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ABSTRACT To obtain effective pedestrian detection results in surveillance video, there have been many
methods proposed to handle the problems from severe occlusion, pose variation, clutter background, and
so on. Besides detection accuracy, a robust surveillance video system should be stable to video quality
degradation by network transmission, environment variation, and so on. In this paper, we conduct the research
on the robustness of pedestrian detection algorithms to video quality degradation. The main contribution
of this paper includes the following three aspects. First, a large-scale distorted surveillance video data set
(DSurVD) is constructed from high-quality video sequences and their corresponding distorted versions.
Second, we design a method to evaluate detection stability and a robustness measure called robustness
quadrangle, which can be adopted to the visualize detection accuracy of pedestrian detection algorithms
on high-quality video sequences and stability with video quality degradation. Third, the robustness of seven
existing pedestrian detection algorithms is evaluated by the built DSurVD. Experimental results show that
the robustness can be further improved for existing pedestrian detection algorithms. In addition, we provide
much in-depth discussion on how different distortion types influence the performance of pedestrian detection
algorithms, which is important to design effective pedestrian detection algorithms for surveillance.

INDEX TERMS Object detection, video surveillance, image quality, video signal processing, image
processing.

I. INTRODUCTION
Pedestrian detection plays an important role in auto-analysing
of surveillance video. It is the prerequisite of various
tasks of surveillance video processing including pedestrian
tracking, crowd analysis, event recognition, anomaly detec-
tion, etc. During the last decade, significant progress has
been achieved on existing published data sets including
Caviar [1], INRIA [9], Caltech [12], PETS09 [17],
TUD-Stadtmitte [3], etc. [45]. These data sets challenge
the pedestrian detection algorithms by introducing different
levels of occlusion, dynamic shape variation, different aspect
ratios, etc [27]. By addressing these content-related chal-
lenges, various pedestrian detection algorithms [6], [8], [11],
[28], [29], [33], [36], [37], [39], [40], [46] have been designed
to obtain higher detection accuracy. It is reported [5] that the
log-average miss-rate has decreased from around 70% [9] to
around 35% [46] on Caltech data set [12].

However, in surveillance systems, the quality of surveil-
lance video may change from time to time due to varies
factors such as, bandwidth limitation, illumination variation,
sensor variety of different cameras, etc. [18], [21]. When
video quality decreases, targets may not be distinguishable
any more in the distorted video, and this results in wrong
detection. Thus, the effect of video quality variation on
pedestrian detection should be investigated. There have been
several studies focusing on assessing the quality of distorted
image/video for face and event detection [19], [20]. It has
been demonstrated that detectors always favor high quality
image/video to obtain promising detection accuracy. On the
other hand, a robust system requires detection algorithms
which perform robustly and accurately in different quality
conditions as well. There are some studies investigating into
the benchmark of pedestrian detection [10], [12]. In these
studies, the authors build a large-scale database to study the
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FIGURE 1. Sample images in DSurVD, with four types of distortion introduced. Column (a) are the reference image frames with high quality;
columns (b) and (c) are image frames with brightness variations; column (d) are image frames with additive white noise; column (e) are image
frames with quality degradation after H.264 compression; column (f) are image frames with lower resolution.

statistics of the size, position and occlusion patterns of pedes-
trians in urban scenes. A new per-frame evaluation method
is designed to measure the performance of different pedes-
trian detection algorithms. However, they do not consider
the performance robustness of different pedestrian detection
methods for quality-degradation video sequences. Currently,
there is no systematic study focusing on the robustness of
pedestrian detectors regarding to surveillance video quality
variation, which motivates us to build a Distorted Surveil-
lance Video Data Set (DSurVD) and study the robustness of
pedestrian detectors to video quality degradation in surveil-
lance systems. Our initial work has been reported in [43].

Generally, distortion in surveillance video may be caused
by bandwidth limitation, noise in video acquisition, bright-
ness variation due to camera variety, illumination change, etc.
In this study, we consider the following four distortion types
in the proposed DSurVD: compression distortion, resolution
reduction, white noise and brightness changes. Regarding
bandwidth limitation, distortion of video is mainly from com-
pression distortion or resolution reduction. We also introduce
different levels of white noise to the high-quality reference
videos to obtain the noisy videos. Moreover, we adjust the
brightness of the video to obtain the corresponding dis-
torted versions with both high brightness and low brightness.
Three common surveillance scenes are considered in the pro-
posed DSurVD, including campus, town centre and car park.
Fig. 1 illustrates some sample video frames in DSurVD.

Furthermore, we evaluate 7 existing pedestrian detectors
which are published in studies [9], [11], [37], [39], [40] on the
proposed DSurVD. To study the robustness of detectors, both
the detection accuracy Aref on high-quality reference videos
and performance stability S on distorted videos are measured.
With Aref and S, we define the robustness quadrangles (seen
in Fig. 7) to visualize the robustness of different detectors.
Based on the proposed robustness quadrangle, we know
the advantages and disadvantages of detectors regarding to

detection accuracy and stability with certain distortion type.
Based on the in-depth analysis of the stability of existing
pedestrian detectors with different distortion types, we facil-
itate some possibilities to improve the detection stability of
pedestrian detectors regarding to video quality degradation.

The rest paper is organized as follows. We introduce the
proposed DSurVD and the statistics of the distorted video
sequences in Section II. Section III provides the definition of
detection robustness; and a detection stability measurement
is proposed (as Section III-B). In Section IV, the evaluation
of pedestrian detectors on DSurVD is reported; the in-depth
analysis is given in this section aswell. Finally, we summarize
the robustness study of pedestrian detection in surveillance
video and discuss the possibilities in the future research
in Section V.

II. DISTORTED SURVEILLANCE VIDEO DATA SET
In surveillance systems, due to bandwidth and storage limi-
tation, video quality may vary after compression. Moreover,
different environments, camera variety and unpredictable
noise during video acquisition may influence the video qual-
ity as well. In this study, in order to study the performance
of pedestrian detectors in surveillance video with quality
variation, the first Distorted Surveillance Video Data Set
(DSurVD) containing video sequences with distortion ver-
sions from different quality levels is constructed.

With H.264/AVC [38], one of the most widely used video
coding standards for surveillance video, it is easy to adjust
the quantization parameter (QP), resolution and frame rate
to meet the limitation of the bandwidth. In general, if the
QP and resolution are fixed, changing the frame rate does
not significantly affect the quality of individual frames in a
video sequence. In addition, since most pedestrian detectors
process each video frame separately, without changing QP
and resolution, frame rate does not affect detection accuracy.
In the proposed DSurVD, video sequences with different
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TABLE 1. Mean and coefficient of variation Hvc of pedestrian heights (in pixel); frame resolution of several existing pedestrian detection/tracking video
data sets; the last row indicates whether the video sequences are captured by a fixed camera or not (See Section II-A for details).

QPs and resolutions are created as distorted versions. More-
over, additive noise during video acquisition and brightness
variation caused by illumination change or overexposing are
two important distortion sources. Hence, two more distortion
types of white noise and brightness variation are included
with DSurVD.

A. REFERENCE VIDEO SEQUENCES
In DSurVD, the distorted video sequences are created based
on five high quality surveillance video sequences includ-
ing scenarios of campus (two sequences in PETS09 [17]),
town centre (TownCentre sequence [7]) and car park (Park-
ingLot1 and ParkingLot2 sequences [34]). The ground truth
are manually labeled bounding boxes of pedestrians.

These five video sequences are typical surveillance video
data which have been widely used in recent pedestrian detec-
tion and tracking studies [7], [24], [35], [42], [44]. Further-
more, these sequences are with relatively high resolution and
constant pedestrian size, and are captured with fixed cam-
eras. Captured with fixed cameras guarantees relatively stable
quality of all the frames in each video sequence. The reason
why we prefer constant pedestrian size is as follows. As we
reduce the resolution of reference videos, the lose of high
frequency information of pedestrians caused by pedestrian
size reduction is themain factor that affect the performance of
detection algorithms. Thus, in order to study the relationship
between the pedestrian size and detection accuracy, it is better
to have a constant pedestrian size in the reference video.
We use the variation coefficient of the pedestrian height (Hvc)
to represent the variation of pedestrian size:

Hvc =
σh

µh
, (1)

where σh and µh denote the standard deviation and the
mean of pedestrian height (in pixels) respectively, which are
obtained from the ground truth of each data set. From Eq. 1,
we can see that a smaller value ofHvc indicates more constant
pedestrian size. Table 1 provides theHvc and the resolution of
some popular pedestrian detection/tracking video data sets.
It shows that the five reference sequences used in DSurVD
are with highly constant pedestrian size and relatively high
resolution.

B. DISTORTED VIDEO SEQUENCES
For each reference sequence, we create 52 distortion versions
(as explained next) based on the aforementioned four distor-
tion types. Hence, including the reference sequences, there

are 53 × 5 = 265 video sequences in total in the DSurVD.
Below, we analyze the statistics of the DSurVD in detail.

1) QUANTIZATION PARAMETER
QP is one of the most important parameters in H.264 codec
to encode video stream with different bit rates. The quality of
the video is degraded by increasing the value of QP. In H.264,
the Quantization Parameter (QP) determines the quantization
step of the transformed coefficients with Discrete Cosine
Transform. Larger QP refers to the bigger step and results in
poorer video quality while lower QP refers to the smaller step
and results in better quality. QP cannot directly refer to the
bitrate since the bitrate is content biased. However, in general,
each unit increase of QP lengthens the step size by 12%
and reduces the bitrate by roughly 12% in H.264. Detailed
information can be referred to the study [32]. In DSurVD,
we encode each reference video sequence with 11 quality
levels by varyingQP from 10 to 65. These distorted sequences
are named as SqsQP. The codec we used is ffmpeg [4].

The peak signal noise ratio (PSNR) of each distorted
sequence is computed and shown in Fig. 2(b). Within the
11 distortion levels, PSNR drops from ∼ 50dB to ∼ 23dB.
PSNR of PETS09L1 & 2 is a little lower than that of Town-
Centre and ParkingLot1 & 2, due to the distortion in the
large grass regions which are with more complex texture in
PETS09L1 & 2.

The compression ratio of each distorted sequence is com-
puted and shown in Fig. 2(a). The compression ratio varies
from 1 to around 103 between the reference sequences and the
distorted sequences. The compression ratio of PETS09L1 is
higher than that of PETS09L2 with the same QP even when
they have the same background scene. The reason is the low
density of pedestrians in PETS09L1. Based on the statistics
of manually labelled ground truth, the average number of
pedestrians per frame in PETS09L1 is 5.8 which is much
lower than 23.6 in PETS09L2. Lower pedestrian density may
result in less motion in the video, and thus less bite rate is
required for inter coding between consecutive frames with
H.264 codec.

2) RESOLUTION
Reducing the resolution is an alternative way to meet low
bandwidth limitation in H.264 codec. In DSurVD, we code
11 video sequences with low resolution for each reference
video sequence. These sequences are named as SqsRes.

To video sequences PETS09L1 & 2, the resolution is
reduced from 768 × 576 (reference video) to 24 × 18.
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FIGURE 2. (a) and (b) are the compression ratio and PSNR statistics of the distorted videos by adjusting the QP;
(c) and (d) are the compression ratio and mean pedestrian height of the distorted videos by adjust the resolution, higher
resolution level indicates smaller resolution of the video and 0 refers to the reference videos; (e) is the PSNR statistics of
the distorted videos by adding zero mean Gaussian noise, where x-axis is the σ of the Gaussian kernel; (f) is the mean pixel
value of distorted video with brightness variation, ‘‘0’’ indicates the reference video.(See Section II-B for details).

For video sequences TownCentre and ParkingLot1 & 2,
the resolution is reduced from 1920×1080 (reference video)
to 64× 36. The compression ratio of each distorted sequence
is computed and shown in Fig. 2(b). ‘‘0’’ in the Res. Level axis
indicates the reference video sequences and ‘‘11’’ indicates
the video sequences with the lowest resolution (24 × 18
for PETS09L1 & 2, and 64 × 36 for TownCentre and
ParkingLot1 & 2).

Pedestrian size change is the direct effect by reducing
the resolution of video sequences. As mentioned in [12],
pedestrian height cannot be neglected for pedestrian detection
accuracy. We plot the relation between the average pedestrian
height and the resolution level of each sequence in Fig. 2(d).
The average pedestrian height (in pixels) varies from around
200 to about 10 in the proposed DSurVD. From level ‘‘0’’
to level ‘‘7’’, the down sampling step of each video is kept
the same, and it can be seen from Fig. 2(d) that the slope of
the each line keeps the same before level ‘‘7’’. In order to
study more detail of pedestrian detectors with low resolution
(or small pedestrian size), we decrease the down sampling
step after level ‘‘7’’ to get more low resolution videos, and
we can see that the slope of each line become smaller after
level ‘‘7’’.

3) WHITE NOISE
Apart from the aforementioned distortion types introduced
by compression, white noise is another common type of
distortion during image/video acquisition [30]. We use the
zero-mean Gaussian noise to model the additive white noise.
In total, 20 levels of Gaussian noise are added to the

reference video sequences where the Gaussian Kernel σ
varies from 0.005 to 0.5, and the PSNRvaries from∼ 50dB to
∼ 25dB, respectively. These sequences are named as SqsWN.
The PSNR of each noisy sequence is computed and shown
in Fig. 2(e). The PSNR is highly correlated to σ and there
is almost no difference of PSNR between different reference
video sequences.

4) BRIGHTNESS VARIATION
The brightness variation of video frames in surveillance
video sequences can be caused by both illumination change
and different exposure sensitivity of the camera. We model
10 levels of brightness for video sequences inDSurVD. These
sequences are named as SqsBV. In total, the distortion ver-
sions with 4 low and 6 high brightness levels are created.
The mean pixel value of each brightness level are shown
in Fig. 2(f).

III. ROBUSTNESS ANALYSIS: ACCURACY AND STABILITY
The IEEE Standard Glossary of Software Engineering Termi-
nology [31] gives the definition of robustness as follows:

Robustness: The degree to which a system or com-
ponent can function correctly in the presence of invalid
inputs or stressful environmental conditions.

Based on this definition, the robustness of the pedestrian
detector can be measured from the following two aspects.
On one hand, what is the accurate rate of the pedestrian
detector in surveillance videos? On the other hand, what
is the performance stability of the pedestrian detector with
video quality degradation? In this section, we denote these
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two aspects as accuracy and stability, respectively, and pro-
pose an approach to measure them.

A. ACCURACY MEASUREMENT
Given a detection bounding box bbdt and a ground truth
bounding box bbgt , we employ the matching criterion used
in the previous pedestrian detection benchmark study [12].
With the overlap between bbdt and bbgt exceeding 50 percent,
we consider them as a correct match,

area(bbdt
⋂
bbgt )

area(bbdt
⋃
bbgt )

> 0.5. (2)

Each bbgt can match to at most one bbdt . If a detection
bounding boxmatches multiple ground truth bounding boxes,
the match with the highest overlap is used. Unmatched bbdt
and bbgt are considered as false positive samples and false
negative samples, respectively.

We plot miss rate against false positives per image (FPPI)
to visualize the performance of pedestrian detector (e.g.,
Fig. 4). Similar to [12], the log-average miss rate (MR) is
computed by averaging miss rate at nine FPPI rates evenly
spaced in log-space in the range 10−2 to 100, to quantify
the performance of the detector. We define the Accuracy by
subtracting MR by 1 to make sure it is positive related to
performance:

A = 1−MR. (3)

The value of A ranges from [0, 1] and larger value indicates
better performance of pedestrian detector.

B. STABILITY MEASUREMENT
Accuracy is an important measurement index for pedestrian
detectors. In traditional pedestrian detection data sets [15],
different Accuracy metrics have been proposed to measure
the performance of pedestrian detectors. However, Stabil-
ity is another unneglectable measurement index for pedes-
trian detectors. In the case where two pedestrian detectors
have similar Accuracy on good quality-video sequences, the
Stabilitymeasurement provides another important dimension
to evaluate the performance. Here, we propose a Stability (S)
measurement method by analyzing the performance of pedes-
trian detectors in surveillance videos with quality degrada-
tion. To the best of our knowledge, this is the first study
to provide the dedicated analysis of stability of pedestrian
detectors for visual surveillance with video quality variation.

With the four aforementioned common distortion types,
we define Stability as a four dimensional vector,

S = [S.qp,S.res,S.wn,S.bv], (4)

where S.qp, S.res, S.wn and S.bv denote the Stability of
pedestrian detectors with QP variation, resolution variation,
additive white noise and brightness variation, respectively.

To quantify the Stability, two criteria are incorporated in
the study as follows:

1) RATE OF ACCURACY DEGRADATION
The Accuracy degradation rate of a robust detector should be
slow when input video quality decreases.

2) MONOTONICITY
A robust detector would show a monotonically degradation
in Accuracy when input video quality decreases.
It is easy to understand the slow accuracy degradation rate

criterion in degradation study. The motivation of the mono-
tonicity criterion is that, with quality degradation, detectors
whose detection accuracy oscillates are much less predictable
than detectors with monotonically accuracy degradation.
In other words, when increasing the video quality gradually,
we prefer monotonically increasing of the detection accuracy
rather than oscillating of the detection accuracy.

Given a reference video sequence and a particular dis-
tortion type x (e.g., x can be qp, res, wn and bv), we first
compute the detection Accuracy values with the reference
video sequence Aref and all the distorted video sequences
{Ai : i = 1, . . . ,Nx}, where Nx is the number of distorted
sequences with distortion type x.

For the ith distorted sequence, we formulate the penalty of
accuracy degradation PDi:

PDi = min{1, (
Ai − Aref
Aref

)2}, (5)

where Ai, and Aref are the detection accuracy on the
ith distorted video sequences and the reference video
sequence, respectively. It can be seen that in Eq. 5, PDi is
positive correlated to the difference between Ai and Aref.
In other words, less penalty will be assigned if Ai is more
closer to Aref. PDi ranges from 0 to 1. If Ai is much greater
thanAref (e.g.,Ai > 2Aref) which rarely happens in the robust-
ness test, we limit the penalty to be 1. Actually, the penalty
of accuracy degradation PDi describe the invariance property
of the detection accuracy.

Furthermore, the non-monotonicity penalty of the
ith distorted sequence PMi is formulated as:

PMi =

0 Ai ≤ Ai−

min{1, (
Ai − Ai−
Ai−

)2} Ai > Ai−,
(6)

where Ai, Ai−, and Aref are the detection accuracy on the ith,
i−th distorted video sequences and the reference sequence,
respectively.

Here, we give the definition of the i − th distorted video
sequence. With distortion type of qp, res or wn, we simply
rank the distorted sequences with quality descending. The
(i−)th distorted sequence in Eq. 6 is just next to the ith one
and with better quality.1 With distortion type of bv, the dis-
torted sequences are divided into high brightness sequences
and low brightness sequences comparing with the reference
video. By ranking these two groups separately with quality

1If i = 1, (i−)th is the reference video sequence.

28894 VOLUME 6, 2018



Y. Fang et al.: Robustness Analysis of Pedestrian Detectors for Surveillance

descending, the (i−)th distorted sequence is next to the ith one
in the same group with better quality.

To meet the monotonicity criterion, Ai is supposed to be
not larger than Ai− since the quality of the ith distorted video
sequence is worse than that of the (i−)th distorted video
sequence. Thus, if Ai > Ai−, penalty will be assigned as
shown in Eq. 6. With the same concern in Eq. 5, if Ai is much
greater than Ai− (e.g., Ai > 2Ai−), we limit the penalty to
be 1.

Based on these two penalty functions, we compute the
Stability with given distortion type x (e.g., x can be qp, res,
wn and bv) as:

S.x = 1−

√√√√ 1
Nx

Nx∑
i=1

ωPDi + (1− ω)PMi, (7)

where ω is the weighting parameter between PDi and PMi,
which is used to adjust the importance of these two factors,
and it ranges from 0 to 1.

Fig. 3 shows the flowchart of computing Stability. The
quantified Stability ranges from 0 to 1, and a higher value
shows more stable performance of a pedestrian detector. The
stability value of an ideal stable detector should be 1 with
Ai , Aref.

FIGURE 3. Stability evaluation based on the variability of Accuracy from
the reference video to the most distorted video. SqsX1 to SqsXN indicate
the distorted video sequences with distortion type x.

IV. EVALUATION RESULT
In this section, we show the evaluation result of several
existing pedestrian detectors on DSurVD.2 The comparison
and robustness between the tested detectors are given, along
with the discussion about the evaluation result.

A. EVALUATED DETECTORS
We evaluate the performance of seven representative existing
pedestrian detectors (Table 2) on DSurVD. The source codes
of these detectors are obtained from their corresponding
public websites. To evaluate the detectors, we use the pre-
trained pedestrian model and the default parameter values
provided by the authors. We believe that this is fair since the
authors have the best knowledge in tuning the parameters.
Here, we give some brief introduction of these evaluated

2Only results on sequences PETS09L1, TownCentre and ParkingLot1 are
shown in this paper due to the page limitation. The full results can be achieved
on: https://sites.google.com/site/sorsyuanyuan/home/rdetection

detectors, while a thorough survey of pedestrian detectors can
be referred to [5] and [13].

As a type of gradient-based features, histogram of gra-
dient (HOG) [9] shows substantial gains over conventional
intensity-based features. The evaluated HOG pedestrian
detector is based on the sliding window paradigm, while a
soft linear SVM classifier is used to classify the positive
pedestrian windows and negative windows. Compared with
HOG pedestrian detector, HogLbp [37] pedestrian detector
uses the combination of HOG and local binary pattern (Lbp)
as the feature descriptor. By representing the edge/local shape
information, Lbp feature is a complement to HOG feature
when the background is clutteredwith noisy edges.Moreover,
the integration of global and part-based detectors in HogLbp
pedestrian detector improves the detection accuracy when the
targets are partial occluded. In the study of LatSVM [16],
a deformable part-based pedestrian detector is designed. The
unknown part positions are modeled as latent variables in
an SVM framework, which allows reasonable deformation
of the target. Moreover, a PCA-HOG (Principal Component
Analysis-HOG) is proposed to reduce the feature dimension-
ality with no noticeable loss of information. The difference
between LatSVM and LatSVM-IN in Table 2 is the training
data, LatSVM is trained with the PASCAL training data while
LatSVM-IN is trained with INRIA training data. In C4 [40]
pedestrian detector, a cascade classifier with two nodes of lin-
ear SVM andHistogram Intersection Kernel (HIK) SVM [23]
is used. And in order to explicitly encode the human con-
tour information, the CENTRIST feature [41] is used in C4.
As reported in [5], Aggregate Channel Feature (ACF) detec-
tion framework achieves state-of-art performance in pedes-
trian detection. HOG and LUV color features are used, and
boosted trees are trained in ACF. The difference between
ACF and ACF-Cal in Table 2 is the training data, ACF is
trained with INRIA training data while ACF-Cal is trained
with Caltech training data.

TABLE 2. List of tested pedestrian detectors. (ACF, ACF-Cal) and (LatSVM,
LatSVM-IN) are the same algorithms but with different training data. The
pedestrian model height of each detector is measured in pixels.

B. ACCURACY ON REFERENCE VIDEO SEQUENCES
The Accuracy of detectors on the reference video sequences
reflects the performance of detectors on good-quality videos.
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FIGURE 4. Miss rate vs. FPPI on reference video sequences (See Section IV-B for details). (a) PETS09L1. (b) TownCentre. (c) ParkingLot1.

The miss rate vs. FPPI of detectors on reference video
sequences are plotted in Fig. 4. Legend entries show the
log-average miss rate of each detector from best to worst.
It can be seen that LatSVM (or LatSVM-IN) and ACF
(or ACF-Cal) consistently perform better compared with
other algorithms. On PETS09L1, LatSVM and ACF-Cal
show higher detection accuracy than LatSVM-IN and
ACF respectively, while on TownCentre and ParkingLot1,
LatSVM-IN and ACF perform better. From Table 2, it can
be seen that the model heights (in pixels) of LatSVM (80)
and ACF-Cal (50) are smaller than LatSVM-IN (96) and ACF
(100) respectively. And from Table 1, it can be seen that the
pedestrian height of PETS09L1 is smaller than that of Town-
Centre and Parkinglot1 due to smaller resolution. We find
that to the same algorithm, training with small model height
gives better performance on sequences with small pedestrian
height, and vice versus.

C. QUADRANGLE: ROBUSTNESS REPRESENTATION
With the definition in Sec. III, the robustness of a detec-
tor can be described by a combination of Accuracy (Aref)
on good-quality video and Stability (S) with four types of
distortions. The detection accuracy of detectors on distorted
video sequences are computed and plotted in Fig. 6. Besides,
the performance of Stability with different weighting param-
eters ω are plotted in Fig. 5. From Fig. 5 and Fig. 6, it can
be seen that most detectors follow the monotonicity criterion
when the video quality drops. Additionally, with different
weighting parameters ω, the ranking order of Stability S
from different pedestrian detectors are almost kept stable,
which demonstrates that the adjustment of parameter ω has
little effect on the ranking order of Stability S by different
pedestrian detection algorithms. In other words, with larger
parameter ω, the performance of the pedestrian detection
methods decreases when the video quality drops. However,
there might be some pedestrian detector with bad mono-
tonicity in the literature. Thus, we hold the second factor
with small value to provide good extensibility for the pro-
posed metric. This is the reason why we assign more weight-
ing to the penalty of accuracy degradation PD by setting

w= 0.8 in Eq. (7) when computing the detection performance
Stability. In the experiment, we found that the detection accu-
racy would not decrease greatly with video quality dropping
on a robust pedestrian detector, which demonstrates that the
initial hypothesis of monotonicity is convincing. In the future,
we will further investigate into this weighting parameter to
design better metric.

When comparing the robustness of two detectors, we first
consider the value ofAref. If there exists a largeAref difference
between the compared detectors, the detector with the larger
Aref is more preferable and we should take less consideration
on the Stability. On the other hand, if the compared detectors
are with a similar value of Aref (this is likely the case for
the relevant state-of-the-art detectors), then S becomes an
important criterion to robustness.

Based on this analysis, we propose the robustness quadran-
gle (as shown in Fig. 7) to visualize Aref and S. For each quad-
rangle, the heights of four angles represent the Stability to the
four types of distortion respectively (S.qp,S.res,S.wn,S.bv).
The center point of each quadrangle indicates Aref ∗ λ where
λ is a scaling factor ofAref in robustness and decides the range
of x-axis of the robustness quadrangles figure.

By given a non-zero value to λ (e.g. λ = 5, λ = 2),
the robustness quadrangles of evaluated detectors are shown
in the left and middle column of Fig. 7. If two detectors
are with large Aref difference, we can intuitively read the
Aref difference based on the distance between two robustness
quadrangles. If the Aref values of two detectors are similar,
the center points of two quadrangles are close and we can
straightforward compare their S values by the corners of two
overlapped quadrangles. The red square on the most right
hand side with dashed boundary represents the ideal detector
whose Aref = 1 and S = [1, 1, 1, 1].

If we want to emphasis Aref more in the robustness quad-
rangle figure, we can set larger λ (e.g. λ = 5, the left column
of Fig. 7). Thus the differences of Aref between detectors will
be amplified on the x-axis. If we want to emphasis S more in
the robustness quadrangle figure, we can set smaller λ with
the same reason (e.g. λ = 2, the middle column of Fig. 7).
λ = 0 is an extreme case that we only compare S of detectors
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FIGURE 5. The performance of Stability S with different weighting parameters ω on different datasets. X-axis refers to the different weighting
parameters ω in the range from 0 to 1, and y-axis represents the performance of Stability S with four attributions (S.qp: Quantization Parameters,
S.res: Resolution, S.bv: Brightness Variation, S.wn: White Noise). (a) S.qp with ω on TownCentre. (b) S.res with ω on TownCentre. (c) S.bv with ω on
TownCentre. (d) S.wn with ω on TownCentre. (e) S.qp with ω on ParkingLot1. (f) S.res with ω on ParkingLot1. (g) S.bv with ω on ParkingLot1. (h) S.wn
with ω on ParkingLot1. (i) S.qp with ω on ParkingLot2. (j) S.res with ω on ParkingLot2. (k) S.bv with ω on ParkingLot2. (l) S.wn with ω on ParkingLot2.

while all the center points of quadrangles converge to [0, 0]
and we cannot see any difference between Aref. The right
column of Fig 7 shows the the robustness quadrangles with
λ = 0.

D. STABILITY WITH QP VARIATION
The first row of Fig. 6 shows the Accuracy vs.
PSNR curves of evaluated detectors with three different
scenes (Campus, Town Centre and Car Parking). It can be
seen that, in general, the Accuracy-PSNR curves of most
detectors are monotonic. And the degradation of Accuracy
of detectors is not obvious before some critical PSNR points
(e.g., before 35dB). One noticeable fact is that, to each
detector, the Accuracy fluctuates around Aref before it dra-
matically decreases. This is because when the pixel val-
ues slightly changes due to compression, it would affect
the decision of the algorithms on detections near to the
threshold.

From the Stability values of left-upper corners in Fig. 7
and the ranking in Fig. 6(a), 6(b) and 6(c), HogLbp is
most stable with QP variation among the evaluated detectors
by ranking 1st on both TownCentre and ParkingLot1 and
2nd on PETS09L1. Comparing to HOG, the main modi-
fication of HogLbp is the feature type. Hence, Lbp fea-
ture [26] can be an important complement to HOG feature
in pedestrian detection on heavily compressed surveil-
lance videos with large QP. Moreover, with QP variation,
ACF-Cal shows higher stability than ACF, and LatSVM-IN
shows higher stability than LatSVM. This indicates that
the training data is another important factor to detection
stability. With the same algorithm of ACF, the detector
trained with Caltech [12] data set performs more stable
than the detector trained with INRIA [9] data set; with
the same algorithm of LatSVM, the detector trained with
INRIA data set performs more stable than the detector trained
with PASCAL [15]. More exploration is needed toward
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FIGURE 6. Detection accuracy variation of evaluated detectors with different types of distortion. In the first row and third row, PSNR=Inf. refers to the
reference video sequences with the best quality. In the second row, the x-axis refers to the average pedestrian heights of the tested sequences. In the
fourth row, the x-axis indicates the brightness level. ‘‘0’’ denotes the reference video sequences while negative values denote low brightness
sequences and positive values denote high brightness sequences. (a) S.qp on PETS09L1. (b) S.qp on TownCentre. (c) S.qp on ParkingLot1.
(d) S.res on PETS09L1. (e) S.res on TownCentre. (f) S.res on ParkingLot1. (g) S.wn on PETS09L1. (h) S.wn on TownCentre.
(i) S.wn on ParkingLot1. (j) S.bv on PETS09L1. (k) S.bv on TownCentre. (l) S.bv on ParkingLot1.
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FIGURE 7. Robustness Quadrangles on tested sequences. The center location of each quadrangle read from
x-axis denotes Aref ∗ λ of each detector. The heights of four corners read from y-axis denote stability values
with four types of distortions, respectively (QP variation, Resolution variation, White noise and Brightness
variation from left-upper corner to left-bottom corner clockwise). For the ideal detector which is plotted in
red color with dashed line, the center of corresponded quadrangle is 1 ∗ λ and the heights of all the four
corners are 1. When comparing the robustness of two detectors, the center locations of quadrangles are first
compared and quadrangle on the right side is preferred. When the center locations of two quadrangles are
close, the differences of stability values with different distortion types can be easily read from the corner
heights. λ is a scaling factor of Aref in robustness measurement, by setting λ = 0 (shown in the right column),
only the differences of stability values can be read and the differences between Aref are obscured.
(See Section IV-C for details). (a) PETS09L1, λ = 5. (b) PETS09L1, λ = 2. (c) PETS09L1, λ = 0.
(d) TownCentre, λ = 5. (e) TownCentre, λ = 2. (f) TownCentre, λ = 0. (g) ParkingLot1, λ = 5.
(h) ParkingLot1, λ = 2. (i) ParkingLot1, λ = 0.
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generalization of learning-based approaches and tackle
overfitting.

E. STABILITY WITH RESOLUTION VARIATION
To resolution degradation of video sequences, pedestrian
height change has the most direct impact which affects the
detection accuracy.We plot the Accuracy vs. mean Pedestrian
Height (in pixels) curves of evaluated detectors in the second
row of Fig 6. It can be seen in most of the cases, videos
with larger pedestrian height are with higherAccuracy values.
Also, before the pedestrian height decreases to some critical
points (e.g., 40 to PETS09L1, and 60 to TownCentre and
ParkingLot1), the Accuracy values of detectors are relatively
stable with pedestrian height change.

From the Stability values of right-upper corners in Fig. 7
and the ranking in Fig. 6(d), 6(e) and 6(f), we can see
that ACF-Cal performs more constantly even on videos with
low pedestrian height. Note that, the ACF-Cal is with the
lowest model height (50) for training among the evaluated
detectors. It reveals that the lower model height for training
can result in stable performance to videos with low pedes-
trian height (or low resolution). However, a detector with
too low model height may cause low Accuracy in detection
as well (see the performance of ACF-Cal on TownCentre).
We should be careful in defining the model height in the
later detector designing to achieve both high Accuracy and
Stability.

F. STABILITY WITH ADDITIVE WHITE NOISE
The third row of Fig. 6 shows the Accuracy vs. PSNR curves
of evaluated detectors with different levels of additive white
noise. It can be seen that, for most detectors, there is no obvi-
ous degradation of the Accuracy before some critical PSNR
(e.g., before 40dB for the cases being studied) points. For
noisy sequences of PETS09L1 and ParkingLot1, LatSVM
and LatSVM-IN shows preferable stability comparing with
other detectors based on the Stability values of right-bottom
corners in Fig. 7 and ranking in Fig. 6(g), 6(h) and 6(i). For
noisy sequences of TownCentre, LatSVM and LatSVM-IN
rank the third and fourth just behind HOG and C4. However,
the high Stability values of HOG and C4 on TownCentre
are meaningless, due to their low detection Accuracy on the
reference video of TownCentre (less than 0.1).

It has been demonstrated that, the tail of singular values
are dominated by the white Gaussian noise while the first
few singular values are dominated by the image structure
when performing SVD to noisy images [22], [25]. Likewise,
the PCA-HOG used in LatSVM and LatSVM-IN can be a
good way for increasing the detection accuracy on noisy
video sequences, by only using the principle components
which are more robust to white noise.

G. STABILITY WITH BRIGHTNESS VARIATION
The last row of Fig. 6 shows the Accuracy changing to
brightness variation of the evaluated detectors. ‘‘0’’ on bright-
ness level axis denotes the reference video sequences, while

negative values indicate low-brightness sequences and posi-
tive values indicate high-brightness sequences.

From the Stability values of left-bottom corners in Fig. 7
and ranking in Fig. 6(j), 6(k) and 6(l), it can be seen that
detectors with HOG based features alone (HOG, LatSVM
and LatSVM-IN) are more stable with brightness variation
comparing with other evaluated detectors, in line with the
claim in [9] that HOG feature is invariant to illumination
variation. Moreover, it can be seen that ACF and ACF-Cal
which use LUV feature channel are more sensitive to bright-
ness variation. Another interest finding is that, evaluated
detectors shows higher stability with brightness variation
than QP, resolution variation and additive white noise. One
possibility can be that, brightness variation caused by envi-
ronment illumination change has been widely studied by the
community of pedestrian detection, and thus the brightness
variation problem is better addressed in recent pedestrian
detection studies.

V. SUMMARY AND DISCUSSION
In this paper, we have introduced the DSurVD for evaluating
the robustness of pedestrian detectors to video distortions
including H.264 compression distortion, resolution varia-
tion, additive white noise and brightness variation. Moreover,
we give a thorough discussion of the detection robustness
regarding to video quality degradation. The robustness is
composed by the detection accuracy on good-quality refer-
ence videos Aref and the performance stability on distorted
videos. Based on the rate of accuracy degradation and mono-
tonicity criteria, we define the detection stability mathemat-
ically. We also propose an intuitive robustness presentation
method named Robustness Quadrangle which can be easily
used to compare both the accuracies and stabilities between
detectors. Usually, we treat the Aref as the main attribute of
robustness. However, when theAref of the compared detectors
are close, as in many cases in practice, the stability measure-
ment provides one more dimension to measure the robustness
of the detectors.

With in-depth analysis of detection stability in Sec. IV,
we have the following findings: 1) To H.264 compression
distortion, Lbp feature can be an important complement to
HOG feature in pedestrian detection. 2) Detectors trained
with low model height performs more stable when the spatial
resolution of the video reduces. However, trainingwith unrea-
sonable low model height may result in detection accuracy
decrease, and cannot work well with high resolution cases.
Obviously, more careful studies are called for generaliza-
tion of the learnt models. 3) LatSVM shows more promis-
ing stability [16] to additive gaussian noise compared with
other evaluated detectors. And this is possibly resulted by
the PCA-HOG, which only consider the main structures of
HOG features after PCA. 4) HOG shows the best stability
with brightness variation among all the features used by the
evaluated detectors.

Based on the robustness evaluation, the following two cru-
cial cases are important to improve the detection robustness
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in the future studies, distorted videos with quality under
‘‘critical quality point’’ and over-exposed videos with high
brightness. To distorted videos with compression distortion,
resolution reduction and additive white noise, the detec-
tion accuracy of most detectors does not gradually decrease
when video quality drops, but decreases dramatically when
the video quality reaches a critical point. Hence, efforts on
extending the ‘‘critical quality point’’ could be one way to
improve the detection stability. Compared with the pedestrian
detection on low-brightness videos, detection on overexposed
videos is an more challenging task and has been rarely
studied.

As mentioned previously, much progress has been made
to improve the detection accuracy in good-quality videos
during the past decades. Comparing the evaluated pedestrian
detectors in this study, the average miss rate on the high
quality reference videos of DSurVD has been reduced from
around 90% to 50%. However, quite less attention has been
put on the research of the detection stability on surveillance
videos with low quality. The in-depth analysis in this study
have shown that there is still much room for improvement
regarding to pedestrian detection in surveillance videos with
low quality (often occurring in real-world situations).
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