scale). Controls are age and gender matched
healthy subjects. Characteristics of participants are listed
in Table 2.

TABLE 2. Characteristics of the study population.

Population
Variable Patients(n=7) Controls(n=7)
Age (y, mean, + sd) 48.8 £+ 19.7 478 £ 114
Sex (male:female) 4:3 3:4
Weight (kg, mean+ sd) 614 +9 624 £+ 12.7
Height (cm, mean+ sd) 162.4 + 8.4 162.7 + 8.0
Time evolution disease (y,mean+sd) | 3.3 £ 2.2 Does not apply

Data was collected in a seven days period, during patients
medical examination visit. INNN medical staff supervised
patients while gathering gait data, in order to prevent acci-
dents. Patients lack of availability and motor disorders (loss
of balance, abnormal gait, precision and speed of movements)
were taken into account in data collect planning.

This allowed to capture information from patients with
different severity of the disease. Data collect protocol was
designed to take this into account by placing movement
sensors on the subjects’ ankles at each walk (fig. 3). This
arrangement is well suited to reduce gait alterations that
may occur when walking, due to discomfort of wearing
sensor devices and severity of motor alterations presented
by patients. Each device recorded raw data sensor in indi-
vidual files while walking. Physiological patient information
(age, sex, health condition, etc.) was registered in separate
file.

lIl. METHODS

This research involves sampling, processing and evaluation
of data to recognize patients with HD using meta-classifiers.
After data were collected, we work with the information
into six stages represented in Figure 4. (1) The preparation
of the raw data to be used is described in the processing
gait data (sec. III-A); (2) strides finding and extraction set
out at stride segmentation (sec. III-B); (3) with processed
data, the characteristics of each patient were extracted with
the procedure of gait features extraction (sec. III-C); (4) the
training configuration of the meta-classifiers and the eval-
uation of the performance of the models are described in
model evaluation strategy (sec. III-D); (5) the performance
of the meta-classifiers are compared in gait data analysis
protocol (sec. III-E); and (6) comparison of classification
errors and selection of the meta-classifier with better perfor-
mance are explained in section with Classification outcomes
evaluation (III-F).
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FIGURE 3. Data capture of patients with neuro-degenerative diseases in
INNN-MVS.

Classification

[ Gait data
i Outcomes Evaluation

Stride Model evaluation Gait data
| [ stralegy analysis protocol
Gait Features
extraction

FIGURE 4. Gait data collection and classification schema.

A. GAIT DATA PREPROCESSING

Gait raw data was captured and stored on the devices
(iPhones) and then it was extracted for processing. It needs to
be prepared to identify stride information and features extrac-
tion, this preprocessing protocol was based on procedures
implemented in [46]—[48]. Preprocessing protocol starts with
sensor data calibration step to fix timing differences, then
a zero normalization is made to eliminate signal constant
effects on device accelerometer, followed by the calculation
of Signal Acceleration Magnitude (mag) also known as Sig-
nal Vector Magnitude (SVM) to get an invariant measure to
accelerometer rotation, the protocol ends with the elimination
of noise from data and the definition of a window with
10-stride data.

1) SENSOR DATA CALIBRATION
Accelerometer data is captured at a variable sampling rate
despite setting a capture frequency, this is due to the time
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difference in which the capture call is made and the recording
time on the device. Linear interpolation is used to calibrate
the data to a sampling of constant time intervals. Linear
interpolation equation is of the form,
(a2 —a))(t/ — 1)
a=a +—-—"—"— 3)
h —11
where a; the current acceleration, #; is the capture time and
t7 and a/ are the new sample obtained.

2) ZERO NORMALIZATION

When the device is immobilized the average acceleration val-
ues from the accelerometer should be equal to gravity force,
however the data recorded from the devices are not stable over
time, the acceleration is in a changing state. To eliminate these
signal constant effects, zero normalization equation (4) was
applied to acceleration values of the three axes,

Ai(t) = Ai(t) — i, i € {ax, ay, a;} “

where a is acceleration in time and p is the average
acceleration.

3) ORIENTATION INDEPENDENCE

Sensor axes values depend on the position and the way in
which the device is attached to the subject’s body as they
reflect its movements and gait alterations. To determine infor-
mation relevant to strides, the Signal Acceleration Magnitude
(mag,) equation (5) that is invariant to the accelerometer
orientation was used,

maga(i) = \Jar()? + ay(i)? + a()? 3)
with x, y and z axis from each sample (7).

4) NOISE REMOVAL

Data smoothing refers to techniques for eliminating unwanted
noise or behaviors in data, while outliers detection identifies
data points that are significantly different from the rest of
the data. The moving average is a common data smoothing
technique that slides a window along the data, computing
the mean of the points inside of each window. This can help
to eliminate insignificant variations from one data point to
the next. A moving average filter smooths data by replacing
each data point with the average of the neighboring data
points defined within the span. This process is equivalent to
lowpass filter with the response of the smoothing given by the
difference of equation 6, where y,(7) as the smoothed value for
the ith data point,

ys(i) = OGE+N)+y(i+NIL) + -+ y(N))

2N +1
(©6)

where N is the number of neighboring data points on either
side of y,(i), and 2N + 1 is the span [49].
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B. STRIDE SEGMENTATION

Information corresponding to 10 strides (walking or gait
cycles) was extracted in accordance with the minimum
of 10 strides established as a sufficient measure to capture
gait characteristics [50].

Gait cycles were identified with the acceleration signal
from accelerometers, recognizing the changes in the signal
(positive to negative), corresponding to the contact of the
heel with the ground. It can be observed that when stride
starts, the acceleration increases and when stride ends the
acceleration decreases.

The peak to peak algorithm 1 (inspired from [51]) was
used to find the maximum and minimum local value of the
acceleration magnitude from signal acceleration magnitude
(mag,). Only those peaks that were greater than the standard
deviation of values from each subject were considered. The
findpeaks function finds all peaks greater than the minimum
value (minpeak) and return the peaks value found (pks) and
its index (locs). The same algorithm is used to calculate the
minimum values, taking the same data with the inverted signs
as input. To find the beginning of each stride, the minimum
peaks below the standard deviation of all the values were
considered. Each peak selected as the start of stride should
be followed and preceded by a maximum peak, higher and
lower than its standard deviation respectively.

Algorithm 1 Finding the Start of Each Stride
1: data < mag,
. minpeak < std(data)
. pks, locs < findpeaks(data, minpeak)
: data; < —data
. minpeak; < std(data;)
. pksii, locs; < findpeaks(data;, minpeak;)
j<0
: for i < 1, length(pks;) do
if pks;(i) < std(pks;) and pks(i + 1) > std(pks) and
pks(i — 1) < std(pks) then
10: start(j) < locs;(i)
11: j<—j+1
12: end if
13: end for

R R T SV

C. GAIT FEATURES EXTRACTION

Gait features were extracted with a computer-aided gait
assessment tool (IGAIT), from gait data collected by an
accelerometer. This tool provides an interactive and user-
friendly platform to visualize acceleration data. A total of four
types of gait features: Spatio-temporal, frequency domain,
regularity, and symmetry can be derived with this tool [52],
Twenty-eight gait-related characteristics were extracted: six
space-time (equation 7), fifteen related to frequency (equa-
tions 8, 9 and 10) and seven of regularity and symmetry of
step. The information was obtained in a 10-meter walking
space and it was captured at a sampling rate of I00Hz. A max-
imum acceleration threshold of 0.4 was set to determine gait
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characteristics. Autocorrelation coefficients are necessary to
scale the regularity and symmetry of the walking, therefore,
they are determined automatically or they are established
manually by the maximum limits of acceleration for each one
of the axes of the accelerometers (equation 11).

The Root Mean Square (RMS) is a measure of the mag-
nitude of a data set. For acceleration measurements it indi-
cates the intensity of the movement. The RMS values of the
three acceleration directions (VT, AP and ML) are calculated
respectively using Eq. 7

N

RMS, = | Y (xai —Xa)*/N (7)
i=1

Frequency signal analysis (spectral analysis) is used to cal-
culate the magnitude of energy or power of movements cor-
responding to the frequency with which they were repeated.
This analysis is important for identifying groups of people
with specific movements and is independent of the movement
sensors location. This includes the estimation of the Integral
Power Spectral Density (IPSD) using Eq. 8 and 9. Where
0 < w < m is the angular frequency, x; is the acceleration
in either the VT, AP or ML axis, and N is the total number
of acceleration samples. The frequency with the maximum
PSD value is the main frequency. Other important feature
in this analysis is the Cumulative Power Spectral Density
CPSD, which is calculated with Eq. 10 for 50%, 75%, 90%
and 100%. There are fifteen characteristics in the frequency
domain, five for each direction.

2
. 1| »
w\ __ . P (O]
PSD(e/®) = = gx,e 8)
IPSD = / PSD(w)dw 9)
0
CPSD(w) = / PSD(w)dw (10)
0
| N—|t|
0 = 5 ; XiXite (11)

D. MODEL EVALUATION STRATEGY
1) CLASSIFICATION ALGORITHMS
Metaclassifiers have demonstrated a good performance in
features recognition of gait people with neurodegenerative
diseases previous works (Table 1). A special feature for accu-
racy estimation of boosting meta-classifier algorithm is the
availability to specify the number of iterations on execution.
This feature allows the generation of multiple classifiers algo-
rithm from one base classifier, each new model looking to
avoid the mistakes of its predecessor in order to improve the
classification result.

All possible combinations of the meta-classifiers with trees
classifiers of Table 3 were tested with ‘““Weka tool” to get the
combinations with best results.
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TABLE 3. Meta-classifiers and tree classifiers algorithms.

Meta-classifiers (Assemblies) Tree Classifiers

Decorate (Decrt) ADTree

Bagging (Bagg) DesicionStump (DcStp)
LogitBoost(LogBst) ExtraTree(XtrTr)
RandomSubSpace (RSS) FT

Multiboost (MItBst) HoeffdingTree (HfdTr)
Ordinalclassclassifier (RdIClsf) J48

RotationForest (RotFst) J48Consolidate (J48Cnst)
Dagging (Dagg) J48Graft

Grading (Gradg) LADTree

RealAdaBoost (RlaBst) LMT

Multiclassifier (MulClr) NBTree
RandomCommittee (RanCom) RandomForest (RndFrt)
CVParameterSelection (CVPS) RandomTree (RndTr)
MultiBoostAB (MBstAB REPTree (RpTr)
RecedIncrementalLogitBoost SimpleCart (SmpCrt)
(RILogbst)

2) MODEL VALIDATION ACCURACY
One method of judging the quality of a particular model is by
residuals. That means that the model is fit using all the data
points, and the prediction for each data point is compared
with its actual output. The absolute value of each error is
taken and the mean of those values is computed to arrive at
the mean absolute residual error. Models with lower values
of this measure are deemed to be better. The problem with
residual evaluations is that they do not give an indication of
how well the learner will do, when it is asked to make new
predictions for data that it has not already seen. One way to
overcome this problem is do not use the entire data set when
training a learner. Some of the data is removed before training
begins. Then when training is done, the data that was removed
can be used to test the performance of the learned model on
“new” data. This is the basic idea for a whole class of model
evaluation methods called cross validation.

In k-fold cross-validation, the training data is divided into
a set of k disjoint subsets in the same size Di, D3, Dx.
One of the k subsets is used for testing, whereas the other
(k-1/k) subsets are used for training. This process is repeated
k times (the folds) by using each of the //k subsets as the
test set, and the error is averaged over all possibilities. The
k results from the folds can then be averaged to produce a
single estimation. This has the advantage that all examples
in the labeled data have an opportunity to be treated as test
examples and each observation is used for validation exactly
once. This does not substantially increase the variance of
performance estimates because in k iterations all available
instances are used for model evaluation. In a sense, the k-fold
cross-validation procedure effectively virtualizes the training
and validation or test sets. Values k-folds with 5 and 10 are
particularly the most used [53]. When we have access to
an unlimited number of examples we can estimate the per-
formance, by choosing the model that provides the lowest
“true” error rate on the entire population. In real applica-
tions, we only have access to a finite set of samples, usually
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smaller than we would like, with a small and little participa-
tory study population. Due to these shortcomings, the con-
cept of cross-validation provides the greatest accuracy of
implementation [54].

Leave-one-out (LOOCV) is a special type of k-fold cross-
validation where k is set to the number of all data. That
is, only one sample is left out at a time for the test set.
In stratified cross-validation, the folds are stratified so that the
class distribution of the tuples in each fold is approximately
the same as that in the initial data [55]; for small sample sizes,
LOOCY is much more accurate than other methods [56].

E. GAIT DATA ANALYSIS PROTOCOL
Classification accuracy is given in terms of several measures,
the most commonly used for performance analysis are:

o« TP rate (TPR), also referred to as sensitivity is
TP/ActualPositives, instances correctly classified as a
given class.

« FP rate (FPR), rate of false positives (instances falsely
classified as a given class).

o Precision is TP/PredictedPositives. i.e. the proportion
of instances that are truly of a class divided by the total
instances classified as that class.

« Recall is the proportion of instances classified as a given
class divided by the actual total in that class (equivalent
to TP rate).

o F-Measure is a combined measure for precision and
recall calculated as:

(2 * Precision * Recall)

F — Measure = — (12)
(Precision + Recall)

+ Weighted average that uses weights proportional to
class frequencies of the data in average calculation. The
weighted average of TP rate has been used to determine
algorithm performance, because it stands for the algo-
rithm success to correctly classify the member of each
class.

In addition to accuracy, other measures commonly used to

assess classifiers performance are:

¢ ROC area measurement: The standard ROC (Receiver
Operating Characteristic) curve is a plot of TPR (true
positive rate) against FPR (false positive rate) although
alternatives have been recommended, and plotting Sen-
sitivity vs Specificity is equivalent. Note that Recall =
TPR = Sensitivity and FPR = (1 — Specificity).

« Confusion matrix: A confusion matrix is a technique
for summarizing the performance of a classification
algorithm, by definition a confusion matrix C is such
that C; j is equal to the number of observations known to
be in group i but predicted to be in group j.

— (1,1 18 True Positive (TP): the number of elements
that were correctly predicted in the class they actu-
ally belong,

— Cy,1 is False Positive (FP): the number of elements
that were erroneously predicted to be members of
one class but they actually belong to another one,
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TABLE 4. Confusion matrix definition.

a b <—  Classified as
C1,0 a= Actual values for class a
Co,1 b= Actual values for class b

— Cp,o is True Negative (TN): the number of elements
that were correctly predicted not belonging to a
class and they actually do not belong to it and

— (1, is False Negative (FN): the number of elements
that were erroneously predicted not being member
of the class they actually belong.

« Kappa statistic: Kappa is often used as a measure
of reliability between two human raters. Regardless,
columns correspond to one “rater” while rows corre-
spond to another “‘rater”. In supervised machine learn-
ing, one “‘rater’ reflects ground truth (the actual values
of each instance to be classified), obtained from dataset
labeled data, and the other “‘rater’’ is the machine learn-
ing classifier used to perform the classification. Kappa
measures the agreement of prediction with the true class,
kappa value of 1 means full agreement, while Kappa
value of 0 is comparable to “random guessing” (similar
to ROC value of 0.5). equation used is:

(ObservedAccuracy — ExpectedAccuracy)

Kappa =
(1 — ExpectedAccuracy)

(13)

Kappa is an indication that a classifier is guessing ran-
domly even if we have accuracy, precision, and recall
near the unit. It is a metric that compares an Observed
Accuracy with an Expected Accuracy (random chance).
Considering random chance (agreement with a random
classifier), generally means that it is less misleading than
simply using accuracy as a metric (an Observed Accu-
racy of 80% is a lot less impressive with an Expected
Accuracy of 75% versus an Expected Accuracy of 50%).

F. CLASSIFICATION OUTCOMES EVALUATION

There is a wealth of criteria by which the algorithms can be
evaluated and compared. Error rates are used to assess how
well the prediction results satisfied the real values distribu-
tion. The Mean Absolute Error (MAE) measures the average
magnitude of the errors in a set of forecasts, without con-
sidering their direction. It measures accuracy for continuous
variables. The Root Mean Squared Error (RMSE) measures
the average magnitude of the error. MAE and RMSE can
be used together to diagnose the variation in the errors in a
set of forecasts. Let’s denote the actual value as « and the
estimated value using some algorithm as &. All error statistics
compare true values to their estimates, but do it in a slightly
different way. This means “how far away” are estimated
values from the true value of «. We can see in equation 14,
that sometimes square roots are used and sometimes abso-
lute values - this is because when using square roots the
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extreme values have more influence on the result. Indicators
associated with classification error can be calculated with
formulas 14 and 15.

The Relative Absolute Error (RAE) indicates how the
model residuals (mean) are related to the values or the vari-
ability of the target function (mean deviation) itself, directly
within a performance measure. The RAE should be less than 1
for any reasonable model, and preferably close to 0. The Root
Relative Squared Error (RRSE) is relative to what would have
been if a simple predictor had been used. Therefore, RRSE
takes the total squared error and normalizes it by dividing the
total squared error of the simple predictor, the square root
of the relative squared error, reduces the error to the same
dimensions as the predicted quantity ( [53]).

N A
Yoimy ldi — ail

N -
Zi:l lo; — o

N
1 R
SMAE = — § 1 |&; —a;| RAE =
=

The RMSE will always be larger or equal to the MAE; the
greater the difference between them, the greater the variance
in the individual errors in the sample. If the RMSE = MAE,
then all the errors are of the same magnitude. In RAE and
RRSE those differences are divided by the variation of « so
they have a scale from 0 to 1 and if we multiply this value
by 100 we get similarity in 0-100 scale (i.e. percentage). The
values of Y (&;—a;)? or 3_ |&; — ;| tell us how much « differs
from it’s mean value. It is about how much « differs from
itself (compared to variance). Because of that, the measures
are named relative - they give us a result related to the scale
of a.

Correlation is the measure of how much « and & are
related. It gives values between —1 and 1, where O is no
relation, 1 is very strong, linear relation and —1 is an inverse
linear relation (i.e. bigger values of « indicate smaller values
of &, or vice versa).

IV. RESULTS

According to the proposed method, we conducted two exper-
iments: the first one aims to improve the classification results
based on raw data from iPhone movement sensors placed at
the ankles, while the second one aims to identify the gait
features involved in the process.

A. EXTRACTING STRIDES FROM HD GAIT DATASET

The HD gait dataset was built by extracting raw data from
movement sensors (accelerometer and gyroscope) data from
each file (with CSVKir tool). We plotted each data file and
removed outliers information (using R fool), missing and
meaningless borders data; afterward data calibration, remov-
ing of linear data and calculate the signal acceleration mag-
nitude (mag) were carried out.
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The moving average filter was applied on mag data to
locate a 10-stride window in accordance to Stride segmen-
tation protocol (section III-B), the obtained values are illus-
trated in figure 5.

Acceleration

Time (ms)

(b)

FIGURE 5. Stride segmentation protocol results. (a) Signal acceleration
magnitude from raw data before preprocessing. (b) 10-stride window
obtained after applying stride segmentation.

The 10-stride window from gait data is shown on
(figure 5(b)).

B. DETERMINING GAIT FEATURES FROM HD GAIT
DATASET

HD gait dataset was the input to iGAit software to
acquire 28 gait features, with Sample Rate = 10 ms and
Distance = 10 m. Since an irregular gait pattern is being
analyzed, we test different threshold values to find the best
one according to the gait event detection results, as sug-
gested in [52]. Threshold parameter values were set to 0.4 for
control subjects and to 0.3 for HD patients. Approximately
56 features were derived for each patient by taking data from
the right (R) and left (L) sensors.

The 28 iGait resulting features were input to several
attribute selection algorithms. CfsSubsetEval & BestFirst and
CfsSubsetEval & GreedyStepwise algorithms selected the
same 11 gait features, using a 14 fold cross-validation (strati-
fied). Average and standard deviation values of these features
for both classes are shown in Table 5.

iGait selected gait features were as follow:

« RMS (Root Mean Square) is the average acceleration
along each three-dimensional axis: Anterior-Posterior
(AP), Medium Lateral (ML), and Vertical (VER) during
the walking period. All RMS were selected for both
ankles, except the ML axis of the left ankle sensor.

o Integral IPSD Frequency at 75% in VER, 90% in AP
and 100% in ML were taken from right ankle sensor
(R) and frequency AP at 90% were selected from both
Sensors.
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TABLE 5. Selected features including both, left (L) and right (R) sensors
data.

Gait feature Control HD
Mean | Std Dev | Mean | Std Dev

RMS in AP (R) 0.44 0.14 0.32 0.16
RMS in AP (L) 0.44 0.15 0.32 0.78
RMS in ML (R) 0.70 0.20 0.42 0.97
RMS in VER (R) 0.56 0.11 0.43 0.97
RMS in VER (L) 0.62 0.11 0.45 0.11
IPSD at 75% in VER (R) 6.56 2.75 4.44 0.96
IPSD at 90% in AP (R) 21.43 2.78 23.88 7.35
IPSD at 90% in AP (L) 20.42 4.02 20.84 2.61
IPSD at 100% in ML (R) 25.98 4.59 28.10 4.13
Symmetry in VER (L) 0.64 0.22 0.34 0.23
Stride regularity in AP (L) -0.36 0.06 0.21 0.19

o Symmetry in VER. Gait symmetry is estimated as the
harmonic ratio for each of the three axis and used to
measure gait symmetry [57]

o Stride regularity in AP is estimated for each axis as
the normalized auto-covariance for a lag of exactly one
estimated stride time [58]

C. ALGORITHMS PREDICTIVE ACCURACY ESTIMATION
Each meta-classifier was tested with a classification tree indi-
cating the iterations necessary to achieve the best accuracy.
The algorithms with the best results were: Logithoost &
Randomforest (45 iterations), randomcommittee & ExtraTree
(100 iterations) and multiboost-AB & simplecart, multiboost-
AB & J48 (100 iterations).

Model validation for these results was confirmed by run-
ning the LOOCV method, over the gait datasets; we ran the
classifier 14 times stratified, by each fold 13 subjects used for
training and 1 subject leaving out for test, so that each subject
was used as test only once.

The classification Weighted Average is reported
in Tables 6 and 7, the percentages indicate that 13 of
14 subjects were correctly recognized.

TABLE 6. Results of binary classification between sick and healthy
subjects using raw data.

Algorithms Weighted Avg.
Logitboost & RandomForest 94.4402%
RandomCommittee & ExtraTree 93.8688%
Multiboost-AB & SimpleCart 93.8633%
Multiboost-AB & J48 93.7479%

TABLE 7. Results of binary classification between sick and healthy
subjects using 11 gait features.

Algorithms Weighted Avg.
Logitboost & RandomForest 92.8571%
RandomCommittee & ExtraTree 85.7143%
Multiboost-AB & SimpleCart 78.5714%
Multiboost-AB & J48 92.8571%
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Algorithms results in Table 6, were very closed, with a
maximum difference of only 0.7%: Logitboost & Random-
Forest (94.44%), RandomCommittee & ExtraTree (93.86%),
MultiBoostAB & SimpleCart(93.86%) and MultiboostAB &
J48 (93.74%). These results are based on the ability of the
algorithms to correctly discriminate the members of each
class. It is a sufficient criterion for algorithms selection, but
not to justify which is the best performing.

Reported results in Tables 6 and 7 from both experi-
ments were very close for Logitboost & RandomForest algo-
rithm, because one subject of 14 (7.143%) was misclassified.
Multiboost-AB & J48 algorithm got a better performance
with gait features than with raw data, because it kept up
one misclassified subject. RandomCommittee & ExtraTree
algorithm had lower performance than with raw data, with
2 misclassified subjects and Multiboost-AB & SimpleCart
with 3 misclassified subjects.

D. BEST PERFORMING ALGORITHMS ANALYSIS

1) DETAILED ACCURACY BY CLASS

Performance Weka output for selected algorithms are shown
in Tables 8 and 9. It can be noticed that accuracy is given
in terms of several measures, and we take here the most
commonly used for performance analysis. We can observe
that the results obtained with gait features are not as smooth
as those obtained with raw data, this is because the first
are staggered by the number misclassified subjects. In the
case of Logitboost & RandomForest algorithm for example,
the value 1.0 in TP indicates that all elements of the HD class
were correctly classified, while for the HC class the value
0.85 indicates that one subject was erroneously classified
(there are no values in between).

TABLE 8. Detailed accuracy by class with raw data.

. F-
TP FP Preci- Recall | Meas- ROC

Rate Rate sion Area
ure

Logitboost & RandomForest
0.921 | 0.034 0.961 0.921 0.941 0.988 | HC
0.966 | 0.079 0.930 0.966 0.948 0.988 | HD
0.944 | 0.057 0.945 0.944 0.944 | 0988 | Avg.
RandomCommittee & ExtraTree
0.924 | 0.048 0.947 0.924 0.935 0.985 | HC
0.952 | 0.076 0.932 0.952 0.942 0.985 | HD
0.939 | 0.062 0.939 0.939 0.939 0.985 | Avg.
MultiBoost-AB & SimpleCart
0.928 | 0.052 0.943 0.928 0.936 0.981 | HC
0.948 | 0.072 0.935 0.948 0.941 0.978 | HD
0.939 | 0.062 0.939 0.939 0.939 0.979 | Avg.
MultiBoost-AB & J48
0.927 | 0.053 0.942 0.927 0.934 | 0976 | HC
0.947 | 0.073 0.934 0.947 0.94 0.972 | HD
0.937 | 0.063 0.938 0.937 0.937 0.974 | Avg.

Class

TP rate, also referred to as sensitivity is TP/actual pos-
itives instances correctly classified as a given class, results
were over 0.921 for raw data and over 0.571 for gait
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TABLE 9. Detailed accuracy by class with 11 gait features.

. F-
TP FP Preci- ROC
Rate Rate sion Recall N{:;&;s- Area Class

Logitboost & RandomForest
0.857 | 0.000 1.000 0.857 0.923 0.939 | HC
1.000 | 0.143 0.875 1.000 0.933 0.939 | HD
0.929 | 0.071 0.938 0.929 0.928 0.939 | Avg.
RandomCommittee & ExtraTree
0.857 | 0.143 0.857 0.857 0.857 0.898 | HC
0.857 | 0.143 0.857 0.857 0.857 0.898 | HD
0.857 | 0.143 0.857 0.857 0.857 0.898 | Avg.
MultiBoost-AB & SimpleCart
1.000 | 0.429 0.700 1.000 0.824 | 0.816 | HC
0.571 | 0.000 1.000 0.571 0.727 0.816 | HD
0.786 | 0.214 0.850 0.786 0.775 0.816 | Avg.
MultiBoost-AB & J48
0.857 | 0.000 1.000 0.857 0.923 0.929 | HC
1.000 | 0.143 0.875 1.000 0.933 0.929 | HD
0.929 | 0.071 0.938 0.929 0.928 0.929 | Avg.

features, while for the rate of false positives (or FP rate,
the instances falsely classified as a given class), results were
under 0.079 for raw data and under 0.429 for gait features.
It is important to notice that in the HD class the result was 1 in
TP which means that all members of that class were correctly
classified, while the FP result is 0.143 as one element of the
HC class was erroneously classified as HD.

For Precision (TP/predicted positive. i.e. the proportion of
instances that are truly of a class divided by the total instances
classified as that class), all results are over 0.93 for raw data
and over 0.70 for gait features. For Recall (the proportion of
instances classified as a given class divided by the actual total
in that class), it can be noticed that it is equivalent to TP rate.

The weighted average of TP rate has been used to deter-
mine algorithm performance, because it stands for the algo-
rithm success to correctly classify the member of each class.
All algorithm results have very close values for all measures.
For instance, weighted average of TP rate, Precision, Recall
and F-Measure have a maximum distance of 0.07 for all algo-
rithms with raw data, which means how well-adapted this tree
meta-classifiers are for raw HD gait dataset classification.
However, the weighted average results for gait characteristics
are more separate from each other, even if it is only one
misclassified subject of difference.

Detailed accuracy values are ordered with higher values at
top of Table 8. Based on weighted average, higher accuracy
values are for Logithoost & RandomForest meta-classifier
algorithm. Similar results are reported in Table 7 for Logit-
boost & RandomfForest algorithm, but here Multiboost-AB &
J48 algorithm got the same result.

2) ROC AREA MEASUREMENT

The area under the curve (AUC) metric, measures the perfor-
mance of a binary classification. In two-class (binary) classi-
fication, this will capture the probability threshold changes in
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FIGURE 6. ROC graph for algorithm Logitboost & RandomForest.

a ROC curve. Normally the threshold for two classes is 0.5.
An algorithm that is performing better than chance will lie
above the diagonal (the chance line TPR = FPR). An “opti-
mal” classifier will have ROC area values approaching 1.
ROC graph values in tables 8 and 9, were plotted in fig. 6,
as we can observe they are very close to 1. Each of the
experiments have excellent prediction and there’s no relevant
difference between them for Logithoost & RandomForest
algorithm.

3) CONFUSION MATRIX

In Weka Confusion Matrix, the row indicates the true class
(real data), the column indicates the classifier output, with
Control(a) and Huntington(b) representing class labels. Each
entry gives the number of instances of row that were classi-
fied as column. In Table 10 there is a confusion matrix for
each meta-classifier algorithm. For example, the Confusion
Matrix for Logitboost & RandomForest algorithm can be read
as: 8042 instances of Control were correctly classified as
Control whereas 326 Huntington instances were erroneously
classified as Control. Top-left and bottom-right of the matrix
are showing instances the algorithms gets right. Bottom-left
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TABLE 10. Meta-classifiers confusion matrix for raw data.

TABLE 12. Weka kappa statistic and accuracy for raw data.

HC | 8102 626
HD 491 | 8983
HC | 8090 638
HD 500 | 8974

MultiBoost-AB & SimpleCart

MultiBoost-AB & J48

and top-right of the matrix are showing where the algorithm
is confused. All correct classifications are on the top-left to
bottom-right diagonal. Everything off that diagonal is some
kind of incorrect classification. The total number of instances
for this case is 18,200. Each model ranks a slightly higher
number of instances for HD due to the impaired gait in
patients. Correctly classified values are much higher than
mistaken ones. The average sample value for every 10-strides
is: for HC is 1,247.00 while the average for HD is 1,353.00.
The HD class obtains the highest number of instances cor-
rectly classified for all algorithms. Logitboost & RandomFor-
est scored the highest percentages, 94.44% of instances were
correctly classified.

Likewise in Table 11 there is a confusion matrix for
each meta-classifier algorithm. The total number of instances
are 14, (7 for each class). Classification results are the
same for Logitboost & RandomForest and Multiboost-AB &
J48 algorithms, with one instance of HC misclassified
as HD. RandomCommittee & ExtraTree got two misclassified
instances, one of each class and MultiBoost-AB & SimpleCart
that misclassified 3 instances of HD as HC.

TABLE 11. Meta-classifiers confusion matrix for gait features data.

Meta-Classifier HC | HD

. HC 6 1
Logitboost & RandomForest HD 0 -
domC . & HC 6 1
RandomCommittee & ExtraTree HD 1 6
. . HC 7 0
MultiBoost-AB & SimpleCart HD 3 4
MultiB AB & J48 He 6 :
ultiBoost- HD 0 7

4) KAPPA STATISTICS

Observed Accuracy is simply the number of instances that
were classified correctly throughout the entire confusion
matrix; i.e. Tables 10 and 11 present instances that were
labeled as Control and predicted as Huntington by the classi-
fier and the contrariwise. The last column of Tables 12 and 13
contain the observed accuracy by meta-classifier based on
outcomes of Tables 10 and 11 (number of instances that the
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Meta-Classifier HC HD Meta-classifier & Classifier Kappa statistic Accuracy
Logitboost & RandomForest HC | 8042 | 686 LogitBoost & RandomForest 0.8884 94.44%
HD 326 | 9148 RandomCommittee & ExtraTree 0.8771 93.86%
) HC 8068 660 Multiboost-AB & SimpleCart 0.8770 93.86%
RandomCommittee & ExtraTree HD | 456 | 9018 Multiboost-AB & 148 0.8747 93.74%

TABLE 13. Weka kappa statistic and accuracy for gait features.

Meta-classifier & Classifier Kappa statistic Accuracy
LogitBoost & RandomForest 0.8571 92.86%
RandomCommittee & ExtraTree 0.7143 85.71%
Multiboost-AB & SimpleCart 0.5714 78.57%
Multiboost-AB & J48 0.8571 92.86%

classifier agreed with the dataset, divided by the total number
of instances).

The Expected Accuracy is directly related to the number of
instances of each class (Control and Huntington), along with
the number of instances that the machine learning classifier
agreed with the dataset. The Expected Accuracy is calculated
by multiply the marginal frequency of Control for one “‘rater”
by the marginal frequency of Control for the second “‘rater”,
and divided by the total number of instances; the marginal
frequency for a class by a ‘“‘rater” is just the sum of all
instances the “rater” indicated were that class. For confu-
sion matrix (Table 10), Logitboost & RandomForest classi-
fier reconized 8,368 instances as Control of 8,728 instances
labeled as Control in dataset. Marginal values were
(8368 * 8728/18202) 4,012.5208 for Control and (9834
9474/18202) 5,118.5208 for Huntington; the Expected Accu-
racy is 0.50 ((4012.52081 4+ 5118.5208)/18202). Expected
Accuracy turned out to be 50%, as will always be the case
when either “rater” classifies each class with the same fre-
quency in a binary classification (both Control and Hunt-
ington classes contained a very close number of instances
according to the confusion matrix). For confusion matrix
in Table 11 Expected Accuracy is 0.5 also, because the
marginal values for HC and HD are 3 and 4 respectively and
the total number of instances is 14.

The kappa statistic is calculated with the equation 13
using the Observed Accuracy and the Expected Accuracy
calculated previously. Weka’s results for Kappa measure of
all meta-classifiers are shown in Tables 12 and 13. We can
observe that the higher agreement of prediction with the true
class is for LogitBoost & RandomForest, as well as the highest
accuracy. However, we can point out that in the case of gait
features in Table 13, Multiboost-AB & J48 algorithm also
obtains the highest values.

E. EVALUATION MEASURES (MAE, RMSE, RAE, RRSE)

Error measures are the indicators of how well prediction
results fits real values distribution, the greater the difference
between them, the greater the variance in the individual
errors. Resulting values obtained with formulas 14 and 15
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show that RMSE values are always larger than MAE val-
ues, the greatest difference between RMSE and MAE is
for J48 algorithm (0.184) with raw data and for SimpleCart
algorithm (0.234) with gait features. The smallest differences
between them were for ExtraTree algorithm in both cases,
0.39 with raw data and 0.49 with gait features.

Table 14 show that values for LogitBoost & Random-
Forest algorithm are: MAE = 0.05 for Mean Absolute
Error, that measures accuracy for continuous variables and
RMSE = 0.22 for Root Mean Squared Error, that measures
the average magnitude of the error. The difference between
them gives a variation in prediction of 0.16, this is the lowest
value of all classifiers.

TABLE 14. Score in MAE, RMSE, RAE and RRSE for raw data.

Meta-classifier RAE RRSE
& Classifier MAE | RMSE ) %
posuBoost &1 0056 | 0223 | 1137 | 4463 | 0886
RandomCommi-
ttee & ExtraTree
Multiboost-AB
& SimpleCart
Multiboost-AB
& J48

' MAE (Mean Absolute Error), RMSE (Root Mean Squared
Error), RAE (Relative Absolute Error), RRSE (Root Relative
Squared Error)

MCC

0.252 | 0.291 50.60 | 58.33 | 0.877

0.061 | 0244 | 12.31 | 48.83 | 0.877

0.063 0.247 12.57 | 49.57 | 0.875

Weka output for Matthews Correlation Coefficient (MCC)
that are closed to 1 indicates strong relation between actual
values in dataset and predicted ones. MCC value is 0.88 for
LogitBoost & RandomForest, in Table 14, but all other val-
ues are very close to this one, meaning a strong relation
between the actual values in dataset and those predicted by the
algorithm.

Based on this indicators we can say that the best per-
forming algorithm is LogitBoost & RandomForest which had
the bigger correlation and smaller error estimates. We can
see in Table 14 that the results obtained for accuracy,
place this algorithm as the best to predict Huntington’s
disease on people using movement sensor devices at the
ankles.

V. DISCUSSION
We propose a method to address two important facts in
HD gait classification: the first is that results from previous
studies have shown that to date there is no single algorithm
that provides the best results with any data set and the sec-
ond is that classification algorithms results, obtained with
walking data from patients with Huntington’s disease, can
be improved. Proposed method strength is shown in obtained
results, they are better than those in recent publications on a
10-point scale.

We worked with meta-classifiers as in [44], but we added
tree classifiers as in [43], this combination got out better
results in accuracy than related works. Meta-classifiers and
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TABLE 15. Score in MAE, RMSE, RAE and RRSE for gait features.

Meta-classifier RAE | RRSE
& Classifier MAE | RMSE % )
LogitBoost & | 74 | 0267 | 13.85 | 50.14 | 0.866
RandomForest
RandomCommi-
ttee & ExtraTree
Multiboost-AB
& SimpleCart
Multiboost-AB
& J48

MCC

0.329 | 0.378 | 61.74 | 70.86 | 0.714

0.233 | 0467 | 43.60 | 87.15 | 0.632

0.071 0.267 | 13.39 | 50.11 | 0.929

accelerometer data from several devices in [33] provided
an accuracy of 78.78%, however, we used additional gyro-
scopes data that provided a greater impact on the classifi-
cation results, in a similar way than in [34]. Using boosting
algorithms (meta-classifier & classifier) allowed us to signifi-
cantly improve the results: from 50% using classic algorithms
(the lowest) and 88.674% using meta-classifiers (the highest
reported) to 94.5% combining prior techniques;

The major finding of our proposal is that the use of meta-
classifier with tree classifiers reached a global classification
Precision of 94.5% with raw data and 93.8% with gait fea-
tures for all groups and a selection of 96.6% with raw data
and 100% of HD patients. Bagging, RandomSubspace, and
LogitBoost meta-classifiers provided good performance with
pressure sensors in [44], however, when single classifier algo-
rithms were implemented with data from movement sensors,
the performance decreased [33], for this reason, we decided to
prove the meta-classifiers strength with tree classifiers. This
decision let us obtain a higher accuracy. To our knowledge,
the best classification performance for HD obtained until
now. Tree classifiers have been implemented in recognition
of other neuro-degeneratives diseases with excellent results,
such as Parkinson [20], [59]. This allows confirming the
initial hypothesis in which a combination of two algorithms
produces better results than those obtained with the individual
algorithms.

The second finding was that just two movement sensors
(accelerometer and gyroscope), one per ankle, were enough
to obtain better results than those in [35], where three devices
were used. The smaller number of devices makes our pro-
posal less resource consuming and less obtrusive than others
recently proposed [34], who have had the best classification
result to date. It is important to remark that the reduction in
the number of devices to capture gait movement reduces the
effect that they may have in patients walking gait and enable
the possibility of continuous patient monitoring to oversee
disease progression.

The third finding was that 11 gait features allows a good
HD gait patients recognition. This fact is important because
even when raw data analysis is well suited for continuous
monitoring, it does not allow to know further details as gait
patterns or subjects identification. Obtained classification
results with gait features were very close to those obtained
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with raw data. Results difference in Precision for LogitBoost
& RandomForest was of 0.007.

The use of several types of movement sensors cap-
tured more significant data during the walking of the sub-
jects than when only one type of sensor was used, which
led to a better characterization of the walking pattern;
Sanchez-Delacruz et al. [34] used five accelerometers in
patients’ body but their approach offered a lower accuracy
than ours.

We assume that the classification results for HD subjects
were higher than healthy ones, given that these patients have
exaggerated and uncontrolled movements, that were reflected
in captured data, helping the classifiers to a better separation.

VI. CONCLUSIONS

Based on previous results, we assumed that meta-classifiers
are well placed to improve the results so far published in
the classification of patients with HD disease, while reduc-
ing the number of devices used to capture the movements
of gait. To confirm this assumption we used data collected
with accelerometer and gyroscope values of two movement
sensors placed in both ankles of HD patients and HC subjects.
With this data we build the HD gait dataset composed of raw
data, and another one with gait features extracted from raw
data.

We found out that 11 gait features using 2 attribute selec-
tion algorithms were the most representative of the gait pat-
terns of the subjects.

We tested 10 meta-classifiers algorithms with their corre-
sponding classifiers, over HD gait dataset. Algorithms results
in Table 8 and 9 were higher to 90% of correctly predicted
classes and with detailed accuracy values very narrowly clos-
est. This confirms the assumption that meta-classifier have
better performance than single classifiers, even when they
have been modified to suit a specific disease.

Best performing meta-classifier algorithm, based on the
number of HD patients that were correctly classified was
Logitboost & RandomForest with 96.6% with raw data and
100% with gait features.

Obtained results encourage future work in continuous
monitoring, since binary classification (comparison of two
models) may serve, for example, to better monitor the pro-
gression of the disease by detecting an aggravation that is
reflected in changes in the way the study subjects walk. This
line of study needs a monitoring system with real time data
transfer to be designed.

Another line of study that promotes the results of the
classification is the early detection of the disease. The study
of algorithms allows to discover the patterns of gait in several
neurodegenerative diseases, and therefore it can be very use-
ful in the differential diagnosis for example of a Huntington’s
disease, versus a spinocerebellar ataxia, clinically similar.
The results of this study could be exploited for the monitoring
of patients undergoing some type of rehabilitation or other
therapeutic intervention. It should be noted that these results
could be favored by very ill patients because at the advanced
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stage of the disease, more alterations in gait are presented,
hence future works have to respond to the question of what is
going to be the meta-classifiers performance when predicting
HD subjects at different stages of the disease?
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