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ABSTRACT Anomaly detection of time series is an important topic that has been widely studied in
many application areas. A number of computational methods were developed for this task in the past few
years. However, the existing approaches still have many drawbacks when they were applied to specific
questions. In this paper, we proposed a meta-feature-based anomaly detection approach (MFAD) to identify
the abnormal states of a univariate or multivariate time series based on local dynamics. Differing from the
traditional strategies of ‘‘sliding window’’ in anomaly detection, our method first defined six meta-features
to statistically describe the local dynamics of a 1-D sequence with arbitrary length. Second, multivariate time
series was converted to a new 1-D sequence, so that each of its segmented subsequence was represented as
one sample with six meta-features. Finally, the anomaly detection of univariate/multivariate time series was
implemented by identifying the outliers from the samples in a 6-D transformed space. In order to validate the
effectiveness of MFAD, we applied our method on various univariate and multivariate time series datasets,
including six well-known standard datasets (e.g. ECG andAir Quality) and eight real-world datasets in shield
tunneling construction. The simulation results show that the proposed method MFAD not only identifies the
local abnormal states in the original time series but also drastically reduces the computational complexity.
In summary, the proposed method effectively identified the abnormal states of dynamical parameters in
various application fields.

INDEX TERMS Anomaly detection, meta-feature, one-class SVM, time series, shield tunneling.

I. INTRODUCTION
A time series is a collection of observations recorded sequen-
tially following time stamps, which makes the time series
data have a natural data organization form. As an impor-
tant class of temporal data, time series receives increasing
attention from researchers, and is valuable for data comprises
pattern discoveries, including anomaly detection [1], trend
analysis [2], periodic pattern detection [3], and short-term
prediction [4], etc. In particular, anomaly detection, as an
important topic in the area of time series analysis, aiming at
finding abnormal or unexpected sequences [5], was widely
applied in many areas, such as fault diagnosis [6], health-
care [7], weather data analysis [8], finance [9], etc. In Engi-
neering or mechanical field, the availability of mechanisms
for early and reliable fault detections greatly reduces the risks
of malfunction or unexpected shutdowns of the system [10].

A subway tunnel is an underground passageway. Shield
machine is a tunnel boring device, which works in a narrow
workspace with high temperature and large gravels [11].
In the process of tunneling, the rotary cutting wheel, which
is located at the front of the shield machine, can effectively
excavate soil. In order to generate the tunnel lining, a new
tunnel ring will be built using the erector once a certain
distance has been excavated (roughly 1.5–2 meters). In the
process of excavation and propulsion for shield tunneling,
various failures or anomalies occur [12], [13]. If failures are
not detected promptly, they may influence the progress of
the construction, as well as the safety of workers and sur-
rounding environment [4]. Indeed, accurate and early detec-
tion of anomalies or faults in a shield system is crucial to
prevent the spread of faults and to reduce considerably losses.
Currently, many shield tunneling machines can send back
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dynamical states of parameters in real time; however, there
is no anomaly detection method that is able to effectively
identify the abnormal states using recent historic data [14].
The high dimension and noises of the time series in shield
tunnel construction raise great challenges to current existing
computational methods.

Recently, a number of computational approaches have
been introduced to find anomalies in univariate/multivariate
time series. These methods can be roughly grouped into four
categories: (1) statistics-based methods [15], [16], (2) intel-
ligent computing methods [6], [17], (3) Bayesian networks
and other Bayesian reasoning extensions [10], [18], and (4)
model-based approaches [19]. Statistical approaches belong
to data-based technique, which can detect abnormal changes.
Principal component analysis (PCA) [20] and partial east
squares (PLS) [16] are two basic methods of fault detection in
multivariate analysis [16]. In more recent years, several intel-
ligent computingmethodswere developed for anomaly detec-
tion, such as neural networks (or deep learning) [21]–[23],
support vector machines (SVM) [4], fuzzy theory [24], and
rough sets theory [25], etc. But they still have obvious lim-
itations: 1) the mechanical equipment usually lacks training
fault samples [10]; 2) the training and testing stages of these
methods are mutually independent, and they lack continuous
learning ability. Bayesian networks, which can be represented
as directed graphs, seem useful for fault detection and isola-
tion with abrupt and incipient faults [26], [27]. Nevertheless,
the potential limitation of these methods comes from the fact
that more instances imply more required time to inference the
weights (probability distributions) of the edges [5]. For the
model-based methods (e.g. state space models, vector mod-
els [28], [29]), their advantages and drawbacks are associated
with the input time series. Without experts’ prior knowledge
of the system (temporal data), it is generally difficult to accu-
rately build the model. According to above descriptions, we
realize that anomaly detection algorithms are usually domain
driven and should be built on experts’ knowledge.

In this study, a meta-feature based anomaly detection
approach (MFAD) is proposed for predicting the potential
risks in the complex process of shield tunnel construction.
To predict and diagnose the anomalies in shield tunneling
machine, we firstly defined six meta-features for statistically
describing the dynamics of a subsequence from the original
series. Each data point in the segmented subsequence is asso-
ciated with the same ring number of tunnel lining, which
indicates that the time-series data in tunneling is not only
related to time, but also related to the distance or the ring num-
ber [30]. Secondly, multivariate time series was converted
to a one-dimensional sequence. Each of its segmented sub-
sequence was characterized by defined meta-features. This
step drastically reduces the dimensionality of the processed
data. Thirdly, a one-class SVM (OCSVM) was optimized on
transformed samples, and outliers can be easily recognized.
For validating its effectiveness, our developed MFAD frame-
work was applied on several well-known public datasets and
real-world time series datasets. The simulation results show

that the proposed approach is able to automatically iden-
tify the abnormal states of the key factors (variables) in the
construction of shield machine. The comparisons with other
algorithms show that our MFAD approach is significantly
better.

The rest of the paper is structured as follows: in
Section II the proposed computational approach is presented.
In section III, the datasets for validation and the experiment
design are described in detail. In Section IV, the simula-
tion results are analyzed and discussed, while in Section V
conclusions are drawn and suggestion for future work are
presented.

II. META-FEATURE-BASED APPROACH FOR ANOMALY
DETECTION (MFAD)
In previous studies, sliding window-based strategy was
widely used for time series analysis [31]–[34]. However,
the size of sliding window is always determined manually.
In addition, sliding window is just for sub-sequence seg-
mentation, but the prediction performance also depends on
the similarity metrics. In order to avoid the direct calcula-
tion of the distance between two sub-sequences to represent
their similarity, we proposed a novel strategy to distinguish
normal or abnormal sub-sequences with several represen-
tative meat-features, which reflect the local dynamics of
a time series. In order to capture the characterizations of
the time series of a variable (feature) in detail, we defined
six meta-features to represent the temporal dynamics and
its curve shape. We assume that a univariate time series
X = {x1, x2, . . . , xN } is consisted of M subsequences with
a sorted index list of subsequences Z = {1, 2, . . . , z, . . .M}.
N is the length of original series X . The z-th (1 ≤ z ≤ M)
subsequence Xz = {xz,1, xz,2, . . . , xz,q} in X , is associated
with the time range of z-th tunnel ring [35], will be simply
represented by a one-dimensional vector with six elements.
Using our meta-features, any two unequal sub-sequences are
comparable. The definition of the above six meta-features
were detailed described in the following sections (Figure 1).

A. THE DEFINITION OF META-FEATURES
1) KURTOSIS
Kurtosis is a measure of whether a time series is heavy-
tailed or light-tailed relative to a normal distribution [36].
This measurement is used to effectively detect the abrupt
peaks from a time series, such as ECG data [37], [38].
Kurtosis also provides a way to reflect the variability of
a sequence. Time series with high kurtosis tends to have
heavy tails, or outliers; however, low kurtosis indicates light
tails or lack of outliers. In this study, the Kurtosis was defined
in Eq. (1):

Kz =
1
n

∑n

i=1
D4
i − 3 (1)

Where n is the length of z-th subseries; and the Di values
are the standardized data values using the standard deviation
defined using n rather than n− 1 in the denominator.
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FIGURE 1. (A) The flowchart of the MFAD approach for univariate/multivariate time series; (B) the semantic graph of meta-feature space.

2) COEFFICIENT OF VARIATION
We also defined ‘‘coefficient of variation’’ to calculate the
local variability relatively to the whole sequence [39]. Our
hypothesis is that the local variability of a subsequence can
be significant increased if there is an abrupt peak occurred
within this interval. Therefore, this meta-feature indicates if a
subsequence sharply changed its curve values. The definition
was shown in Eq. (2):

Cz =
σz

µ
(2)

In Eq. (2), variable σz denotes the standard deviation of z-th
subseries; and µ is the mean value of variable X on the whole
series Z .

3) OSCILLATION
Oscillation is a periodic fluctuation between two things,
which is a very common problem in industrial area [40]. The
presence of oscillations leads to undesirable increased vari-
ability of processed variables, and also provides a new insight
to identify the local dynamics from time series [41], [42].
For example, Jäncke et al. [43] studied how to identify
EEG oscillations, which might be associated with dynamic
changes in the acoustic features for the musical stimulus.
Particularly,Wang et al. [44] proposed a discrete cosine trans-
formation (DCT)-based method to effectively detect oscil-
lations from univariate time series. In this study, we also
calculated the oscillation of a subseries by usingWang et al.’s
approach.

4) REGULARITY
For assessing the complexity of sequence, we applied sam-
ple entropy [45] to calculate the regularity of time series.
Sample entropy is widely used for diagnosing diseased states
from physiological time-series signals [46]. The less number
of abrupt peek in the sequence, the larger the value of
regularity is.

5) SQUARE WAVE
Square waves are universally encountered in digital switching
circuits and are naturally generated by binary logic devices.
According to the sampled timeline within a ring, a shield
tunneling machine firstly boosts forward for a while, and then
the segments are installed [47]. Considering the specialty of
our application, the states of some variables within a ring rep-
resent obvious square wave: a sequence starts and maintains
the signal with significant high values in the first half of the
period, and sharply reduces the signal for the second half way.
We assumed that the curve of a variable within a ring is nor-
mal if square wave is represented and consistent with expec-
tation; otherwise, an abnormal is detected. Given the vector
of z-th subseries as Xz = {xz,1, . . . , xz,i, xz,i+1, . . . , xz,N } and
i = bN/2c, the binarized sequence of Xz can be easily
obtained, which is denoted as TX z. The calculation of TX z
was defined in Eq. (3):

TX z = Xz > 0.5 ∗max(Xz) (3)

We tested if z-th subseries is square wave with the following
Eq. (4):

Sz = 0.5− rs ∗ TX z/LEN (TX z) (4)
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Where function LEN (·) denotes the length of the sequence
TX z, and vector rs = {1, 1, . . . , 1, 0, 0, . . . , 0} filters
the signal with high values in TX z. In the vector rs,
the number of ‘‘1’’ is i. According to above formula-
tions, the sub-series within the time of a ring corre-
sponds to a lower value if it represents square wave in the
sequence.

6) VARIATION OF TREND
The above five meta-features extract the various dynamics
from the original time series, however, trend analysis provides
a newway to represent the difference between two series [48].
For evaluating the general trend of the subseries related with
a ring, we firstly smoothed the original sequence and then
calculate the variation on it. The variation of trend of z-th
subseries was defined in Eq. (5):

Tz = std(smooth(Xz)) (5)

Where function smooth(·) and std(·) are used to obtain the
smoothed sequence of the original series Xz and its stan-
dard deviation, respectively. For a series with random trend,
the value Tz will be small if there is no abrupt peak. If a
series represent abrupt peak, the value of Tz will be large (see
Figure 1A).

B. ANOMALY DETECTION BASED ON META-FEATURES
1) DIMENSION CONVERTOR
Often, the anomalies in a multivariate time series can be
detected only by analyzing sequence of all variables. The key
underlying idea is to reduce a multivariate time series into a
univariate time series by exploring the correlation structure
of the original variables [5]. In this study, the dimension
convertor is designed to extract the first component vector
of a multivariate time series with PCA or SVD; and the
multivariate series was converted to a univariate series. The
extracted first component represents the largest amount of
information from the original series. After obtained the con-
verted univariate series, six meta-features were calculated
from this new generated sequence.

2) SPACE TRANSFORMATION
After defining the six meta-features, each subseries related
with a tunnel ring will be represented as a sample with six
elements, regardless of the length of the original subsequence.
For identifying the abnormal states from the whole sequence
of variable X , each subsequence Xz (1 ≤ z ≤ M ) was repre-
sented as NSz = {Kz,Cz,Oz,Rz, Sz,Tz}. Therefore, all theM
subsequences of variable X will be transformed into a new
6-dimentional space as M samples, and the abnormal state
detection is just to identify the outliers from these samples
(Figure 1B).

3) ONE CLASS SVM (OCSVM)
The support vector machines (SVM), firstly proposed by
Cortes and Vapnik [72], was initially developed to solve the

two-class classification problem [4]. The one-class support
vector machines (OCSVM), proposed by Scholkopf et al.,
aims at detecting samples that do not resemble the majority
of the dataset [73]. As a method of distribution estimation,
OCSVM was considered as a novel tool in outlier detection.
Nowadays, OCSVM has been widely adopted in many one-
class classification application fields, such as, fault detection
and diagnosis [1], [50].

4) META-FEATURE BASED ANOMALY DETECTION
USING OCSVM
According to the above description, we identified the abnor-
mal states using OCSVM on the meta-feature-based data
space. Each transformed sample for OCSVM corresponds
to a subseries within a tunnel ring. Therefore, the detecting
resolution of our method is one ring, and could not go to
intra-ring. Given a small number of transformed samples to
OCSVM, the significant outliners can be easily detected.
According to the special design of above meta-features,
the sampled time series only requires to be calculated one
time, which is suitable for online learning.

III. SIMULATION EXPERIMENT
A. DATA PREPROCESSING
For evaluating the performance of the proposed method
MFAD, we designed simulation experiments to test a
bunch of univariate and multivariate time series datasets,
including 1) four well-known time series datasets, e.g.
Nprs44 [51]–[53], chfdb/chf01 [53], [54], mitdbx_108 [53],
and Air quality (UCI) [5]; The first three datasets can be
download from the link: http://www.cs.ucr.edu/∼eamonn/
discords/, and the last one is from UCI public database.
2) a real-world time series dataset of shield construction,
which was collected from a tunneling company located in
Shanghai, China. The purpose of this study is to develop
an efficient computational approach to identify the potential
abnormal states of dynamical parameters in shield tunneling
machines. The details of above datasets were described as
following.

The time series Nprs44 [51], [52], showing a patient’s
respiration, as they wake up. This data series was man-
ually segmented as three stages by a medical expert
Dr. J. Rittweger: 1) state II sleep; 2) eyes closed,
awake or stage I sleep; and 3) Eyes open, awake. The series
was visualized as shown in Supplementary Fig. S1. There
are two obvious discords occurred in this series. The first
discord is very obvious deep breath taken as the patient
opened their eyes (stage III). The second discord is much
more subtle and impossible to see at this scale (stage I). The
details of this dataset was described in [53].
Chfdb/chf01 [54], an ECG (Electrocardiography) time

series, is come from the MIDMC congestive Heart Failure
Database. This dataset with length 3751, includes two traces
(variables), and there is an obvious discord occurred in each
trace (See Supplementary Fig. 2).
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TABLE 1. The univariate time series datasets tested on the MFAD method.

TABLE 2. The multivariate time series datasets tested on the MFAD method.

The dataset mitdbx_108 is recorded from the PhysioNet
Web server; and its length is 21600 [53]. There are two
variables (features) included in this time series. The first vari-
able (Supplementary Fig. S3) was widely studied by other
works and the top 3 discords were recognized. Cardiologists
from MIT have annotated the discords in this time series,
and Keogh et al. [53] have added colored markers to draw
attentions to those annotations.

The dataset Air quality [55] contains 9358 instances of
hourly averaged responses that are collected from an array
of 5metal oxide chemical sensors embedded in anAir Quality
Chemical Multi-sensor Device. All the data was recorded
from March 2004 to February 2005 representing the longest
freely available recordings of on field deployed air quality
chemical sensor devices responses. For each of the above
three well-known time series datasets, we randomly picked
up several non-overlapping sub-series from the original series
to validate the effectiveness of our approach.

The real-world time series data of shield construction
includes over 400 variables, and each variable is observed
once every 10 seconds. After removing out the irrelevant and
redundant features [56], [57], we finally obtained 157 fea-
tures, which related with detailed states on six aspects of
shield advance. In our experiments, we mainly focused on
the top three most important aspects: 1) the states of cut-
ter [58]; 2) the states of grouting system [59]; and 3) the
hydraulic thrust system [60], [61]. We mainly focused on
the variable ‘‘rotating speed of cutter head’’ to check the
states of cutter, ‘‘grouting flow’’ and ‘‘grouting pressure’’
for the states of grouting system, and ‘‘engine oil pressure’’
and ‘‘total thrust’’ for the hydraulic thrust system. In our
simulation, we randomly chose univariate ormultivariate sub-
sequences related with above three aspects and constructed
8 subsets in total; and each one covered at least 30 tunnel
rings. The details of the selected dataset were described in
Table 1-2.
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B. EXPERIMENT DESIGN
To validate the effectiveness, we tested our developed
MFAD approach on various univariate and multivariate
time series datasets, including square waves or random
sequences.

1) VALIDATION ON UNIVARIATE SEQUENCES
Here, we selected three subsets from the well-known datasets
Nprs44, chf01, and mitdbx_108. Considering the original
series chf01 [54] and mitdbx_108 [53] are 2D, we selected
the first variable of both datasets for validation. All the
instances of testing variables were used in the simulation.
For each of above three univariate sequences, we randomly
selected 9 or 12 non-overlapping subsequences (including
proved discords), and transferred them to 6-dimentional data
space for outlier detection via OCSVM. Most importantly,
we also constructed six subsets of univariate sequences,
which were related to the dynamics of shield tunnel-
ing machines. The details of above datasets were shown
in Table 1.

2) VALIDATION ON MULTIVARIATE SEQUENCES
Our computational framework also addresses multivariate
time series that represent multiple discords in different vari-
ables at different time points (Table 2). In our experi-
ments, we selected three multi-dimensional time series to
test our MFAD approach: chf01 (2D), mitdbx_108_2 (2D),
and Air Quality (5D). All instances (3751) of two vari-
ables in chf01 were selected for validation. The number of
instances from Air quality dataset is 3500-9000. In addi-
tion,mitdbx_108_2 [62], with length 5400, is a subset of
mitdbx_108. In addition, we also collected two multivari-
ate time series of shield construction: MDS1 (5D), and
MDS2 (9D). Each multivariate time series was converted
to one-dimensional sequence via PCA [63] or SVD [64].
The first component vector was further analyzed with
our developed meta-features. We simply named the above
two strategies as: PCA+MFAD, and SVD+MFAD. The
discords occurred in different variables of an original
dataset might be reproduced with the first component
vector.

3) COMPARISON WITH OTHER ALGORITHMS
To validate the effectiveness, we compared our proposed
approach with three typical algorithms on four of above
datasets. The algorithms that we selected to be compared
are Brute force [65], SAX [53], and K-means based clus-
tering [66], [67]. Four datasets were calculated, including
npr44, TS_01, Air Quality, and MDS2 (See the details in
Table 1-2). The multivariate time series datasets need to be
firstly converted to univariate sequence with PCA or SVD.
Based on the information of ground truth of each dataset
show in Table 1-2, accuracy, sensitivity, and specificity were
calculated to represent the differences between all of four
computational approaches.

C. EXPERIMENTAL PARAMETERS
The simulating experiments were performed under the envi-
ronment of MATLAB 2017a and LIBSVM 3.22 [68] with
Intel Core i7-6600U Processor, 8G RAM (1600MHZ). As a
distribution estimation method, OCSVM, has been imple-
mented to identify the outliers (abnormal states) from the
whole data samples. After assigning the label of each sample
as ‘‘1’’, all the samples were used to construct a one-class
SVM. After obtained the optimal trained model, the same
samples were input to OCSVM again for the label prediction.
The samples which predicted as ‘‘−1’’ were finally deter-
mined as abnormal states (outliers). In OCSVMmodel, Gaus-
sian RBF kernel was employed, and the kernel parameters C
and γ were optimized by grid search [56]. In the grid search,
we set C = 2a and γ = 2b. Variable a changes from −5 to
15 with step 0.1, and variable b changes from−15 to 10 with
step 0.25. Therefore, we have the range of [0.0313, 32768]
for C and the range of [0, 1024] for γ . In order to receive
the better performance from OCSVM, the data samples were
normalized before classification.

To evaluate the accuracy of prediction, three statistical met-
rics were employed here: (1) accuracy, (2) sensitivity, and (3)
specificity. The definition of these metrics were described as
shown in Eq. (6-8).

Accuracy =
TN + TP

TN + TP+ FP+ FN
(6)

Sensitivity =
TP

TP+ FN
(7)

Specificity =
TN

TN + FP
(8)

Where variables TP, FP, TN, and FN denote the number
of normal subsequences correctly detected as normal (True
positives), the number of abnormal subsequences that are
detected as normal (False Positives), the number of abnormal
subsequences that are recognized as abnormal (True nega-
tives), and the number of normal states that are recognized
as abnormal (False negatives).

IV. RESULTS
A. VALIDATION ON UNIVARIATE TIME SERIES
Firstly, our proposed approach was tested on 9 subsequences,
which were randomly andmanually segmented from the orig-
inal sequenceNprs44. The simulation result is consistent with
the observation. From Figure 2, we can clearly observe that
the 3-th and 9-th subsequences were detected as abnormal,
which were corresponding to the 2-discord and 1-discord
shown in Supplementary Fig. S1.

Secondly, our approach was tested on 9 subsequences that
were extracted from the 1st variable in ECG time series chf01.
From Supplementary Fig. S4, we found that one obvious
discord is detected automatically, which is consistent with
Supplementary Fig. S2.

Thirdly, our approach was tested on 12 subsequences that
were randomly selected from the 1st variable in time series
mitdbx_108 [53]. Supplementary Fig. S5 shows that our
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FIGURE 2. Nine subsequences were manually selected from time series Nprs44. Two subsequences were detected as abnormal by
MFAD and marked in red.

approach detected 8-th and 9-th subsequences as anomalies,
which correspond to discord 1 and 2 reported in [53]. Sub-
sequence 4 was missed by MFAD after detection (Supple-
mentary Fig. S3). Compared to the sustaining changes in
top 2 discords, the third discord represents a sudden peak so
that our method wasn’t able to identify it (Supplementary
Fig. S5). According to the results on the above two datasets,
we consider that our method can distinguish the abnormal
states from most of the normal states.

The proposedmethodwas also tested on six univariate time
series of shield construction.

I) In shield tunnel construction, cutter is used for cutting
of frontal soils under the thrust force [69]. The key variable
‘‘rotating speed of cutter head’’ is an indicator to reflect if the
cutter is normally running [70]. In this study, we selected two
univariate series (TS_C01, and TS_C02) relatedwith the state
of cutter, whichwere observed in the tunnel ring 258-290, and
551-580, respectively. In addition, the fault log shows that
there is a fault occurred in each sequence (see the details in
Table 1). Figure 3 shows the curves of 30 subsequences dur-
ing the ring 258-290 in series TS_C01. FromFigure 3, we can
clearly observe that the normality of cutter should present an
obvious square wave, e. g, the ring 280, or 286, etc. However,
‘‘the tripping of cutter’’ indicates that the cutter could not
work stably at the first half stage and is always characterized
by frequent shock, such as ring 266, or 267. After the simula-
tion withMFAD approach, four subsequences (nos. 260, 266,
267, and 287) were diagnosed as abnormal states. The fault

log reported that the cuttermet an abnormity (‘‘cutter was turn
down’’) in the ring 267, and induced the tripping of cutter.
In fact, this fault was recognized by our approach in advance
(see the curve of ring 266). Particularly, our trend analysis of
this variable shows more clearly that the detected abnormal
states are significant different with others (Supplementary
Fig. S6). In Supplementary Fig. S6, the dynamic of a normal
cutter shows as a square wave; otherwise, a straight line or
random curve indicates cutter cannot be started. Also, Sup-
plementary Fig. S7 presents the curves of 30 subsequences
in the period 551-580 (TS_C02), in which the curves of pre-
dicted abnormal states are significantly different from others.
Our prediction shows that seven subsequences (560, 564, 567,
568, 569, 573, and 579) were recognized as abnormal states.
Particularly, ring ‘‘568’’ was reported as a fault state in the
fault log: the cutter cannot be started. Actually, the rings
from 567-569 were all abnormal, and the rotating speed of
cutter is hard to maintain on a normal level. Taken together,
above simulation results indicate that our MFAD method
effectively identify the significant abnormal states from the
original series, and is able to find the occurrence of fault in
advance.

II) Secondly, we applied our method to two sets related
with states of grouting system (Dataset TS_G01, and
TS_G02). These two datasets were collected from different
grouting pumps during the periods with ring number 1011-
1040, 1061-1090, respectively. In our fault log, the grout-
ing pump #2 was diagnosed as fault in the ring 1036, and
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FIGURE 3. Univariate time series TS_C01 (rotating speed of cutter head) includes 30 subsequences, which were observed from ring no. 258 to
290. Four subsequences were detected as abnormal by MFAD and marked in red.

FIGURE 4. Univariate time series TS_G01 (grouting flow in pump #2) includes 30 subsequences, which were observed from ring no. 1011-1040.
Five abnormal subsequences were detected as abnormal by MFAD and marked in red.

pump #4 has fault in the ring 1079 (Table 1). Figure 4
shows the curves of variable ‘‘grouting flow’’ related to
the pump #2 from ring 1011-1040 (TS_G01). In Figure 4,
most of the curves indicate that the quantity of grouting
gradually increase and will maintain at a high level. Our
approach predicted five abnormal states of quantity of routing
in the period 1011-1040, including 1018, 1024, 1036, 1037,

and 1038. Obviously, the subsequence at ring 1036 presents
an abnormity: when the signal grew from zero to high level,
it suddenly dropped down. Supplementary Fig. S8 presents
all the curves of variable ‘‘grouting pressure’’ for pump
#2 from ring 1011-1040. Although the dynamic trend of
grouting pressure is complicated, there are five subsequences
were detected as anomalies by our approach, including 1012,
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FIGURE 5. Univariate time series TS_H01 (engine oil pressure) includes 30 subsequences, which were observed from ring no. 165-200. Seven
abnormal subsequences were detected as abnormal by MFAD and marked in red.

1031, 1033, 1036, and 1037. Therefore, the series of grout-
ing flowand grouting pressure have abnormal states in the
ring 1036, which is consistent with the information in fault
log. We also applied our method to the variable of grout-
ing pressure,associated with pump #4 for ring 1061-1090 in
time series TS_G02 (Supplementary Fig. S9). There are
eight subsequences predicted as abnormal states (see the
details inTable 1). According to the above simulation results,
we can conclude that our computational approach is capable
of identifying the potential abnormal states from complex
series.

III) Finally, our MFAD approach was applied to the time
series of variables, e.g. engine oil pressure, and total thrust,
which were considered as key characterizations of hydraulic
thrust system in a shield tunneling machine [60], [61].
In total, we selected two univariate time series (TS_H01, and
TS_H02) of the hydraulic thrust system,whichwere collected
in the periods 165-200 and 461-490, respectively (see the
details in Table 1).
Figure. 5 shows the curves of 30 subsequences about

engine oil pressure from the ring 165-200 in TS_H01. In gen-
eral, most of subsequences in Figure. 5 indicate that engine
oil pressure should be maintained on high level in the first
half of a ring, and then be turn down in the last half. After
calculation, our approach found there were seven abnormal
states, including ring 172, 175, 177, 186, 194, 197, and
200. Comparing with other cases, the variable ‘‘engine oil
pressure’’ in some certain stages (e.g. ring nos 175, or 186)
presents opposite trend. In addition, we further tested the
series of ‘‘total thrust’’ in the period 165-200, and found that
three subsequences (185, 190, and 200) might be potential

TABLE 3. The performance of MFAD on nine univariate time series.

abnormal states (Supplementary Fig. S10). Finally, the pre-
diction related with engine in pressure in the period from
ring 461 to 490 was presented (Supplementary Fig. S11).
The prediction results show that five subsequences (nos. 461,
466, 469, 474, and 490) were detected as abnormal states
(Table 1). Specially, we discussed the predicted subseries
in ring 474. Our fault log shows that the variable ‘‘engine
oil pressure’’ includes an abnormal state in the ring 473;
however, the fault record claimed that there was something
wrong with the hydraulic in the process of shield advance in
the ring 475 so that the speed of the advance was delayed.
The performance of MFAD on all the univariate time series
was detailed presented in Table 3.
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FIGURE 6. Multivariate time series Air Quality includes 5 variables, which corresponds to 5 sensors. The last two series are the first component
vectors of original series extracted by PCA and SVD, respectively. The abnormal subsequences highlighted with red color needed to be detected.

B. VALIDATION ON THE MULTIVARIATE TIME SERIES
To test the effectiveness of our strategy, five multivariate time
series datasets were selected, including 1) three well-known
time series datasets (chf01, mitdb_108, and Air quality);
2) two multivariate time series of shield construction. The
details of these datasets were introduced in Section III (Also
see Table 2). For each given multivariate series, we applied
PCA and SVD to extract the first component and therefore
convert the original series to a univariate series. Finally,
MFADwill be performed on the one-dimensional component
vector to identify the outliers.

First, let us look at the Supplementary Fig. S12. The
first two curves represent two variables in dataset chf01 [54].
Obviously, each variable has a discord, which ismarked in red
color. After transforming using PCA or SVD, the correspond-
ing first component was shown in the bottom. From Supple-
mentary Fig. S12, we found that both PCA and SVD can
reserve the characteristics of the original multivariate series,
with the abnormal stages revealed. Since two discords in the
original series are overlapping in the time line, the component
vectors obtained from PCA or SVD merged two abnormal
regions that become a new wider discord. Using the same
segmented regions in the time line (Supplementary Fig. S4),
9 subsequences of the first component vector derived from
PCA or SVD were obtained. MFAD were then used on these
two converted one-dimensional vectors; and the abnormal
subsequences were identified (Supplementary Fig. S13-14).
We found that both PCA+MFAD and SVD+MFAD is capa-
ble of identifying the unique discord locating in the region
2301-2600.

Second, Supplementary Fig. S15 shows the original series
of mitdbx_108_2 and the extracted first component from

PCA or SVD. Also, our results show that PCA+MFAD and
SVD+MFAD can recognize the same discord locating in
the region 3911-4300 (Supplementary Fig. S16-17), which
corresponds to the 3rd discord in the whole dataset mit-
dbx_108 shown in Supplementary Fig. S3.

Third, our approach was tested on the Air quality dataset.
Figure 6 shows that the first five curves correspond to
5 variables, which are observed by 5 chemical sensors. From
Figure 6, it is obvious that one discord is represented as
a sudden decreased wave (marked with red color). In addi-
tion, the markers with green color in Figure 6 denote the
noise signals. Comparing with PCA+MFAD, we found that
SVD+MFAD provide a much distinguished component vec-
tor, which significantly emphasized on the potential abnormal
subsequences and weakened the normal signals (Figure 6).
We manually selected 12 subsequences from the first com-
ponent derived from PCA+MFAD or SVD+MFAD, and
identified the outliers. Figure 7 shows that PCA+MFAD
can recognize three abnormal subsequences (8th, 9th, and
11th), however, SVD+MFAD has a higher accuracy with four
diagnosed discords: 2nd, 8th, 9th, and 11th subsequences in
Figure 8.

Finally, our approach was tested on two multivari-
ate time series of shield construction. We manually con-
structed two datasets, and there were multiple anomalies
occurred in different original variables. We want to verify
PCA+MFAD or SVD+MFAD can recognize the abnormal
states in the converted space, which might correspond to the
discord in certain original variables. The first multivariate
time series is MSD1, which includes 5 variables, including
‘‘grouting flow (pump 4#)’’, ‘‘grouting pressure(pump 4#)’’,
‘‘engine oil pressure’’,‘‘total thrust’’, and ‘‘rotating speed of
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FIGURE 7. 12 subsequences were manually selected from PCA-extracted first component vector of Air quality. Three subsequences were
detected as abnormal by MFAD and marked in red.

FIGURE 8. 12 subsequences were manually selected from SVD-extracted first component vector of Air quality. Four subsequences were
detected as abnormal by MFAD and marked in red.

cutter head’’. Figure 9 shows the five original 5 variables
and the first components calculated from PCA and SVD.
In Figure 10, there are 8 abnormal subsequences (ring nos.
560, 561, 565, 566, 567, 568, 569, 573) were identified
by PCA+MFAD. SVD+MFAD found 7 abnormal subse-
quences (ring nos. 560, 561, 565, 567, 568, 569, and 573)
in Figure 11. The fault log reported that, 1) the cutter can’t

be started in the ring 568; and 2) grouting pump 4# were
damaged in the ring 569. Similarly, another multivariate time
series isMSD2 (figure not shown), which includes 9 variables
(see the details in Table S1). We also extracted the first
component vectors from MSD2 with PCA and SVD. Sup-
plementary Fig. S18 shows that 9 abnormal subsequences
are identified (PCA+MFAD), which represent significant
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FIGURE 9. Multivariate time series MDS1 includes 5 variables, which corresponds to 5 state parameters in shield tunneling construction. The
last two series are the first component vectors of original series extracted from PCA and SVD, respectively.

FIGURE 10. The first component vector of MDS1 via PCA includes 30 subsequences, which correspond to ring no. 554-578. Eight abnormal
subsequences were detected as abnormal by MFAD and marked in red.

different curves rather than others. SVD+MFAD found
11 abnormal subsequences (Supplementary Fig. S19).
Based on above simulation, we concluded that the proposed
approach can be used for multivariate time series anomaly
test. The key step is to convert the multi-dimensional time
series to one-dimensional series so that the meta-features
can be extracted and calculated for determining the outliers.

The performance of MFAD on all the multivariate time series
was detailed described in Table 4.

C. COMPARISON WITH OTHER ALGORITHMS
To verify the performance of the proposed approach MFAD,
we tested four of above datasets on three typical discord
detection methods: Brute force [65], Hot SAX [53], and
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FIGURE 11. The first component vector of MDS1 via SVD includes 30 subsequences, which correspond to ring no. 554-578. Seven abnormal
subsequences were detected as abnormal by MFAD and marked in red.

TABLE 4. The performances of MFAD+PCA and MFAD+SVD on five multivariate series.

k-means based clustering [66] with sliding window 100 and
200. The performance of these approaches were calculated
as the average of two different sliding window. Due to the
fact that MFAD works on a set of sub-sequences segmented
from the original series, we thus used the same coordinates
to count the discords within the range of each sub-sequence.
We consider a sub-sequence as an anomaly if it includes a
discord identify by one of above three methods.

For the univariate series Nprs44, all of three methods
can detect the most obvious discord but lost another one.
Table 5 shows that the performance of these methods on
Nprs44 were close to MFAD. As to the series TS_C01, Brute

Force and SAX shows quite good accuracy, but are hard to
identify the discords. For the Air Quality dataset, clustering
method works better than Brute Force and SAX. And the
results on MDS2 indicates that Brute Force and SAX are
much better to identify normal states rather than cluster-
ing. Observing the local dynamics of these four time series,
we found that the anomalies were difficult to be identified
from shock signals, such as TS_C01 andMDS2. For the non-
shock signals (e.g. peaks on steady signals), it is easier to
detect discords with clustering strategy. Based on the results
shown in Table 5, we concluded that MFAD represented a
significant performance rather than other three approaches.
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TABLE 5. The comparison of NFAD with other three algorithms. The performance of brute force, SAX, and clustering were expressed as the average of two
different sliding window: n = 100 and n = 200.

The details of the comparisons on each dataset were repre-
sented in Fig. S20-S37.

V. DISCUSSION AND CONCLUSION
This paper presents a novel computational framework for
recognition of abnormal states in the complex process of
shield tunneling construction using a meta-feature based
approach that is called MFAD. In MFAD, we firstly defined
sixmeta-features for describing the dynamics of a time series.
Secondly, all the subsequences extracted from the same vari-
able can be represented by our definedmeta-features. Thirdly,
segmented subsequences with different length can be com-
pared in a transformed feature space with thesemeta-features.
As a result, the abnormal subsequences can be easily identi-
fied. Different frommost of existing approaches, MFAD does
not directly detect the discords on the original time series, but
in a simplified data space. Moreover, it is also suitable for
online adaptive learning, since all the previous subsequences
only need to be calculated one time.

MFAD approach is suitable for both univariate and mul-
tivariate time series. For the univariate sequence, it can be

directly addressed by MFAD framework. For the multivari-
ate time series, a conversion from multivariate time series
to one-dimensional series is performed so that the meta-
features can be further extracted and calculated. In this work,
we found that MFAD+SVD represents better performance
than MFAD+PCA. Except the PCA or SVD mentioned in
this study, other strategies (e.g. clustering-based methods)
also can be used as dimension converters in our MFAD
framework.

We carried out the simulation experiments on a large num-
ber of datasets, including several well-known time series
datasets and real datasets collected from shield tunneling
construction. The results show that the proposed approach
is not only capable of identifying the real faults, but also
recognizing several abnormal states that are significantly
different from most cases. Our developed approach is also
suitable to detect the stage-based abnormal patterns from a
univariate/multivariate time series.

Moreover, we compared our MFAD with three traditional
anomaly detection methods (Brute Force, SAX, K-means
based clustering) on these four time series datasets.
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The computational results show that the performance of
MFAD is outstanding (Table 5). Firstly, sliding window
based strategies evenly segment an original time series as a
set of redundant sub-sequence, which is the reason for the
increase of computation cost. However, the sub-sequences
addressed by MFAD are non-overlapping, so that the num-
ber of segments calculated in MFAD is much fewer. Sec-
ondly, many sliding window based algorithms, including
Brute Force or Clustering, represent the similarity of a seg-
ment pair based on distance measure, which is likely to be
unreliable [71]. The contribution of our MFAD is that it
avoids the direct calculation of the distance between two
sequences to represent their similarity, but uses several rep-
resentative meta-features to distinguish normal or abnormal
sub-sequences. Therefore, MFAD not only simplifies the
computational complexity, but also makes any two unequal
sub-sequences comparable. Finally, we found that the time
series collected from shield construction are much com-
plicated rather than EEG or ECG datasets. Identifying the
abnormal states in ring is in line with the actual application
requirements. In conclusion, our study provides a novel strat-
egy of comparing the differences between stages within a
long series.

Due to the local dynamics, periodicity, or randomness
in different time series, the differences between the abnor-
mal subsequences and other normal subsequences from the
same series might be reflected on a subset of meta-features.
In other word, the feature ranking is varied in different time
series dataset. Which meta-feature is the most important one
depends on which dataset was tested. Therefore, we com-
bined all the six meta-features to construct one-class SVM for
outlier detection in our experiments. Our simulation results
show the combination of six meta-features in MFAD works
well in most cases.

Limitations exist in the proposed MFAD approach. MFAD
recognizes the minority of outliers as anomalies. The num-
ber of identified discords is usually more than the detected
outliers in the real-world situations. For example, our fault
log in the real shield tunneling construction only report a
few of anomalies; however, MFAD actually can detect more
cases. To improve the accuracy, there were two ways need to
be considered in the near future: 1) record the fault events
timely and seriously (ground truth); 2) refine the current
meta-features to better summarize local dynamics of time
series. In the next step, we will plan to release this MFAD
framework and further test its effectiveness in the real-world
shield tunneling construction.
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