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ABSTRACT Today, the global navigation satellite system (GNSS) is usually integrated into smart mobile
devices for necessary communication with the possibility of locating users accurately in the surrounding
environment. In contrast to the traditional estimation approaches, this paper proposes a message passing
algorithm for position and velocity estimations of the mobile device incorporate GNSS. First, the smart
mobile device incorporate GNSS is modeled as a state-space framework. Then the message passing scheme
is proposed considering the Bayesian tree structure. In this scheme, the messages are shifted between
forward and backward nodes so that the estimation error is minimized. The simulation results show
that the proposed algorithm provides significant performance improvement compared with the existing
Kalman filter.

INDEX TERMS Bayesian tree structure, position and velocity estimation, global navigation satellite system,
message passing algorithm, mobile device.

I. INTRODUCTION
Generally speaking, location tracking plays an important
role in many emerging applications such as location-based
services and radio resource management [1]–[3]. In order
to support these applications, the global navigation satel-
lite system (GNSS) is a key element in today’s modern
society [4], [5]. Sometimes, the line of sight between the
satellite and receiver is impossible [6] due to signal blockage,
heavy mountains and high-rise buildings such as New York
City. Therefore, the GNSS can be integrated into cellu-
lar terminals such as smart mobile phones [2], [7], [8]. The
installed software can properly estimate the location and posi-
tion of the system [9]. For example, aircrafts are equipped
with GPS receivers which determine their own positions [10].
Designing the effective software is the challenging task for
such applications.

There are many algorithms in the literature that used
to estimate the position and velocity of receivers/mobile
users. To begin with, the least square technique is proposed
in [11] and [12]. Unfortunately, it cannot properly estimate
the highly dynamic system states [13]. To solve this problem,
an iterative least square approach is presented in [14]. In order
to obtain better performance, the Kalmna filter (KF) algo-
rithm is used for system state estimations [15] since 1960.
For nonlinear estimation, the extended KF and unscented KF

schemes are also widely used for satellite systems [14], [16].
However, the computational complexity of theses algorithms
are very high [17]. Moreover, the particle swarm optimiza-
tion algorithm is adopted in [18], but it requires significant
amount of particles to get an accurate estimation.

Specifically, the extended KF (EKF) is used to the vision-
based navigation system where GNSS information is not
always available due to signal blockage or jammed [19].
When GPS signal is weak, the unmanned aerial vehicle is
used for sensing, information collection and data fusion [19].
Afterwards, the EKF is adopted to estimate the distance
between the receiver and transmitter. Furthermore, the dis-
tributed unscented KF (UKF) based multi-sensor data fusion
algorithm for the global navigation satellite system is pre-
sented in [20]–[22]. It shows that the UKF provides better
estimation performance compared with the EKF. Overall,
it can be seen that all of the aforementioned centralized
estimation approaches are based on the mean squared error
principle and widely used from many years.

Interestingly, the distributed state estimation has received
significate attention in recent years. In distributed approach,
nodes only share limited information with their neighboring
connected nodes to achieve a consistent estimation. First
of all, the KF based distributed consensus state estimation
algorithm for the GNSS is proposed in [23]. It concludes that
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using consensus algorithm, the GNSS users can potentially
deliver high precision estimations without the need of having
a centralized computing center. Unfortunately, it requires
to know the exact noise statistics which are very difficult
to know. Interestingly, noise covariance matrices for the
GPS system are computed from the innovation sequence and
Kalman gain [24], [25]. Besides, the multi-sensor navigation
system based on an adaptive KF is proposed in [26]. In this
framework, the inertial navigation system states are deter-
mined using two different measurements from the GNSS
and Locata sensors. Moreover, the performance of the GPS
system considering measurement errors and delays are inves-
tigated in [27]. Based on a smooth receiver clock, a novel
strategy to integrity monitoring for the GPS system is pro-
posed in [28]. Technically, the KF like position and velocity
estimation algorithms are used in different ways.

Generally speaking, the message passing algorithms are
widely used for various applications such as mobile com-
munication, compressed sensing, power systems and social
networks. To begin with, the message passing algorithm
for localization of mobile wireless sensors networks is pro-
posed in [29]. It shows that combining belief propagation
and variational message passing algorithm can provide better
estimation accuracy compared with the maximum likelihood
scheme. Interestingly, the low computational complexity
based message passing algorithm for sparse code multiple
access is presented in [30]. It uses the adaptive thresholds
and scheduling algorithm to reduce complexity of the mes-
sage passing algorithm, but it degrades system performance
significantly. The message passing algorithm for power sys-
tems is proposed in [31] and [32]. In addition, an approxi-
mate message passing algorithm for compressed sensing is
explored in [33]. This algorithm can effectively reconstruct
compressed signals after reducing system uncertainties.

Furthermore, the generalized approximate message pass-
ing scheme for fifth generation (5G) mobile communication
system is developed in [34]. The algorithm is flexible as
it meets the desired performance and involves reasonable
computational complexity. Moreover, an improved message
passing algorithm for 5G sparse code multiple access is
proposed in [35]. The algorithm provides better performance
and higher convergence speeds. Additionally, the dynamic
message passing algorithm for estimating the origin of an
epidemic outbreak is presented in [36]. This framework is
very important in different contexts of social and computer
networks such as examining the roots and spreading pat-
terns of fake news. Overall, it can be seen that different
message passing algorithm are proposed for various appli-
cations such as mobile communication, compressed sensing,
computer networks and medical applications. There has not
been much research carried out about the message passing
algorithm for navigation systems. Inspired by [31], [32],
and [37], this paper proposes a message passing algorithm
for position and velocity estimations of the mobile device.
The key contributions of this paper are summarized as
follows:

• A state-space framework for position and velocity esti-
mation of the mobile device incorporate GNSS is
developed.

• The message passing algorithm is proposed on the
Bayesian tree structure. Basically, the estimation error
covariance is propagated from the tree root to leaf
and vice-versa in the Bayesian structure. Consequently,
the positioning estimation errors are minimized leads
to reflect the true position and velocity of the mobile
device.

• The effectiveness of the developed approach is veri-
fied with and without communication delays. It shows
that the proposed algorithm can estimate the speed and
velocity of the mobile device within a very short time.
Basically, the potential applications that could benefit
from this approach are those related to the urban mobil-
ity information and emergency services.

Organization: This paper is organized in five sections. The
system state-space model is described in Section II. The pro-
posed scheme is presented in Section III, and the simulation
results are demonstrated in Section IV. Section V draws the
concluding remarks and future work.
Notations: The capital and small letters are used for matrix

and vector, respectively. N(x, µ,P) is the probability density
function (PDF) of a Gaussian variable x whose mean µ and
covarianceP. Also PDF is expressed asπx(t−1),x(t)(x(t−1)) =
N (x(t − 1), xπx(t−1) ,6πx(t−1) ) and πx(t−1)(x(t − 1)) =
N (x(t − 1), µ̂l(t−1),6l(t−1)). The conditional probability is
denoted by p(x(t) | x(t − 1)) = N (x(t),Fx(t − 1) +
Gu(t − 1),6n).

II. STATE-SPACE FRAMEWORK
Location-based services is one of the fastest growing seg-
ments in mobile applications. Nowadays, the mobile phone
is widely used for personal communication and position esti-
mation. In order to support these services, the smart mobile
phone is integrated with the GNSS [7], [8]. So, integration
is performed between the GNSS system and cellular mobile
phone networks. Using the installed software, it is possible
to calculate the position of the satellites, their pseudoranges,
and user positioning [38], [39]. The data integration system
uses GPS alone when there are at least four satellites in
visibility [40]. This kind of scenario is applied for traffic rou-
tine, driver-assistance systems, tourist information, electronic
toll collection and emergency location.

In this paper, it is considered 2-D Universal Transverse
Mercator (UTM) coordinate system for mobile device posi-
tion and speed estimations [7], [8]. The state-space frame-
work for the mobile user is given by:

x(t + 1) = Fx(t)+Gu(t)+ n(t), (1)

where F is the system state matrix, x = [x vx y vy]′ is the
system state, G is the system input matrix, u is the system
input, t is the time index, and n is considered the exoge-
nous disturbance (Gaussian distribution) with zero mean and
covariance 6n. Here, symbol x and vx are the position and
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velocity in the coordinate system. The system state transition
matrix is given by:

F =


1 α 0 0
0 1 0 0
0 0 1 α

0 0 0 1

.
Here, α is the sampling time. Similar to [26], an inertial
navigation system (INS) is used to establish the system
model. The measurement by the INS sensors are given
by [7] and [26]:

y(t) = Hx(t)+ w(t), (2)

where y is the measurement information, H is the measure-
ment matrix and w is the zero mean Gaussian process noise
whose covariance is 6w. From equations (1)-(2), it can be
seen that the system andmeasurement are disturbed by noises
n(k) and w(k). The state estimation algorithm can effectively
reduce these uncertainties to extract the system states. In other
words, the measurement information is utilized for position
and velocity estimations.

III. PROPOSED ESTIMATION ALGORITHM
From the system dynamics in (1) and (2), it can be observed
that the current system state depends on the previous state.
Based on these dependencies and inspired by [31], [32],
and [37], the Bayseian tree is drawn in Fig. 1. Using the for-
ward and backwardmessage update rules, the state estimation
and error covariances are computed at each node. Afterwards,
the estimated information and it error covariance are recti-
fied at each point in the tree and lead to the true estimated

FIGURE 1. Inspired by [31], [32], [37] the Bayesian message passing for
GNSS position and velocity estimations.

system states. From the structure, the update order is given by:
Step 1) x(t−1)→ y(t−1); step 2) y(t−1)→ x(t−1); step
3) x(t − 1)→ x(t); step 4) x(t)→ y(t); step 5) y(t)→ x(t);
step 6) x(t) → x(t − 1) and step 7) x(t − 1) is the updated
state estimation. Inspired by [31] and [32], the detail process
of the proposed scheme is demonstrated as follows [37], [41],
and [42]:

A. FORWARD MESSAGE PASSED FROM x(t − 1) to y(t − 1)
According to message passing rule 1 [32], [41], the prior
information at x(t − 1) is given by:

πx(t−1)(x(t − 1)) =
∫
∞

−∞

p(x(t − 1) | x(t − 2))

×πx(t−2),x(t−1)(x(t − 2))dx(t − 2)

= p(x(t−1)) = N(x(t−1), µ̂l(t−1),6l(t−1)).

Here, the mean value µ̂l(t−1) and its error covariance 6l(t−1)
derive from the system dynamic (1) as follows:

µ̂l(t−1) = Fx̂πx (t−2) +Gu(t − 1). (3)

6l(t−1) = F6πx (t−2)F
′
+6n. (4)

Here, x̂πx (t−2) and 6πx (t−2) are the previous mean and
covariance values. From Fig. 1, it is observed that
λy(t−1),x(t−1)(x(t − 1)) = 1 as y(t − 1) has no child nodes.
Based on this with the message update rule 5 [32], [37], [41],
the information from x(k − 1) to y(k − 1) is given by:

πx(t−1),y(t−1)(x(t − 1)) = πx(t−1)(x(t − 1))

× λy(t−1),x(t−1)(x(t − 1))

= πx(t−1)(x(t − 1))

= N (x(t − 1), µ̂πy(t−1) ,6πy(t−1) ),

where

µ̂πy(t−1) = µ̂l(t−1) = Fx̂πx (t−2) +Gu(t − 1). (5)

6πy(t−1) = 6l(t−1) = F6πx (t−2)F
′
+6n. (6)

After updating prior information at y(t − 1), the following
step is used to compute likelihood information at x(t − 1).

B. BACKWARD MESSAGE PASSED FROM
y(t − 1) to x(t − 1)
After applying rule 2 [32] to y(t−1), the likelihood informa-
tion is given by:

λy(t−1)(x(t − 1)) =
∫
∞

−∞

πb(t−1),y(t−1)(y(t − 1))

× p(y(t − 1) | x(t − 1))dy(t − 1)

= N (x(t − 1), µ̂λy(t−1),6λy(t−1)),

Due to notational consistency y(t − 1) is written as yλy(t−1),
and its parameters are given by.

µ̂λy(t−1) = H−1yλy(t−1). (7)

6λy(t−1) = H−16wH′−1. (8)

Using both of the aforementioned step 1 and 2, the update
state information is computed as follows.
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C. INITIAL MESSAGE UPDATE FROM x(t − 1) to x(t)
In the aforementioned forward steps, the initial values of
x̂πx (t−2) and 6πx (t−2) are assumed. Based on these assump-
tions, the message update at point x(t) is considered as an
initial estimation step. According to message update rule 3
with Lemma 12 in [43] and [32], the term πx(t−1),x(t)(x(t−1))
can be written as follows:

πx(t−1),x(t)(x(t − 1)) = πx(t−1)(x(t − 1))λy(t−1),x(t−1)
× (x(t − 1))

= N (x(t − 1), µ̂πx (t−1),6πx (t−1)),

where,

µ̂πx (t−1) = 6πx (t−1)[6
−1

l(t−1) × µ̂l(t−1)

+6λy(t−1)µ̂λy(t−1)]. (9)

6πx (t−1) = [6−1
l(t−1) +6λy(t−1)]

−1. (10)

The initial state estimation is computed as follows [32]:

x̂(t − 1) = λy(t−1),x(t−1)(x(t − 1))πx(t−1)(x(t − 1))

= N (x(t − 1), µ̂b(t−1),6b(t−1)), (11)

where,

µ̂b(t−1) = 6b(t−1)[6−1
l(t−1) × µ̂l(t−1)

+6λy(t−1)µ̂λy(t−1)]. (12)

6b(t−1) = [6−1
l(t−1) +6λy(t−1)]

−1. (13)

Based on the initial update information, the final estimation
is obtained at t . It can be seen that the steps 4 and 5 are similar
to the steps 1 and 2, respectively where corresponding mean
and covariance come from the sequence of messages.

D. FORWARD MESSAGE PASSED FROM x(t) to y(t)
Similar to step 1, the updated information for step 4 is given
by [32], [37]:

πx(t),y(t)(x(t)) = N (x(t), µ̂πy(t) ,6πy(t) ),

with

µ̂πy(t) = Fµ̂b(t−1) +Gu(t). (14)

6πy(t) = F6b(t−1)F′ +6n. (15)

E. BACKWARD MESSAGE PASSED FROM
y(t) to x(t) AND x(t)→ x(t − 1)
Similar to step 2, the information for step 5 is given
by [32], [37]:

λy(t),x(t)(x(t)) = N (x(t), µ̂λy(t),6λy(t)),

with

µ̂λy(t) = H−1yλy(t). (16)

6λy(t) = H−16wH′−1. (17)

For step x(t)→ x(t − 1), we have:

λx(t)(x(t − 1)) =
∫
∞

−∞

λy(t),x(t)(x(t))p(x(t) | x(t − 1))dx(t)

= N (x(t), µ̂λy(t),6λy(t))p(x(t) |x(t−1))dx(t)

= N (x(t − 1), µ̂λy(t−1),6λy,(t−1)),

where,

µ̂λy(t−1) = F−1µ̂λy(t) − F−1Gu(t). (18)

6λy(t−1) = F−1(6λy(t) +6n)F′−1. (19)

Using step 1, 2, and 6, information at x(t − 1) is updated as
follows.

F. UPDATED STATE ESTIMATION
Similar to step 5, the estimated system state x̂b(t − 1) is
determined by [32] and [37]:

x̂b(t − 1) = λx(t),x(t−1)(x(t − 1))λy(t−1),x(t−1)
× (x(t − 1))πx(t−1)(x(t − 1))

= N (x(t − 1), µ̂b(t−1),6b(t−1)), (20)

where,

µ̂b(t−1) = 6b(t−1)[6−1
λy(t−1) × µ̂λy(t−1) +6

−1
l(k−1)

× µ̂l(t−1) +6
−1

λx (t−1) × µ̂λx (t−1)]. (21)

6b(t−1) = [6−1
λy(t−1)+6

−1
l(t−1)+6

−1
λx (t−1)]

−1. (22)

It can be seen that the mean and error covariance are prop-
agated from one node to another to achieve the true system
states. Based on the propose algorithm, the simulation results
are presented in the following section.

IV. SIMULATION RESULTS AND DISCUSSIONS
After modeling the system (1) and measurement (2), the pro-
posed estimation algorithm is applied. From these dynamics,
it can be seen that current state depends on the previous step.
Based on these iterative dependencies, the Bayseian tree is
sketched as shown in Fig. 1. Using the forward and backward
message update rules, the state estimation and error covari-
ances are computed using (3)-(22). Basically, the estimated
information and it error covariance are rectified at each step
and lead to the true estimated system states. In order to see
the performance of the proposed algorithm, the simulation is
conducted using MATLAB software. The considered process
and measurement Gaussian noise covariance matrices are
6n = 0.0001I and 6w = 0.03I, respectively. The sampling
time is α=0.09 seconds. For simplicity, we consider an unreg-
ulated system, i.e., u = 0.
The performance of the proposed algorithm is compared

with the existing Kalman filter for example [44]. Specifically,
the mean squared error (MSE) between the true and estimated
system states is illustrated in Fig. 2. It can be seen that the pro-
posed approach provides significant performance improve-
ment compared with the existing Kalman filter approach.
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FIGURE 2. Mean squared error performance comparison.

FIGURE 3. Position x and its estimation without delay.

This is due to the fact that the state estimation errors are rec-
tified in the forward and backward directions of the Bayesian
network. Consequently, the estimated states converge to the
true system states within a very short period of time. Fur-
thermore, 329 dynamics behavior of the system state and
it estimation are presented in Figs. 3-4. It can be seen that
the proposed algorithm requires approximately 0.36 seconds
(t × α) to estimate the position and velocity.
In real-time situation, there may be delay in the sys-

tem measurements due to senor faults and link failures,
i.e., y(t) = Hx(t − τ ) + w(t), where τ is the num-
ber of sample delays [45]. Considering ten sample delays
in the system measurements, the numerical simulation
results are depicted in Figs. 5-6. It can be observed that
the simulation results are greatly affected by communi-
cation delays but the proposed algorithm needs approx-
imately 5.4 seconds to estimate the speed and velocity
of the mobile user as expected. Other states have similar

FIGURE 4. Velocity vx and its estimation without delay.

FIGURE 5. Position x and its estimation with delay.

FIGURE 6. Velocity vx and its estimation with delay.

estimation accuracy. It concludes that to get an accurate
estimation results, the delay must be consider to develop the
algorithm [45].
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V. CONCLUSION AND FUTURE WORK
In this paper, the message passing scheme is proposed and
verified for position and velocity estimations of the mobile
device incorporate GNSS. After representing the mobile
device in a state-space framework, the message passing algo-
rithm is proposed. The design approach is based on the
Bayseian structure to rectify system errors. As a result,
the proposed algorithm can estimate the position and velocity
within a very short time. It can also be seen that the presented
algorithm can also be applied if there are communication
delays in the measurement. Essentially, this type of scheme
can be applied for accurately determining the position of
vehicles, for purposes of fleet management (public buses and
express couriers) and traffic flow optimization (from public
agencies). In future, we will analyze the convergence of the
proposed scheme with noise covariance estimation [25].
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