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ABSTRACT Gravity gradient plays an important role in many fields of science, and many methods are
used to achieve the measurement of it. To improve measurement accuracy, various error analyses have been
conducted in previous studies about positioning and orientation errors and system noise, among others.
However, knowledge on the influence of omission errors from the theoretical models of gravity gradient
measurement is limited. In this paper, we investigated omission errors in gravity gradient measurement,
which was accomplished with the principle of differential acceleration. First, we determined the source of
the omission errors to be the omission of high-order terms. Second, we calculated these terms on the basis
of the Earth Gravitational Model 2008. Specifically, the expression of the partial derivative of the high order
for the gravity potential in the spherical coordinates and the recursive equations for the high-order partial
derivatives of the Legendre function were derived. Moreover, we transformed these high-order terms from
the spherical coordinate system to the local north-oriented frame. The analysis led to three findings. First,
a positive correlation was found between the omission errors and the distance between twomeasuring points.
Second, the influences of the omission errors varied across different regions. Third, 0zz was the least affected
by the omission errors among the components 0xz, 0yz, and 0zz. In conclusion, our study demonstrates that
omission errors affect gravity gradient measurement.

INDEX TERMS EGM2008, gravity gradient, omission error.

I. INTRODUCTION
Gravity gradient 0, as the second spatial derivative of the
Earth’s geopotential [1], can be measured directly to estimate
the gravitational field, which is important in the development
of many disciplines.

Compared with the measurement of the first spatial deriva-
tive of the Earth’s geopotential V, which is the gravity g,
gravity gradient can deliver more detailed and accurate infor-
mation about the underlying geological setting in geological
prospection [2] because the gravity gradient can be composed
of more components simultaneously. Moreover, the use of
gravity gradient can overcome limitations in spatial reso-
lution and accuracy that are inherent in ordinary moving-
base gravimetry [3]. With the abovementioned advantages,
gravity gradient signal is widely used in various fields of
technology to locate submerged objects [4], [5], explore min-
erals and hydrocarbons [6], [7], and target compact, local,
subterranean voids [8]. The gravity gradient signal is also
used to assist in inertial navigation. With the support of
gravity gradient signal, the positioning accuracy of inertial

navigation can be increased by several hundred meters per
hour [9]–[14].

The gravity gradient signal is weak, and even small errors
in gravity gradient measurement considerably affect mea-
surement results. Various error sources in gravity gradi-
ent measurement have been analyzed in previous studies to
improve the accuracy of the measurement [15], [16]. Fuchs,
M. J. investigated the projection of the errors caused by a rota-
tion from the gradiometer reference frame to local reference
frames and concluded that these errors can be compensated
by replacing the insignificantly accurate gravity gradients
with model values [17]. For the effect of attitude reconsti-
tution errors, Pail [18] studied these errors by numerical sim-
ulations and proved that these errors represent a substantial
error component of the gravity field solution. Li et al. [19]
analyzed the influences of satellite positioning errors and
Earth’s multipole moments on the measurement of gravity
gradient . Random and systematic errors in such measure-
ment have also been studied [20], [21]. Bouman et al. [20]
found that with the existing global models, it is possible to
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remove a large part of the systematic errors of the Gravity
Field and Steady-State Ocean Circulation Explorer gradients.
And gravity gradient bias can be accurately recovered on
the basis of terrestrial gravity data and be compensated.
Wang et al. [21] discussed the systematic error of differen-
tial phase measurement in gravity gradient measurement by
using dual-atom interferometers and showed that systematic
errors largely decrease with a symmetrical modulation of the
magnetic field duration . Other errors, such as those caused
by misalignments between star sensor and gradiometer [22],
instrument errors [3], and tidal and nontidal corrections [23],
have also been studied. The aforementioned analysis results
imply that the influences of many error sources can be com-
pensated and the accuracy of gravity gradient measurement
has been improved significantly.

However, theoretical measurement errors cannot be elim-
inated by error compensation, and they have only rarely
been investigated in previous research. Theoretical errors
are model errors in measurement, and they remain in the
measurement results even with a perfect measurement envi-
ronment and devices. The study of the theoretical errors in
the gravity gradient measurement will help to increase our
understanding of the gravity gradient and make better use of
the gravity gradient data. In this study, we investigate how
theoretical errors influence gravity gradient measurement.

The contributions of this study are as follows.
1) The origin of theoretical errors is determined through

the basic principle of gravity gradient measurement.
2) Calculation formulas for the theoretical errors are

derived.
3) A simulation test for the theoretical errors is conducted.
4) The influences of the theoretical errors on the different

components of a gravity gradient tensor are discussed.

II. BASIC PRINCIPLE OF GRAVITY GRADIENT
MEASUREMENT
Many gravity gradient measurement methods based on
different principles have been proposed. For example,
Moody et al. [24]. measured the diagonal components of
the gravity gradient tensor using superconducting technol-
ogy. McGuirk et al. [25] improved an absolute-gravity
gradiometer by light-pulse atom interference techniques.
Douch et al. [6], [7] proposedGREMLIT, a gravity gradiome-
ter concept that comprises a planar acceleration gradiometer
and three gyroscopes. Similarly, Araya et al. developed a
gravity gradiometer that consists of two vertically separated
accelerometers; their motions can be precisely detected by
optical sensors. A gravity gradient measure system based on
rotating accelerometers, which was developed for submarine
applications, has also been widely used for exploration [27].
All of these methods obtain gravity gradient signal by the
differential acceleration principle. This principle can be sim-
plified as shown in Figure 1, where o–xyz is a Cartesian
coordinate system, and A, B, C, and D are points in the space.

The gravity vectors at the four positions (A, B, C, and D)
are denoted by gp (p ∈ {A,B,C,D}), which comprises three

FIGURE 1. Measurement principle of gravity gradiometer based on
differential acceleration. In Figure 1(a), A and B lie on the x–o–y plane and
the line between A and B is parallel to the y-axis. In Figure 1(b), C and D
are on the x–o–z plane and the line between C and D is parallel to the
z-axis. The distance between A and B is denoted by lAB, and the distance
between C and D is denoted by lCD.

components, namely,

gp =
(
gxp, gyp, gzp

)′
, (1)

where gxp, gyp, and gzp represent the projection of gravity
vector gp in the x, y, and z directions, respectively.

The measurement models of gravity gradient at the mid-
point of lAB and lCD are as follows:

0xy =
(gxB − gxA)

lAB

0yy =

(
gyB − gyA

)
lAB

0zy =
(gzB − gzA)

lAB

0xz =
(gxD − gxC )

lCD

0yz =

(
gyD − gyC

)
lCD

0zz =
(gzD − gzC )

lCD
, (2)

where 0xy, 0yy, 0zy, 0xz, 0yz, and 0zz are the different com-
ponents of the gravity gradient tensor.

Does any error exist? In other words, does any difference
exist between the theoretical value and the signal measured
by this measurement model? Yes. But the omission error can
be ignored when the baseline is small, and we will explain
this in detail.

Zheleznyak et al. [28] measured vertical gravity gradient.
Themeasured value of this gradient according to Equation (2)
is 2201 E (1E = 10−9s−2), but the theoretical prediction
of the vertical gravity gradient 0zz is 2222.14 E . Therefore,
the measured and theoretical values differ. This difference
may be caused by measurement and theoretical errors, and
the extent to which these theoretical errors affect themeasure-
ment is unknown. Thus, we focus on analyzing theoretical
errors in the following part.
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III. OMISSION ERRORS AND THEIR CALCULATION
Geopotential contains all the information about the gravity
field. As an approximation to geopotential, the Earth
Gravitational Model 2008 (EGM2008) contains almost all
information about the gravity field.

A. OMISSION ERRORS IN GRAVITY GRADIENT
MEASUREMENT
Theoretical errors are generated in measuring gravity gra-
dient using Equation (2) mainly due to omitting high-order
terms. Thus, the theoretical errors in this study are labeled
omission errors. The following step regards points A and B
in Figure 1 (a) as examples to deduce the expression of the
omission errors.

The Taylor expansion of gravity vector indicates that the
gravity vector gB at point B and the gravity vector gA at
point A are related; that is,

giB = giA +
∂giA
∂y

lAB +
1
2!
∂2giA
∂y2

l2AB +
1
3!
∂3giA
∂y3

l3AB

+ · · · (i ∈ {x, y, z}) , (3)

where ∂giA
∂y = 0iy (i ∈ {x, y, z}).

The gravity gradient component is obtained as

0iy =
(giB − giA)−

(
1
2!
∂2giA
∂y2

l2AB +
1
3!
∂3giA
∂y3

l3AB + · · ·
)

lAB
. (4)

A comparison of Equations (2) and (5) shows that the omis-
sion error δ0iy in the gravity gradient measurement, which is
generated by using the differential acceleration method, is

δ0iy =
1
2!
∂2giA
∂y2

lAB +
1
3!
∂3giA
∂y3

l2AB + · · · . (5)

In the same way, when the gravity gradient measure-
ment is performed at measuring points C and D, as shown
in Figure 1 (b), the omission error δ0iz is

δ0iz =
1
2!
∂2giC
∂z2

lCD +
1
3!
∂3giC
∂z3

l2CD + · · · (6)

When measuring the gravity gradient component 0ix at
measuring points E and F , as shown in Figure 2, the omission
error δ0ix is

δ0ix =
1
2!
∂2giE
∂x2

lEF +
1
3!
∂3giE
∂x3

l2EF + · · · . (7)

To calculate the omission error, the following terms need
to be calculated:

∂ngiA
∂yn

(i ∈ {x, y, z} , n = 2, 3, ...)

∂ngiC
∂zn

(i ∈ {x, y, z} , n = 2, 3, ...)

∂ngiE
∂xn

(i ∈ {x, y, z} , n = 2, 3, ...) . (8)

Reference [29] showed that the relationship between
geopotential and components of the gravity vector is as
follows

gi =
∂V (x, y, z)

∂i
(i ∈ {x, y, z}) . (9)

FIGURE 2. Schematic of measuring points E and F.

Equation (8) and (9) are substituted into Equations (5)–(7),
and the omission error values are obtained.

The expressions for the omitted high-order terms are in the
Appendix.

B. CALCULATION OF OMISSION ERRORS
The Earth’s external gravitational potential V, at a point P
defined in the Earth-fixed reference frame (EFRF) is given
by [30] and [31]

V (r, θ, λ)

=
GM
r

[
1+

N max∑
n=2

(a
r

)n n∑
m=0

(
C̄nm cosmλ
+S̄nm sinmλ

)
P̄nm (cos θ)

]
(10)

where GM is the geocentric gravitational constant. The
value of a is the equatorial radius of the reference ellipsoid.
r is the geocentric distance, θ is the geocentric colatitude,
and λ is the longitude. P̄nm (cos θ) is the fully normalized
associated Legendre function. C̄nm and S̄nm are fully nor-
malized spherical harmonic coefficients, which are given
by EGM2008.

1) REFERENCE FRAME
A comparison of Equations (9) and (10) implies that
their reference frames differ. The gravitational potential in
Equation (9) is represented in the local north-oriented frame
(LNOF), whereas that in Equation (10) is represented in the
EFRF. Schematic of LNOF and EFRF are shown in Figure 3.

In Figure 3, the EFRF is the same as the World Geodetic
System 1984 (WGS-84), with the coordinate origin located
at the Earth’s mass center. The LNOF is a local geographic
frame; its origin is at the measurement location point oL ,
and its axes align with the directions of north, east, and
local vertical (down) [32]. The coordinates of point oL in the
EFRF are (ro, θo, λo).
Calculating the derivatives of gravitational potential in the

spherical coordinate system according to Equation (10) is
convenient. Therefore, we first calculate the derivatives of the
gravitational potential on the basis of spherical coordinates
and then transfer the calculation results to the LNOF.

Figure 4 illustrates that to realize the transformation from
spherical coordinates to the LNOF, the first step is to transfer
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FIGURE 3. Schematics of LNOF and EFRF.

FIGURE 4. Flowchart of transformation from spherical coordinates to
LNOF.

the computed results in the spherical coordinate system to
the EFRF by

∂

∂xE
=

∂r
∂xE

∂

∂r
+
∂θ

∂xE

∂

∂θ
+
∂λ

∂xE

∂

∂λ
∂

∂yE
=

∂r
∂yE

∂

∂r
+
∂θ

∂yE

∂

∂θ
+
∂λ

∂yE

∂

∂λ
∂

∂zE
=

∂r
∂zE

∂

∂r
+
∂θ

∂zE

∂

∂θ
+
∂λ

∂zE

∂

∂λ

(11)

where 
xE = r sin θ cos λ
yE = r sin θ sin λ
zE = r cos θ.

(12)

The transformation from EFRF to LNOF can be realized
by the following Equations:

(xL , yL , zL)′ = C (xE , yE , zE )′ , (13)

where

C =

− sin θo cos λo − sin θo sin λo cos θo
− sin λo cos λo 0

− cos θo cos λo − cos θo sin λo − sin θo

. (14)

TABLE 1. Simulation settings.

2) RECURRENCE EQUATIONS FOR DERIVATIVES OF FULLY
NORMALIZED ASSOCIATED LEGENDRE FUNCTIONS
The preceding analysis indicates that the derivatives of the
Legendre function are necessary in calculating the partial
derivatives of the gravitational potential, such as Vrrrr ,Vrrθθ ,
and Vrrλλ.

The recursive equations for the derivatives of the
Legendre function are as follows. The recursion formu-
las of the first- and second-order partial derivatives were
given in [33]. The recursion formulas of the third- and
fourth-order partial derivatives of the Legendre polyno-
mials are derived from the definition of the Legendre
polynomials.
1) Initial values

P̄00 (cos θ) = 1

P̄10 (cos θ) =
√
3 cos θ

P̄11 (cos θ) =
√
3 sin θ (15)

2) Recurrence formulas of P̄ij (cos θ)

P̄n,m (cos θ)

=


1, n = 0
√
3 sin θ, n = 1√
2n+ 1
2n

sin θ P̄n−1,m−1 (cos θ)

(n = m) (16)

P̄n+1,m (cos θ)

=

√
(2n+ 1) (2n+ 3)

(n+ m+ 1) (n− m+ 1)
cos θ P̄n,m (cos θ)

−

√
(2n+ 3) (n+ m) (n− m)

(2n− 1) (n+ m+ 1) (n− m+ 1)

× P̄n−1,m (cos θ) (n 6= m) (17)
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FIGURE 5. Regions for simulation: the areas in the red, yellow, and blue boxes, which are denoted as A, B, and C , have gravity anomalies of
less than −30 mGal, between −20 and 10 mGal, and greater than 70 mGal, respectively.

TABLE 2. Coordinates of simulation regions.

TABLE 3. Mean values of 0xz , 0yz , and 0zz calculated by EGM2008.

3) Recurrence formula of P̄′ij (cos θ)

P̄′n,m (cos θ)

=



−

√
n (n+ 1)

2
P̄n,1 (cos θ) (m = 0)

√
n (n+ 1)

2
P̄n,0 (cos θ)

−

√
(n− 1) (n+ 2)

2
P̄n,2 (cos θ) (m = 1)

−

√
(n− m) (n+ m+ 1)

2
P̄n,m+1 (cos θ)

+

√
(n+ m) (n− m+ 1)

2
P̄n,m−1 (cos θ) (n 6= m)

√
n
2 P̄n,m−1 (cos θ) (m = n)

(18)

4) Recurrence formula of P̄′′ij (cos θ)

P̄′′n,m (cos θ)

=

(
2m2

1− cos 2θ
− n (n+ 1)

)
P̄n,m − cot θ P̄′n,m (cos θ)

(19)

5) Recurrence formula of P̄′′′n,m (cos θ)

P̄′′′n,m (cos θ)

= −
4m2 cot θ
1− cos 2θ

P̄n,m − cot θ P̄′′n,m (cos θ)

+

(
2
(
1+ m2

)
1− cos 2θ

− n (n+ 1)

)
P̄′n,m (cos θ) (20)
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FIGURE 6. Flowchart of simulation experiment.

6) Recurrence formula of P̄
′′′′

n,m (cos θ)

P̄
′′′′

n,m (cos θ)

= 2m2
(
2+ 6 cot2 θ
1− cos 2θ

)
P̄n,m − cot θ P̄′′′n,m (cos θ)

−

(
4
(
1+ 2m2

)
cot θ

1− cos 2θ

)
P̄′n,m (cos θ)

+

(
2
(
2+ m2

)
1− cos 2θ

− n (n+ 1)

)
P̄′′n,m (cos θ) (21)

The derivatives of the Legendre function can be calculated
using Formulas (15)–(21).

IV. SIMULATION
In this section, we calculate the values of the omis-
sion errors in the gravity gradient measurement through
a simulation experiment. The acceleration measurement
devices are assumed to be capable of measuring the ver-
tical component of gravity, and they are placed as shown
in Figures 1 and 2. The distance between the acceleration
measurement devices, namely, the baseline, is denoted by d .
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TABLE 4. Mean values of omission errors in measuring gravity gradient component 0xz .

TABLE 5. Mean values of omission errors in measuring gravity gradient component 0yz .

FIGURE 7. Gravity gradient components of three regions, calculated by EGM2008: values in (a) A, (b) B, and (c) C .

Themeasurement of the gravity gradient components0zz, 0xz
and 0zz can be achieved.

A. SIMULATION SETTINGS
The simulation conditions are shown in Table 1.

The baselines for different gravity gradient measurement
devices vary. For example, for a rotating accelerometer
gravity gradiometer (full-tensor gravity gradiometer, FTG),
the baseline is approximately 0.2 m to 0.4 m; for the

gravity gradient measurement developed by A. Araya and
others, the baseline is approximately 0.44 m [34]; for
the gravity gradient measurement in [28], the baseline is
approximately 700 m. Therefore, the baselines in this study
are set as 0.4, 10, and 100 m, to analyze the influences
of omission errors in various measurement methods on the
measurement results.

Although the spatial resolution of EGM2008 is approx-
imately 10 km, which is much larger than the base-
line length, EGM2008 can still be used to calculate the
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FIGURE 8. Omission errors in measuring gravity gradient component 0xz under various values of difference distance d in regions
(a) A, (b) B, and (c) C .

FIGURE 9. Omission errors in measuring gravity gradient component 0yz under various values of difference distance d in regions
(a) A, (b) B, and (c) C .

omission errors in the simulation. The Appendix shows
that the omitted high-order terms are closely related to
the coordinates of the measuring points but are insignif-
icantly correlated with the spatial resolution of the
model.

Several regions are selected for the simulation to deter-
mine whether omission errors exert the same effects on the
measurement results in different regions, which are shown
in Figure 5. The regions in the red, yellow, and blue boxes
are denoted as A, B, and C , respectively.

The latitude and longitude of each region are shown
in Table 2. These regions are divided into 5′ × 5′ grids in
the simulation.

The simulation flowchart is shown in Figure 6. In the sim-
ulation, the omission errors of gravity gradient components
0zz, 0xz and 0zz are calculated. The reason for choosing these
three components is because: on the one hand, the application
of these three components is more extensive; on the other
hand, the measurement of these components is relatively easy
to operate in actual survey.
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FIGURE 10. Omission errors in measuring gravity gradient component 0zz under various values of difference distance d in
regions (a) A, (b) B, and (c) C .

TABLE 6. Mean values of omission errors in measuring gravity gradient component 0zz .

B. SIMULATION RESULTS
The measurement environment and devices are assumed to
be under ideal conditions in the simulation. The differential
acceleration method is used to measure the gravity gradient
components 0xz, 0yz and 0zz.
The values of the gravity gradient components of

the three regions calculated by EGM2008 are shown
in Figure 7, and the mean values of these components are
shown in Table 3. These values are used as true values in the
simulation.

The omission errors in measuring 0xz, 0yz, and 0zz are
denoted by δ0xz, δ0yz, and δ0zz, respectively, and shown in
Figures 8–10 and Tables 4–6.

V. DISCUSSION AND CONCLUSION
The omission errors of gravity gradient measurement based
on differential acceleration are analyzed in this study. The
values of several high-order terms in the gravity gradient
measurement are calculated using EGM2008 and they are
converted into the LNOF.

Previous works on gravity gradient measurement have
considered that the omission of high-order terms does not
affect the measurement results. However, limited analyses of
omission errors exist in open literature. In this study, we show
that the omission of high-order terms in short-baseline gravity
gradient measurement insignificantly affects the measure-
ment results. However, with an increase in baseline length,
the omission errors increase and eventually affect the mea-
surement results.When the baseline length is 100m, the value
of |δ0xz/0xz| in the region of A reaches 2.0760279 and the
value of |δ0yz/0yz| in C reaches 3.1621045. Accordingly,
when the baseline length d reaches 100 m, the gravity gra-
dient components in certain regions will be submerged in
omission errors and these gravity gradient components will
not be measured.

Tables 4–6 present the following relationship between
omission error and baseline length::

(
δ0iz

δ0′iz

)
≈

(
d
d ′

)2

(i ∈ {x, y, z}) (22)
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where δ0′iz is the omission error before the change in d ′ and
δ0iz is the omission error after the change in baseline length.
The values of the omission errors can be estimated using

Equation (22).
The influences of the omission errors on different regions

also vary. When the baseline length is 100 m, as shown
in Table 4, the relative error of the 0xz component in A
is 2.0760279, which is greater than 1. By contrast, the relative
errors of the 0xz component in the other regions are less
than 1. Therefore, the 0xz component will be submerged in
omission errors in A but not in B and C . A similar con-
clusion can be drawn from Table 5. The table shows that
the relative error of the 0yz component in C is 3.1621045,
whereas those of the 0yz component in the other regions
are less than 1. The omission error thus has a greater influ-
ence on the gravitational gradient component 0yz in C than
in A and B.
The component of 0zz is the least affected by omission

error among the three components of 0xz, 0yz, and 0zz.
A comparison of Tables 4–6 shows that the relative error of
the component0zz is the smallest in comparison with those of
0xz,0yz, and0zz, whichmeans that themeasured value of0zz
is the least affected by omission error. Therefore, the compo-
nent of 0zz should be prioritized when using gravity gradient
data.

In summary, from the results of this study, we can draw the
following conclusions.

1) The error of omission of high-order terms is positively
related to baseline length. For short-baseline (such
as 0.4 m) gravity gradient measurements, the omis-
sion of high-order terms exerts a negligible effect on
the measurement results. However, with an increase
in baseline, the influence of omission error becomes
increasingly large until the signals of gravity gra-
dient components are drowned out by the omission
error.

2) The influences of omission errors in different regions
vary.

3) The component of 0zz should be prioritized when the
data of gravity gradient measurement are applied.

APPENDIX
The expression for the omitted high-order terms in the
EFRF is

∂ngi
∂rn1∂θn2∂λn3

=
∂n+1V

∂rn1∂θn2∂λn3∂i

=
GM
a

Nmax∑
n=0

γ
(a
r

)n+1 n∑
m=0

(α cosmλ+ β sinmλ) p

× (i ∈ {r, θ, λ} , n1 + n2 + n3 = n, n = 1, 2, 3, ...)

(A.1)

The parameters α, β, γ and p are shown in Table 7.

TABLE 7. Expressions of parameters α, β, γ , and p for high-order terms.
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