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ABSTRACT Feature selection and ensemble learning can be used to improve the accuracy and robustness
of epileptic seizure detection and classification. Unfortunately, a few studies have fully utilized feature
selection and ensemble learning. In this paper, we present an adaptive hybrid feature selection-based
classifier ensemble (AHFSE) for epileptic seizure classification. The AHFSE creates new sample subsets
in every bootstrap using adaptive hybrid feature selection. It combines them using rank aggregation to
obtain a distinguished subset of features. These new samples’ subsets are then fed into a classifier. Finally,
majority voting is used to complete the detection and classification tasks. The AHFSE is designed to
obtain an optimized subset of features based on the different samples in every bootstrap, which have a
tendency to generate different results with respect to rank aggregation. With discrete wavelet transform,
the experiments based on binary and multi-class tasks show that the AHFSE performs well on the Bonn data
set and improves the specificity, sensitivity, or accuracy of the selected features by combining the subsets
of different feature selections to obtain new samples within the bagging process. Furthermore, the adaptive
process helps the framework obtain the optimum combination of the feature selection algorithm. The AHFSE
also obtains more desirable final results in several perspectives, such as: 1) compared with other feature
selection methods; 2) compared with other ensemble methods; and 3) compared with other research that
uses discrete wavelet transform as a preprocessing step.

INDEX TERMS Epileptic seizure detection and classification, discrete wavelet transform, hybrid feature
selection, classifier ensemble, bagging, rank aggregation, adaptive, genetic algorithm, optimization, machine
learning.

I. INTRODUCTION
Fisher et al. [1] explained epilepsy as a neurological disor-
der group that can be characterized by epileptic seizures in
consequence of spontaneous with peculiar cortical nerve cell
activities in the brain. The electroencephalogram (EEG) sig-
nal is widely used in epileptic seizure detection, as epilepsy
diagnosis can be performed by identifying the abnormalities

of EEG signals [2]. As manual detection by an expert neu-
rologist is expensive and time consuming and as there are
concerns about a possible loss of accuracy caused by fatigue,
computer-aided approaches to epilepsy diagnosis using EEG
signal time series data analysis can serve as effective solutions
to the above problems. Epileptic seizure EEG signal datasets
that are widely used to develop seizure detection approaches
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mostly contain several groups of subjects, such as: 1) epileptic
subjects during seizure-free intervals, 2) epileptic subjects
during seizure (ictal) and 3) healthy subjects.

The epileptic seizure researchmainly divide into two direc-
tions: 1) focuses on preprocessing methods and 2) focus on
the classification & detection framework. In the first direc-
tion, many researchers introduces the effective approaches
to extract the features from raw EEG signal, for example:
Bhattacharyya et al. [3] computes complexity of the signal
which obtained from tunable-Qwavelet transform inmultiple
oscillatory scales; Bhati et al. [4] applied three-band wavelet
filter banks which localized from wavelet to alleviate the
poor frequency resolution in the high and low frequencies;
Sharma & Pachori [5] focuses on feature extraction from
the phase space reconstruction (PSR) of intrinsic mode func-
tions; Samiee et al. [6] proposed a signal models which
based on rational orthogonal polynomials and applied short-
time Fourier transform which relied on rational functions;
Bhati et al. [7] proposed equivalent summation based
on uncertainty principle of discrete-time, then compute
the frequency variance from discrete Fourier transform.
In the second direction, many researchers introduces the
robust approaches to classify and detect the epileptic seizure,
such as: Abdulhay et al. [8] applied stacking-correspondence
analysis and nearest neighbor (SCANN) with KNN, Naive
Bayes and SVM as base classifiers; Li et al. [9] applied
modified artificial neural network into bagging ensem-
ble to prevent the detection algorithm from local minima;
Peker et al. [10] applied complex-valued artificial neural net-
works due to complex number are important characteristics
in the signal processing.

From the description above, this research belong to sec-
ond direction, which is the purpose of this research is to
identify a framework and algorithm with better performance
in matter of accuracy, sensitivity and specificity than other
methods. In this paper, we focus on classifier ensemble learn-
ing with feature selection. Although most researchers have
only considered predefined features, we combine ensemble
learning with feature selection to improve the performance
of epileptic seizure detection. We make two contributions.
First, combining the subsets of different feature selections
to obtain new samples within the bagging process improves
the specificity, sensitivity or accuracy of the selected features.
Second, the adaptive process helps the framework obtain the
optimum combination of the feature selection algorithm.

Specifically, we design a new algorithm, referred to
as the Adaptive Hybrid Feature Selection based classifier
Ensemble (AHFSE), for epileptic seizure classification
which described at Figure 1. First, to decompose the raw
EEG signals into several sub-bands of signals, we applied dis-
crete wavelet transform (DWT). Then, several features were
extracted from sub-bands and put into EEG training data. Sec-
ond, Bagging method were adopted to split the training data
into multiple training set (bootstrap) as sample subset. Third,
Adaptive hybrid feature selection based on Rank aggregation
were applied within every sample subset to generate compact

sample subsets (which contains selected feature subsets), then
the compact sample subsets are fed into base classifier to
obtain the learning model. Fourth, EEG testing data (which
already processed using DWT and contains features same
in the first step) are sent into every bootstrap, the features
from EEG testing data are adjusted according feature subsets
in every bootstraps, then fed into predictor (base classifier)
to obtain prediction. Finally, voting is then used for final
prediction to complete the seizure classification and detection
tasks. Several measurement tests are also adopted to compare
our framework to other approaches.

From the experiments, our framework obtained high per-
formance when: 1) compared with the feature selection prob-
lem; 2) compared with other ensemble methods and 3) with
other seizure detection research using discrete wavelet trans-
form as preprocessing methods. Moreover, our framework is
comparable with other researchers which used other prepro-
cessing methods.

The remainder of this paper is organized as follows.
Section II briefly reviews EEG preprocessing and classifica-
tion. Section III describes the detailed methods which utilized
in this research. Section IV provides the conducted experi-
ment in this research. Section V presents our conclusion and
proposes future works.

II. RELATED WORKS
Epileptic seizure classification and detection research is
mainly divided into three steps: preprocessing, feature extrac-
tion and classification for detection and prediction. The
first step is preprocessing, which is used to analyze several
changes in EEG signals. The second step is feature extraction,
which is used to obtain important features that can maximize
the separability of different classes.Mostly, feature extraction
is described within preprocessing methods, one of those cat-
egories is time-frequency (wavelet) domain methods, which
decompose EEG signals into sub-band signals with down
sampling. Discrete wavelet transform (DWT) are widely used
for EEG signal analysis and belong to the class of wavelet
domain methods [11]. Statistical features [9], [11] and non-
linear dynamics, such as entropy [12], [13], fractal dimen-
sion [8], [14], are commonly applied in the feature extraction
process. The experimental outcomes of these references show
that DWT with those features can accurately characterize
epileptic seizure signals.

As a good subset of features can improve the accuracy
of epileptic seizure detection, some researchers have used
feature selection to identify feature subsets that can improve
accuracy. For example, Alzami et al. [15] adopted a modified
differential evolution feature selection approach to obtain
the optimum feature subset for improving the robustness
of epileptic seizure detection and classification accuracy.
Lee et al. [16] applied a neural network with a fuzzy mem-
bership function to improve classification performance based
on feature selection. Pippa et al. [17] used the Relief-F
algorithm to estimate the importance of each feature in
epileptic seizure classification. Guo et al. [18] used genetic
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FIGURE 1. Block diagram of adaptive hybrid feature selection-based ensemble.

programming to select features for reducing the dimensions
number.

The third step is classification for detection and predic-
tion, which is used to classify EEG signals and determine
whether they are indicative of a seizure. The classification
method is divided into two categories: 1) single classifiers and
2) ensemble learning classifiers.

The single classifier method mainly focuses on which
features can obtain the highest accuracy and which opti-
mum parameters should be applied to classifiers. For exam-
ple, Guler and Ubeyli [19] used multi-class SVM and the
probabilistic neural network to classify seizures with the
wavelet coefficient and Lyapunov exponent as the features.
Gosh-Dastidar et al. [20] applied principal component analy-
sis to enhance and transform nine features, and then fed them
into the cosine radial basis function (RBF) neural network to
detect seizure.

Ensemble learning method is used to unify multiple clas-
sifiers, which provides more robust, stable and accurate final
results than a single classifier. Ensemble learning approaches
have been applied in many areas, particularly in bioinfor-
matics and health informatics [21], [22]. In epileptic seizure
detection and classification, Hassan et al. [23] applied bag-
ging combined with a tunable-Q factor wavelet transform to
detect epileptic seizures, Abdulhay et al. [8] used bagging in

which the prediction of a KNN-SVM-NB module is fed into
a meta learning module to obtain the final detection result and
Li et al. [9] adopted a neural network ensemble that prevents
the detection algorithm from falling into a local minimum.

This research proposes a new approach in the epileptic
seizure classification which is dissimilar from the methods
which presented above. In this research, Adaptive hybrid fea-
ture selection-based ensemble are used to classify the seizure.
The proposed framework produced better performance com-
paring other feature selection (can be seen at Table 3), other
ensemble methods (Table 5) and other research which using
discrete wavelet transform as preprocessing step (Table 7).
Following description is a summary of proposed framework.

This research explores the effects of combining feature
selection using rank aggregation which chosen adaptively.
The proposed framework adopt a rank-aggregation (RA)
methods from Kolde [24]. Most of filter feature selection
uses different assumptions to obtain the best subset of fea-
tures. Thus, combining their results using RA would cover
a larger set of possible underlying data, thereby improving
the specificity, sensitivity or accuracy of the selected features.
In our research, we applied the RA within bagging process,
then, genetic algorithm is applied in search of best combi-
nation of feature selection to calculate the reliability of the
subset results and applicability to partial ranking. This genetic
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algorithm together with RA is described at sections III-C.
Sections III-D describes the advantages and limitations of
this framework including time complexity analysis. In here,
we applied discrete wavelet transform (DWT) as preprocess-
ing methods, thus in section IV-B5 we will describes the
advantages and disadvantages the DWT with other prepro-
cessing methods.

III. METHODS
A. DISCRETE WAVELET TRANSFORM
Wavelet transforms (WT) is a good feature extractor, at low
frequencies, WT able to gives proper frequency information,
and at high frequencies, WT gives proper time information.
Thus, WT is compatible for analysis non-stationary data
patterns. Discrete wavelet transform (DWT) is computation-
ally cheap rather than continuous wavelet transform (CWT)
because DWT applied shifts and scales is selected based on
power of two.

DWT (Sc, Sf ) =
1
√
|Sc|

∫
∞

−∞

x(t)ψf

(
t − Sf Sc

Sc

)
dt (1)

In here, Sc is scaling parameters, Sf is shifting parameters,
x(t) is a signal and ψf is mother wavelet. Then, wavelet
coefficients can be obtained using Daubbechies family. Thus,
the obtained wavelet coefficient is used to extract the desired
features.

B. FEATURE SELECTIONS
In this subsection, we will briefly described several feature
selection that widely used, such as: Minimal redundancy
maximum relevance (mRMR) feature selection [25] uses
mutual information to calculate the dependence between fea-
tures and labels. The features with lowest redundancy (mutu-
ally maximally dissimilar) and highest relevance are assigned
as selected features. We can calculate the redundancy and
relevance as follows:

WI (0) = argmin{
1
|0|2

∑
a,b∈0

I (a, b)} (2)

VI (0, h) = argmax{
1
|0|

∑
a∈0

I (h, a)} (3)

where 0 is the set of features we are seeking, WI denotes
redundancy, I (a, b) is the mutual information between fea-
tures a and b, VI denotes relevance and h represents the
target classes. The mRMR feature set can be obtained by
simultaneously optimizing Eq. (2) and Eq. (3) as follows:

ϑ = max
a∈S0

[I (a, h)−
1
|0|

∑
b∈0

I (a, b)] (4)

where ϑ represents the near-optimal features and S0 repre-
sents the set features minus one feature (as we already obtain
one feature from the previous calculation).

Fisher [40] used Fisher score performance criteria to select
individual features. The Fisher score provides a feature sub-
set, in which distance is minimized for features that belong

to the same class. The selected features must maximize the
Fisher score of the overall subset. We can calculate the Fisher
score of the 1-th feature, S1, as follows:

S1 =

K∑
k=1

dy(µ1y − µ1)2

K∑
k=1

dy%21y

(5)

where dy is the number of individuals in the y-th class, K is
the number of classes,µ1y and %1y are themean and variance
of the 1-th feature in the y-th class, and µx1 is the mean of
the 1-th feature. As the Fisher score is a univariate scheme,
Fisher feature selection cannot handle feature redundancy.

Relief-F feature selection [26] randomly chooses individ-
uals and then finds the nearest neighbor individual in the
same class and the non-similar nearest neighbor individual
from a different class. Relief-F then updates the weights
of every individual. Finally, individuals that obtain higher
relevance (mean of weights) are chosen as selected features.
We can calculate the Relief-F score of the 1-th feature, S1,
as follows:

S1 =
1
K

r∑
k=1

(S1a + S1b ) (6)

S1a = (−
1
mk

∑
Xy∈Mk

λ(11k −11y)) (7)

S1b =

∑
Y 6=Yk

1
hkY

p(Y )
1− p(Y )

∑
1y∈Hk

λ(11k −11y) (8)

where r is the individual that is randomly sampled, λ is the
number of features to be selected, Mk and hkY are the set
of imminent points to 1k with the same class and class Y
with the sizes of mk and hkY , respectively, and p(Y ) is the
possibility of individuals being from class Y.

Chi-square feature selection [27] is a numerical test that
evaluate deviation from the prospective distribution, con-
sidering that the feature event is independent of the class
value. If the two events are dependent, it should be helpful
as a feature. High chi-square values represent the increased
likelihood of the features being correlated with the class. The
features are sorted in decreasing order of chi-square value to
compare the importance of the features. We can calculate the
chi-square, χ2, score of the 1-th feature, S1, as follows:

S1 =
d(ϕd − υP)2

Pυ(d − P)(d − υ)
(9)

where d is the total number of individuals, ϕ is the total
number of positive individuals demonstrating feature 1, υ is
the total number of individuals demonstrating feature 1 and
P is the total number of positive instances.

As remainder, S1 is a score of features, not assigned fea-
tures. Thus, we can sorted the features according to the scores
and put selected features as chosen subset features 0.
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C. ADAPTIVE HYBRID FEATURE SELECTION-BASED
ENSEMBLE
Algorithm 1 provides an overview of our proposed frame-
work of seizure classification. This framework divided into
five steps: preprocessing, obtaining sample subsetsω, obtain-
ing compact sample subset ω̃, learning model and classifica-
tion (prediction).

In the preprocessing step, Raw EEG training data Dtr and
raw EEG testing data (for classification/prediction) Dts are
decomposed into sub-band signals, then extract features from
decomposed Dtr and Dts and put into training data Dtr (1a)
and testing data Dts(1a) (where a ∈ {1, . . . , number of
extracted features }). ThenDtr (1a) andDts(1a) is normalized
using scale σ .
In the obtaining sample subsets ω step, bagging method is

applied to training dataDtr (1a) to generate sample subsetsωi
(where i ∈ {1, . . . , �} and� is the number of new bootstraps
(new sample subsets)).

After the new sample subsets is generated, the next step
is obtaining compact sample subset ω̃i. In here, we need
call Algorithm 3 (Adaptive Hybrid Feature Selection based
Ensemble/AHFSE). The AHFSE will produce compact sam-
ple subset ω̃i which utilized rank-aggregation together with
genetic algorithm. It means, in every ω̃i could have different
feature subsets. For example, suppose we need to obtain
6 number of subsets λ, the numbers of features are 45
and number of bootstraps � are 50. Given different sample
combination in every sample subset ωi, the AHFSE high
likely will produce different feature subsets 0 according
to ωi, for example: ω1(0) = {23, 5, 14, 32, 8, 41}; ω2(0) =

{5, 14, 23, 32, 8, 45}; . . .; andω50(0) = {14, 5, 23, 32, 41, 8}.
When all compact sample subset ω̃i is generated, ω̃i will

be fed into training model (base-classifier) 9i (where
i ∈ {1, . . . , �}) to obtain the learning model hi.
In the classification (prediction) step, the Dts(1a) is fed

into every predictor (from 1, . . . , �). In here, feature sub-
sets of Dts(1a) is adjusted according the ω̃i in respective
matter. It means, Dts(1a) in predictor 1 will have feature
subsets same like ω1(0), which can be seen as Dts(1)(0) =
{23, 5, 14, 32, 8, 41}. In other words, Dts(i) is the testing
dataset which placed in the predictor i. Then, label prediction
for Dts(i) is generated respected with hi. Finally, majority
voting is used to obtain the final results.

Algorithm 3 provides an overview of AHFSE, which used
to obtain compact sample subset ω̃. First, we map feature
selection 8 = {φ1, φ2, . . . , φf } onto individuals in popula-
tion αΛ as follows:

αΛ = {Z1
φ ,Z

2
φ , . . . ,Z

f
φ} (10)

where Z1
φ means that φ1 is placed in the first binary vector,

Z2
φ means that φ2 is placed in the second binary vector and

so on. Then, the initial population, popΛ, is generated with
indicator Z f , where 1 denotes that the binary vector (feature
selection) is selected and 0 denotes that it is not selected.
Second, until terminal condition ηΛ is satisfied, we must

Algorithm 1 Proposed Framework of Seizure Classification
Require:

Input: Raw EEG training data, Dtr
Raw EEG testing data, Dts
the scaling options for the normalized dataset, σ ;
the number of bootstraps, �;
the set of feature selections, 8 = {φ1, φ2, . . . , φf };
the number of subsets to obtain, λ;
the set of weak classifiers, 9 = {ψ1, ψ2, . . . , ψ�};

Ensure:
1: /* step: preprocessing */
2: decompose Dtr & Dts using Eq.1;
3: extract features of decomposed Dtr and put into EEG

training data Dtr (1a); /*(where a ∈ {1, . . . , number of
features})*/

4: extract features of decomposed Dts and put into EEG
testing data Dts(1a);

5: whether Dtr (1a) and Dts(1a) is already processed
depends on σ ;

6: /* step: obtaining sample subset ω */
7: generate � bootstrap sampling from Dtr (1a) as ωi;

/*(where i ∈ {1, 2, . . . , �})*/
8: /* step: obtaining compact sample subset ω̃ */
9: For ωi in 1, . . . , �
10: call algorithm 3 to obtain compact sample subset ω̃i;
11: EndFor �
12: /* step: learning model */
13: For ω̃i in 1, . . . , �
14: train base classifier ψi using ω̃i to obtain hi;
15: EndFor �
16: /* step: classification (prediction) */
17: For ω̃i in 1, . . . , �
18: reassign feature subsets Dts(1a) according to ωi(0)

as Dts(i); /*(where ωi(0) is feature subset result -
from AHFSE)*/

19: label prediction using hi and Dts(i);
20: EndFor �
21: apply a majority voting scheme to obtain final results;

Output: final prediction results;

generate the crossover individual popγ and mutation indi-
vidual popµ, put all into popΛ = [popΛ, popγ , popµ],
sort popΛ and reduce the population of popΛ correspond-
ing to αΛ. We must then define the first individual as the
best individual, αbest . Third, after ηΛ is satisfied, the final
αbest = {Z1

φ ,Z
2
φ , . . . ,Z

l
φ} (where l is the position of the

binary vector that is selected) is transformed into the selected
feature selection algorithm as follows:

8Λ = {φ1, φ2, . . . , φs} (11)

where φ1 = Z1
φ , φ2 = Z2

φ , and φs = Z lφ . In other words,
8Λ is collection of selected feature selection that generated
from AHFSE.

After we obtained 8Λ, next step is applied rank-
aggregation as follows: First, ωi is fed into every feature
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selection algorithm that provided from 8Λ corresponding
with number of subset of features λ to obtain the new subset
features, which can be seen as:

0i = {1b,1,1b,2, . . . ,1b,λ} (12)

(where b ∈ {1, . . . , s} and s is the number of selected feature
selection). As many subset features in 0i are redundant and
selected in different assumptions, we must purify the subset
features as µ[τ×s] by using unique elements, such as γ and
map number δ of 0i. Here 0ipos is the number of feature
subsets obtained from 0i. γ returns the same data as 0i but
with no repetitions. τ is the number of elements. γ and δ
(where δ ∈ 1, 2, . . . 0ipos ) are indexed to γ , which returns
as a column vector. Then δ is transformed into the µ matrix
as follows:

µ[τ×s] =


δ11 δ12 · · · δ1s

δ21 δ22 · · · δ2s
...

...
...

. . .

δτ1 · · · · · · δτ s

 (13)

After the feature subsets is purified and transformed into
µ[τ×s], we must obtain the importance (rank) matrix 2[τ×s]
by using the unique elements, U , and map number, T , of µ,
where U returns the same data as µ but with no repetitions.
Ul is the length of U and T is indexed to U , which returns
as column vector. Then, T is reshaped into (τ by s) matrix
as (4[τ×s]). As matrix 4[τ×s] only contains the map number,
T (where T ranges from {1, 2, . . . ,Ul}), we must map matrix
4[τ×s] to matrix ξ[Ul×s] with respect to V = {1, 2, . . . , τ }
(where V is the position of γ ) as follows:

ξ[τ×s] =

s∑
j=1

τ∑
i=1

{ξ ([4i,j, j])} (14)

[4i,j, j] = Vi (15)

As Eq. (14) fills matrix ξ as much as ξ[τ×s], the empty matrix
position of ξ can be filled with τ . Finally, all ξ[Ul×s] values
are obtained. Here, ξ[Ul×s] is the priority rank of γ , meaning
that we can reduce the ξ matrix size from [Ul × s] to [τ × s].
The final matrix of ξ[τ×f ] can be defined as follows:

ξ[τ×s] =


411 412 · · · 41s

421 422 · · · 42s
...

...
...

. . .

4τ1 · · · · · · 4τ s

 (16)

Finally, we can obtain the rank matrix as follows:

2[τ×s] = arg
τ∑
i=1

s∑
j=1

{
4i,j

Ul
} (17)

This then becomes the following:

2[τ×s] =


211 212 · · · 21s

221 222 · · · 22s
...

...
...

. . .

2τ1 · · · · · · 2τ s

 (18)

Here, we can obtain subset features after we execute Eq. (14)
as pre-ranked feature subsets 0ipre which have following
values:

0ipre = {γ1, γ2, . . . , γτ } (19)

Because γ is actually unique elements from 0i, we can trans-
form Eq. (19) into:

0ipre = {11,12, . . . ,1τ } (20)

Furthermore, we must obtain the statistical significance
(ρ value) of the mean rank, 2[τ×s], by calculating the
ρ scores. The ρ scores can be obtained as described
as Algorithm 2.

Algorithm 2 Calculate ρ Scores
Require:

Input: ranking matrix 2τ×s;
Ensure:
1: For every row of 2τ×s:
2: Calculate the beta scores of the current row using

the beta cumulative distribution (beta-CDF) function to
obtain η;

3: Find the minimum value of η, ηmin;
4: Determine how many η variables are not NaN,$ ;
5: obtain the ρ values using the beta-CDF function with
ηmin as the value and parameters 1 and$ , respectively;

6: EndFor row
7: ρ̃ = {ρ1, ρ2, . . . , ρτ };

Output: ρ̃

After we obtain the statistical significance, we need put ρ̃
together with 0ipre as ϒ = [ρ̃, 0ipre ]. The ϒ can be seen as
11 have the statistical significance value as ρ1, and 1τ have
the statistical significance value as ρτ . Then, we need to sort
the ρ̃ in ascending order as the lower number corresponds to a
better ranking. As we only need the λ subsets, the final subset
features can be shown as follows:

0i(AHFSE) ∈ {11,12, . . . ,1λ} (21)

Finally, compact sample subsets ω̃i can be obtained by
reassign the features subsets 0i(AHFSE) into ωi, which can be
seen as:

ω̃i = (ωi, 0i(AHFSE) ) (22)

Algorithm 4 provides an overview of obtaining fitness
cost. First, we must map the information from the current αΛ
to the individual αindv by determining which binary vector is
selected. The list of selected feature selections, φG, can then
be obtained as follows:

φG = {φg(1), φg(2), . . . , φg(αindvSel )} (23)

where αindvSel is the number of selected binary vectors. Then,
we obtain subsets from every feature selection, φg, resulting
in:

0φg(j) = {γj,1, γj,2, . . . , γj,λ} (24)
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Algorithm 3 Adaptive Hybrid Feature Selection Based
Ensemble (AHFSE)
Require:

Input: sample subset, ωi;
the set of feature selections, 8 = {φ1, φ2, . . . , φf };
the number of subsets to obtain, λ;
the individual length, f ;
the number of iterations, ηΛ;
the size of population, αΛ;
the rate probability of crossover, γΛ;
the rate probability of mutation, µΛ;

Ensure:
1: map the feature selection, 8, onto individuals in popula-

tion αΛ as Eq. (10);
2: Initialization step:
3: generate αΛ population randomly;
4: evaluate each individual fitness, θ , using Algorithm 4;
5: save the individual and θ to population popΛ;
6: sort popΛ based on θ ;
7: obtain best solution αbest from first individual;
8: For i=1 to ηΛ:
9: obtain popγ by using the crossover scheme with γΛ;
10: obtain popµ by using the mutation scheme with µΛ;
11: merge the population, popΛ = [popΛ, popγ , popµ];
12: sort population popΛ based on θ ;
13: reduce population, popΛ, corresponding to αΛ;
14: define the first individual as the best individual αbest ;
15: EndFor ηΛ /* termination condition achieved */
16: obtain αbest ;
17: transform αbest into selected 8Λ following Eq. (11)

Output: selected features 0i = {11, . . . ,1λ}

where j ∈ {1, . . . , αindvSel}. After we obtain subsets from
every feature selection 0φg(j) , we need to put all 0φg(j) into
one bucket as follows:

0φ(G) = {01,1, 01,2, . . . , 01,λ, 02,1, . . . , 02,λ, . . . , 0f ,λ}

(25)

The next step is to obtain the new subset features, 0̃i(G),
of 0φ(G) using Eq. (13) - (21). We then remap the current ωi
with subset 0̃i(G) which can be seen as:

ωi(G) = (ωi, 0̃i(G)) (26)

In here, Eq. (26) can be seen as ωi(G) consist of sample ωi
with features 0̃i(G).

Finally, we feed ωi(G) as a sample into the classifier and
obtain the error result as the fitness cost, θ .
As worthmention, we define our own rule regarding the fit-

ness functions, which is: the genetic algorithm will probably
generate empty individual (which means, no feature selection
is selected), thus, we gave fitness cost directly to maximum
value. As error values is the fitness value, in here we gave
result 100% error value (% is considered when we using
percentage as accuracy measurement).

Algorithm 4 Fitness Function to Obtain Cost
Require:

Input: current αΛ individual, αindv;
current bootstrap sampling, ωi;
the number of subsets to obtain, λ;
the set of feature selections, 8 = {φ1, φ2, . . . , φf };

Ensure:
1: map the information from αindv to become φG following

Eq. (23)
2: obtain the subset features following Eq. (24)-(25)
3: obtain the new subset features, 0̃i(G), using

Eq. (13) - (21).
4: remap the current ωi to ωi(G) using Eq. (26)
5: feed ωi(G) into the classifier and obtain the error value as

fitness cost, θ
Output: fitness cost, θ

TABLE 1. Experiments parameter settings.

TABLE 2. AHFSE parameters settings.

D. COMPLEXITY ANALYSIS
We also performed a complexity analysis of our framework
with respect to its computational cost. The corresponding
time complexity is computed as follows:

Tframework = TWT + TOS + TOCS + TLM + TCP (27)

The explanation as follows: (1) TWT denote the computational
cost of converting raw EEG signal into dataset which contains
sample and features using wavelet transform. TWT is related
to the number channel of EEG CL, sub-band signal SB.
In here, for every number of channel, we need to decomposed
those raw EEG signal into sub-band signals. Then in every
sub-band signal, we need to extract the features 1b (where
b ∈ {1, 2, . . . end of features}).

TWT = O(CL.(SB.(1b))) (28)

(2) TOS denote the computational cost of generating new
sample subsets. TOS is related to the number of bootstraps�,
which is as follows:

TOS = O(�) (29)

(3) TOCS denote the computational cost of generating new
compact sample subsets. TOCS is related to the number of
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TABLE 3. Comparison with other feature selections.

bootstraps �, AHFSE which containing numbers of pop-
ulation αΛ, numbers of genetic iteration ηΛ, number of
crossover γΛ, number of mutation µΛ and numbers of iter-
ation of classifier to obtain the fitness cost θrun.

TOCS = O(�.(Tpop + Titer )) (30)

Tpop = O(αΛ.(θrun)) (31)

Titer = O(ηΛ.(γΛ.(θrun)+ µΛ.(θrun)) (32)

(4) TLM denote the computational cost of generating learning
model. TLM is related to the number of bootstraps� which is
follows:

TLM = O(�) (33)

(5) TCP denote the computational cost of making predictions.
TCP is related to the number of bootstraps�which is follows:

TCP = TWT + O(�) (34)

The reason TCP also contains TWT is due to testing dataset
is obtained directly from patient. Thus, when the framework
is put into real-time monitor device, we only need con-
cern in Eq. (34). It also worth mentions, when considering
Eq. (28) - (33), parallel processing could be applied to
decrease the computational time.

The advantages of our framework is: 1) successfully
obtained the best subset of features in every bootstrap and
placed as compact sample subset; and 2) It can be used using
many feature selection not limited in those feature selections
described in Section III-B. The reason we also explained the
several feature selection is to grasp the understanding of filter
feature selection. Thus, our framework can be used using
other filter feature selection. The limitations of our frame-
work is: 1) need longer time obtain compact sample subsets
which is TOCS , where it can be seen at every bootstrap�, need

TABLE 4. Average rankings of the feature selection (Friedman).

to generate number of populationαΛ and genetic iteration ηΛ;
2) in matter of detection, AHFSE slightly need more time
rather than simple bagging due to the feature subset of test
data need to be reassigned following the AHFSE in current
bootstrap location.

IV. RESULTS & DISCUSSION
A. DATASET
We used a freely available on-line EEG dataset provided by
the University of Bonn [28]. The EEG dataset consists of
five sets (A-E), each of which contains 100 single-channel
EEG segments with a duration of 23.6 s per segment. Each
epoch, 4, 096 samples were generated using 173.61 Hz. For
the healthy dataset, five healthy volunteers participated with
opened eyes (denoted as set A) and closed eyes (denoted
as set B). Five epileptic seizure patients were also chosen
for presurgical assessment for epilepsy using intracranial
electrodes. Then, the electrodes were placed symmetrically
to record EEG signals from the hippocampal position of the
opposite hemisphere of the brain (denoted as set C) and from
the epileptic zone (denoted as set D). Set E was taken from
all electrodes. Those in sets C and D demonstrated interictal
intervals(seizure-free), whereas seizure activities occurred in
set D.

To preprocess the raw EEG signal dataset, the band-pass
FIR filter is set from range 0.5 Hz to 60 Hz. DWT db4 level 4
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TABLE 5. Comparison with other ensemble methods.

was then used to decompose the filtered EEG signals into
five sub-band signals, namely delta, theta, alpha, beta and
gamma. Nine features were extracted from every sub-band
signal, which contained: kurtosis, skewness, median, mean,
standard deviation, Sample Entropy, Embedding Dimension,
Correlation Dimensions and Fractal Dimensions.

To evaluate the performance of our framework and compar-
ative researches, we performed different classification tasks.
We particularly investigated the classification of seizure
epochs (set E) in the presence of other sets. Thus, the clas-
sification task is as follows:
• (E-A) : set E (seizure) prediction within presence of set
A (healthy eyes open) (binary class problem)

• (E-B) : set E (seizure) prediction within presence of set
B (healthy eyes closed) (binary class problem)

• (E-C) : set E (seizure) prediction within presence of set
C (seizure-free) (binary class problem)

• (E-D) : set E (seizure) prediction within presence of set
D (seizure-free) (binary class problem)

• (E-CD) : set E (seizure) prediction within presence of set
CD (seizure-free) (binary class problem)

• (E-ABCD) : set E (seizure) prediction within presence of
set ABCD (healthy) (binary class problem)

• (E-A-D) : set E (seizure) prediction within presence of
set A (healthy eyes open) and set D (seizure-free) (multi-
class problem)

• (E-AB-CD) : set E (seizure) prediction within presence
of set AB (healthy) and set CD (seizure-free) (multi-
class problem)

The reason we include the multi-class problems because
it is represent the real-world problem. People who suffer-
ing from epilepsy can lived normally, and occasionally got-
ten seizure. Thus by applying the multi-class problem, our

TABLE 6. Average rankings of the algorithms (Friedman).

long-goal is implemented the framework into device which
real-timemonitor the people who suffering from epilepsy and
could giving immediate response and treatment to the illness.

B. RESULTS
In our experiments, we applied mRMR, Fisher, Chi-Square
and Relief-F as feature selection which will be utilized in
our framework. The Levenberg-Marquardt back-propagation
neural network was used as the fitness function learner and
weak learner in the bagging process. The proposed frame-
work approach was measured by the average accuracy of the
dataset. Five-fold crossover validation was applied to reduce
the randomness effects, and the experiments is repeated
six times for each classification tasks. In here, Table 1 lists
important parameters in our experiments.

In the following experiments, first, we explore the effect
of adaptive hybrid feature selection within bagging process.
Then, we compared our framework with several perspec-
tives, such as: 1) comparison with other feature selection;
2) comparison with other ensemble methods; 3) comparison
with other seizure detection using DWT as preprocessing
step; finally, 4) comparison with other seizure detection using
other preprocessing step. Detailed non-parametric test is also
provided at supplementary materials in respective matter.
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TABLE 7. Comparison with other seizure detection using DWT as preprocessing.

1) EFFECT OF ADAPTIVE HYBRID FEATURE SELECTION
WITHIN BAGGING
Table 2 contains optimum parameters for AHFSE. In here,
due to we using four feature selection (mRMR, Fisher, Chi-
Square and Relief-F), then length of individual is set to four.
We also set the population number as twice of feature selec-
tion algorithm minus one. The reason is we don’t need many
initial population due to the individual will also obtained
in population generation (iteration). Thus, by applied rank-
aggregation within genetic algorithm, every bootstrap are
guaranteed to obtain optimum feature subsets to generate new
compact sample subsets. From Table 3 in part of AHFSE
compared with None feature selection, can be seen that
AHFSE with those parameters could obtain feature subsets
within bagging process which improved the accuracy, sensi-
tivity and specificity.

2) COMPARISON WITH OTHER FEATURE SELECTION
In here, we compared our framework with other feature
selection. the following experiment are: our framework uti-
lized adaptive hybrid feature selection within bagging pro-
cess, whereas the other feature selection that are chosen
(mRMR, Fisher, Chi-Square, Relief-F) is utilized in EEG
training data and put into simple Bagging. From Table 3,
in point of view 10 subsets features, our framework suc-
cessfully obtained high performance in 7 of 8 classifica-
tion tasks. Our framework is not better than Chi-Square in
‘E-A-D’ task type (where AHFSE obtained 93.67 and
Chi-Square obtained 95). In point of view all subsets features,
our framework obtained high performance in 5 of 8 classifi-
cation tasks. From Table 4, our framework need 10 subset
features to obtained desirable performance and confirm the

presence of statistical difference with other feature selec-
tion regarding the Bagging method. The possible reason our
framework obtain higher performance rather than simple fea-
ture selection due to AHFSE within rank-aggregation found
optimum feature subsets which cover a larger set of possible
underlying data

3) COMPARISON WITH OTHER ENSEMBLE METHODS
In here, other ensemble methods is compared with our opti-
mum framework. As worth to mention, other ensemble meth-
ods did not applied any feature selection, thus all features
in other ensemble methods is set to 45. From Table 5, our
framework obtained high performance in 7 of 8 classification
task. Adaboost successfully obtained high accuracy in ‘E-C’
and ‘E-D’ task type, but failed at multi-class problem such
as ‘E-A-D’ and ‘E-AB-CD’. Even though Adaboost success-
fully classified the seizure and seizure free, it not suitable
for detection where the patient is not having seizure. Overall,
our framework obtained higher ranking than other ensemble
methods, which means it confirms the presence of significant
statistical difference with other ensemble frameworks.

4) COMPARISON WITH OTHER SEIZURE DETECTION
USING DWT AS PREPROCESSING
In here, we compared our frameworkwith other seizure detec-
tion using DWT as preprocessing. From Table 7, our frame-
work obtain high performance in 5 of 7 task-type. In ‘E-A-D’
task, our framework is comparable with Orhan et al. [29].
In ‘E-C’ task type, Kumar et al. [30] obtain satisfactory
result than our framework. Thus, we can obtain conclusion
that our framework obtained satisfactory results when applied
together with DWT as preprocessing.
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TABLE 8. Comparison with other seizure detection using other preprocessing.

5) COMPARISON WITH OTHER SEIZURE DETECTION USING
OTHER PREPROCESSING
In here, we compared our framework with other seizure
detection using other preprocessing methods. The reason
we applied DWT as preprocessing step due to it is faster
and widely used in epileptic seizure research. Because our
research is focused in identify a framework and algorithm
with better performance, we did not consider to obtain the
perfect signal which could improve the detection results.
Thus, several researchers applied different preprocessing
which alleviate the problem of DWT such as: (1) Tunable-
Q factor wavelet transform (TQWT) which modified version
of DWT is applied by [5] and [23]. TQWT have several

advantages such as: a) rational transfer functions that eas-
ily appointed properly in frequency domain, b) TQWT
able to perfectly reconstruct the wavelet transform property,
c) TQWT is able to tuning Q-factor, Q-factor is the value of
oscillatory behavior, which is if the signal do not have oscil-
latory behavior then the wavelet transform which will used to
analyze those signal supposed to be have lowQ-factor values.
(2) DWT with Envelope analysis using hilbert transform [9]
which able to generate clearer and smoother curves also gives
satisfactory results. (3) Local Mean Decomposition (LMD)
[33] which transforms EEG signals into multiple product
functions and applied mirror extending approach to tackle
the effect of edge resulted in more reliable than traditional
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Empirical Mode Decomposition(EMD). (4) Dual-tree Com-
plex in Wavelet Transformation (DTCWT) is reported have
many advantages than DWT [10], such as: a) DTCWT suc-
cessful in selecting diagonal characteristic and used complex
function instead relying on real-valued functions of main
wavelet, b) DTCWT more successful than DWT in differen-
tiating the input-signal changes.

From description above, simple preprocessing is not
enough to obtain satisfactory results. Thus, in next research,
the modification of traditional preprocessing is required to
applied as preprocessing step.

V. CONCLUSION & FUTURES WORKS
We propose the AHFSE for epileptic seizure classification.
Compared to traditional bagging framework approaches, our
AHFSE framework is characterized as follows: 1) the adap-
tive hybrid (multiple) feature selection algorithm selects the
most representative features by means of rank aggregation
to avoid redundancy and improve the performance of the
classifier; 2) the AHFSE algorithm is used within the bagging
process to obtain new compact sample subsets to feed into the
classifier; and 3) the voting method is used to obtain the final
detection and classification results.

Two main highlights of the experiments are as follows.
First,: 1) using AHFSE to obtain new samples within the
bagging process improves the specificity, sensitivity or accu-
racy of the selected features compared to traditional methods.
2) the adaptive process helps the framework obtain the opti-
mum feature selection combination.

Conclusion that can be drawn from this research is: First,
the AHFSE algorithm combines several feature selections
and obtains the single-ranking features playing important
roles in the performance of seizure detection and classi-
fication. Second, our framework obtain satisfactory results
when compared with: (1) other feature selection; (2) other
ensemble methods; (3) other seizure detection research using
discrete wavelet transform (DWT) as preprocessing methods.
Third, modification of traditional preprocessing is required
to applied as preprocessing step to obtain more satisfactory
results.

As explained in previous section, our algorithm needs
longer time to obtain compact sample subsets, thus in future
works, particle swarm optimization can be used as part of
AHFSE replacing the genetic algorithm due to simplicity
(which is not using combination and mutation) resulted in
computational cost-effectiveness. Classifier ensemble prun-
ing (reduction) also can be adopted to reduce the run-
time overheads [38], [39]. Also, in preprocessing directions,
necessity to applied modification of traditional preprocessing
is required. Thus, several modifications of traditional prepro-
cessing will be considered.
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