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ABSTRACT Cloud and Fog computing have established a convenient and widely adopted approach for
computation offloading, where raw data generated by edge devices in the Internet of Things (IoT) context is
collected and processed remotely. This vertical offloading pattern, however, typically does not take into
account increasingly pressing time constraints of the emerging IoT scenarios, in which numerous data
sources, including human agents (i.e., Social IoT), continuously generate large amounts of data to be
processed in a timely manner. Big data solutions could be applied in this respect, provided that networking
issues and limitations related to connectivity of edge devices are properly addressed. Although edge
devices are traditionally considered to be resource-constrained, main limitations refer to energy, networking,
and memory capacities, whereas their ever-growing processing capabilities are already sufficient to be
effectively involved in actual (big data) processing. In this context, the role of human agents is no longer
limited to passive data generation, but can also include their voluntary involvement in relatively complex
computations. This way, users can share their personal computational resources (i.e., mobile phones) to
support collaborative data processing, thereby turning the existing IoT into a global cyber-physical-social
system (CPSS). To this extent, this paper proposes a novel IoT/CPSS data processing pattern based on the
stream processing technology, aiming to distribute the workload among a cluster of edge devices, involving
mobile nodes shared by contributors on a voluntary basis, and paving the way for cluster computing at the
edge. Experiments on an intelligent surveillance system deployed on an edge device cluster demonstrate the
feasibility of the proposed approach, illustrating how its distributed in-memory data processing architecture
can be effective.

INDEX TERMS Internet of Things, Internet of People, cyber-physical-social system, edge computing, big
data, stream processing, horizontal and vertical offloading, Apache NiFi.

I. INTRODUCTION
The increasing demand for efficient network communications
and data transferring, as well as the ubiquitous penetration of
‘smart’ devices in almost every aspect of people’s everyday
life have been supported by the rapid progress in information
and communication technologies. These advancements have
boosted the development and wide adoption of the Internet of
Things (IoT), and introduced emerging research challenges
to be addressed by both industrial practitioners and academic
researchers. Among the range of pressing concerns, such as
security and interoperability [1], a particularly demanding
topic for investigation is computational speed and reaction
time of IoT systems in performing complex computational
tasks that require extra resources, given the increasing amount
of data and time constraints.

This is particularly critical in the light of the increasing
number of human agents in the digital world and the active
involvement of people in a wide range of cyber-physical
processes, leading to the emergence of cyber-physical-social
systems (CPSSs). As a result, the amounts of generated
data are already growing exponentially, as the number
of personal and mobile devices has exceeded 7 billions
according to recent statistics.1 On the other hand, however,
the active involvement of people in the IoT opens previously
unseen opportunities for leveraging this global collection of
personal devices to support various computational activities

1http://www.independent.co.uk/life-style/gadgets-and-tech/news/there-
are-officially-more-mobile-devices-than-people-in-the-world-
9780518.html
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in participatory and/or opportunistic way, as envisioned by
the Mobile Crowdsensing [2] approach.

Involving mobile devices in data processing tasks partially
overlaps with the Fog Computing paradigm that has emerged
to complement the remote Cloud-based hardware resources
with much lower network latency of computational nodes
located in close proximity to the actual source of data. This
way, Fog/Cloud resources are usually provisioned as elastic
on-demand services, typically implementing a ‘vertical’
offloading pattern. This established way of task offloading,
data transferring and processing typically includes three main
levels starting from sensing devices at the bottom ‘edge’
of such topologies, which generate data then transferred
through network devices (e.g. gateways, switches, routers)
to the server side (e.g. a ‘cloudlet’ or a public Cloud), to be
permanently stored and processed by a dedicated software
analytics system. As a result of this analysis, a feedback
command may be propagated down the network to enable
edge device actuators. In this light, balanced coordination
across Fog and Cloud to support the IoT data processing
has been widely explored. As a result, existing works aim at
enabling resource allocation and orchestration, which would
transparently provision containerised resources, finding a
right balance between low network latency of the Fog [3]–[7]
and increased computational capacities of the Cloud [8]–[11].

This way, IoT systems can benefit from seemingly infi-
nite computational and storage capabilities of a nearby Fog
node or a remote Cloud platform. On the other hand, however,
there is a considerable delay between the moment when raw
data is first collected and the moment when it is processed,
correctly interpreted, and corresponding reactive actions are
taken. There are more and more scenarios, indeed, where
the established vertical model fails to meet pressing require-
ments in terms of reaction time and network latency, espe-
cially in the presence of considerably large datasets, typically
referred to as Big Data. These scenarios may demand for
near real-time data processing and reaction, and thus cannot
rely on (potentially outdated) results obtained by sending data
over the network to a remote location. Admittedly, there are
emerging situations, when time delays and network latency
cannot be tolerated, and require more timely decision-taking
procedures. This becomes particularly challenging in the
context of CPSSs involving personal mobile devices, which
are typically bandwidth-constrained, calling for novel solu-
tions to address the emerging Big Data issues.

To this end, the presented paper aims to facilitate
computationally-intensive processing of large CPSS datasets,
using clustered computing techniques on top of wireless
communication facilities and exploiting mobile devices
contributed by their owners. More specifically, the paper
proposes a distributed Stream Processing architecture to
enable support for data processing by clustering edge devices
and utilising their shared pool of computational resources.
By pushing intelligence to the very edge of the network
topology – that is, as close to the data source as possible –
the proposed architecture aims at minimising the amount of

data sent to the server, and thus achieve faster execution
results. This way, the proposed solution is able to benefit from
the human participation in CPSSs by aggregating personal
portable devices and involving them in collaborative data
processing activities.

In this light, the main contribution of the paper is five-
fold: i) a solution for Big Data stream processing at the
network edge, implementing the Edge Computing paradigm;
ii) new collaborative, horizontal offloading patterns for
distributed data processing on clustered edge devices;
iii) a Stream Processing architecture extending Apache NiFi
with new services to discover and select devices able to
perform an offloaded task according to specific (hardware
and software) requirements, as well as to orchestrate the
resulting edge cluster; iv) a framework providingmechanisms
for managing social involvements and contributions in the
context of CPSSs; and v) a comparison of vertical (i.e. Cloud)
and horizontal (i.e. Edge) offloading patterns through an
experimental case study.

Section II introduces the existing limitations and chal-
lenges through a running surveillance system example.
Section III explains the main aspects of the proposed
approach, whereas Section IV looks into details of the
node involvement, covering subscription, authentication and
networking mechanisms used to enable ad-hoc edge clus-
ters. Section V provides an in-depth description of the
proposed clusterisation process of edge devices. Section VI
describes the design and implementation of the proof-of-
concept prototype, compares the two (i.e. vertical and hori-
zontal) offloading models via benchmarking experiments,
and discusses obtained results. Section VII summarises the
paper.

II. MOTIVATING EXAMPLE
The IoT can be seen as an ecosystem of considerably ‘smart’,
network-connected objects interacting to provide services
and applications. From this perspective, people are typically
seen only as passive users of the IoT services, neglecting the
potential opportunity to involve them in the cyber-physical
loop. The situation is changing with the increasingly popular
social trends on the sharing economy and technological
approaches based on the principles of volunteer computing
and crowdsourcing. According to these approaches, people
are expected to actively play an important role in cyber-
physical processes, thus giving rise to the concepts of the
Internet of People (IoP) [12] and the Social IoT (SIoT) [13].
The two concepts extend the established IoT with social
aspects, highlighting human behaviour, social relationships,
and interactions between people and their cyber-counterparts,
i.e. personal assets, such as mobile and portable devices. By
including people in cyber-physical processes, the traditional
digital ecosystem is converted into a cyber-physical-social
system [14], [15], defined as ‘‘. . . a kind of common complex
system that is constituted by a physical system, its social
system including human beings, and the cyber system that
connects both of them’’ [16].
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FIGURE 1. The ‘vertical’ offloading pattern in CPSS/ISS.

In the context of the SIoT and IoP, CPSSs are characterised
by a constantly growing number of nodes, whose interac-
tions usually generate extreme amounts of data, coming from
devices equipped with sensing capabilities. Such IoT data
streams have introduced previously-unseen workload on the
network communication infrastructures, calling for proper
management, collection, storage and processing solutions to
address challenges related to (Big) data volume, variety and
velocity. Indeed, the ever-increasing amounts of raw data
generated in these contexts render the established ‘vertical’
offloading pattern, depicted in Fig. 1, not scalable enough
to support timely data processing. In the first place, this
affects the very bottom link of the network topology, which is
typically implemented using one of the existingwireless tech-
nologies, potentially limited in their network throughput and
not necessarily designed to handle large amounts of dynam-
ically generated raw data. Nevertheless, the link between
edge devices and IoT gateways is seen as a primary system
component to face the BigData challenges to ensure that large
amounts of raw, unprocessed data are dynamically transferred
from edge devices to network gateways, located at distances
ranging from several meters to several kilometers. As a result,
these links often become system bottlenecks with a negative
impact on the overall performance of IoT systems. As a
result, the delayed data analysis and generation of feedback
commands often cannot be tolerated by some mission-critical
systems, which rely on timely (i.e. near real-time) operation.

As far as the SIoT is concernd, the involvement of people
in the IoT ecosystem further complicates this scenario, but,
on the other hand, can introduce a potentially disruptive
positive effect on the processing capabilities and perfor-
mance. In this respect, volunteer-based and crowdsourcing
approaches can be exploited to support data processing in a

relevant application scenario. This calls for mechanisms and
tools to support such approaches, allowing to enrol contrib-
utors as well as to manage their random and unpredictable
joining and leaving (i.e. churning), in a trusted way.

An example of such emerging CPSS domains, where the
increased amount of data, originated by different, wireless
connected sources, has to be processed in a timely manner,
is Intelligent Surveillance Systems (ISSs) [17], [18]. ISSs
are surveillance systems, where the involvement of human
operators has been minimised to avoid such shortcomings
as, for example, high labour cost or limited capability for
multiple screens. ISSs rely on existing technological achieve-
ments in computer vision, pattern recognition, and artificial
intelligence, used to identify certain patterns (e.g. abnormal
behaviour, suspicious objects, missing people, etc.) in video
streams. More specifically, ISSs are widely adopted to
enable timely detection of crime suspects in crowded public
spaces. Usually, such an ISS consists of a number of
Internet-connected cameras, installed in a public location
(e.g. building, shop, airport, stadium, concert hall, etc.),
constantly streaming video to one central node equipped with
more powerful computational and storage capabilities. Video
streams are then processed using existing image/object recog-
nition techniques to detect suspects and prevent potential
crimes/terrorist attacks by alerting police officers nearby.

Object detection and recognition are considered a
computationally-intensive task, which cannot always be
performed by an edge device (i.e. a CCTV camera) on its
own, and therefore usually requires to transfer raw data
to an external computational service for analysis. This is
illustrated by Fig. 1, in which raw images from a CCTV
camera are transferred through a wireless network to a
Fog/Cloud server for processing. That is, CCTV cameras
are mainly responsible for video capturing and occasionally
for simple detection and recognition operations, whereas
more complex operations (e.g. object detection/recognition
in crowded areas) are usually undertaken on the server side.

In this respect, a typical ISS workflow can be conceptually
split into the following three main steps, as depicted in Fig. 2:

FIGURE 2. A typical ISS workflow.

1) Video capturing is undertaken by edge CCTV cameras,
which continuously capture raw video and transfer it
for processing as a continuous video stream or as a
sequence of sampled static images. Given the increased
adoption of wireless CCTV cameras and the ever-
growing image sensor resolution and quality, this may
result in extremely large amounts of data being trans-
ferred over a wireless network to a remote processing
location.

2) Feature extraction is usually performed by the
server, which applies sophisticated image processing
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techniques to detect specific elements in the input
video. Images, containing detected objects are then
transferred for object recognition.

3) Object recognition is also usually performed by the
server, which recognises detected elements, typically
with respect to an input training set.

Arguably, the resulting three-step workflow might take
quite long, and a corresponding reactive action (e.g. the police
is alerted) might be generated and executed too late. As it
follows from this motivating scenario, the performance of
an ISS is strongly affected by the quality of its connection,
worsening with the number of hops – a limitation hardly
addressable within the context of the ‘vertical’ offloading
model due to the inevitable requirement to send data to
a remote Fog/Cloud processing location. By the time the
Cloud-based face recognition software detects a suspect crim-
inal and sends back a corresponding signal, this person may
have already escaped the initial CCTV-covered area. In these
circumstances, minimisation (or complete elimination) of the
amount of data transferred over the network comes as a
natural fit.

III. PROPOSED APPROACH
As illustrated by the presented ISS scenario, the CPSS data
processing challenges should be addressed by an overar-
ching approach attacking the problem from different perspec-
tives, i.e. Edge/Fog Computing – on the one hand, and Big
Data – on the other, converging into a lightweight solution for
data processing through computation offloading to collocated
edge devices. Given the increasingly important role of human
agents in the SIoT, these may include personal and mobile
devices, contributed by their owners to support dynamic IoT
scenarios, such as the ISS one, by processing computational
tasks offloaded by some other closely-located edge device
(e.g. a CCTV camera surveilling the local area).

Taken together, these considerations propose a solution
that aims at implementing the above discussed idea of
combining Big Data and Edge Computing approaches into a
framework enabling in-memory processing of computational
tasks offloaded to a cluster of edge device using Stream
Processing techniques, thereby paving the way for the novel
approach of Clustered Edge Computing. Three main factors
underpin this idea of ‘horizontal’ offloading using a Stream
Processing architecture.

1) Edge (and especially mobile) devices are getting more
andmore powerful in terms of their hardware specifica-
tions (i.e. CPU and RAM). They have advanced beyond
the simplistic notion of collecting and transferring raw
data, and nowadays act as fully-functional processing
units in their own right. They are widely recognised and
used as effective computing systems, and are more and
more often taken into account for a laptop/desktop PC
replacement.

2) The world is experiencing a continuously growing use
of embedded and mobile devices in all aspects of

people’s daily activities. In the IoT era, the world is
flooded with all kinds of ‘smart’ devices, which can be
seen as potential contributors to the shared pool of local
cluster resources.

3) The last but not the least, despite the increasing
processing capabilities of edge devices, they are still
relatively limited in their storage functionality and
are not yet equipped with full-featured hard disks to
store large data sets. In this light, it naturally follows
that edge devices are more suited for in-memory data
processing – i.e. data processing, which does not write
data to a local mass storage, but rather keeps all the
computation in memory, thus potentially achieving
better performance.

Starting from these three technological trends, the rationale
behind the proposed approach is to maximise the amount of
computation to be performed on edge devices – i.e. as close to
the original source of data as possible – such that minimum
amount of data is sent over the network to the Fog/Cloud,
and results can be achieved almost immediately on the spot.
To this purpose, the traditional ‘vertical’ data processing
pattern and the corresponding IoT reference model [19]
should be revised. As opposed to Fog Computing that actively
involves networking-level processing units (e.g. gateways,
routers, ‘cloudlets’, etc.), the suggested approach assumes
pushing intelligence to the very edge of the network – that is,
to end devices, exploiting Fog Computing mechanisms only
to coordinate their activities. To implement this, the proposed
approach creates an architecture for distributed clusters of
edge devices to share computational tasks immediately on the
spot on top of Stream Processing middleware.

This is seen as a next step from the current state-of-the-
art baseline (i.e. individual edge devices are able to perform
data processing only within their computational and storage
capabilities, otherwise the data are transferred to the Cloud
and/or the Fog) towards an architecture, where the Cloud
is not seen as a central component anymore, but only as
a secondary processing/storage location. In these circum-
stances, the primary location for data analytics remains the
local distributed cluster of edge devices (i.e. the Edge envi-
ronment), which are able to spread the incoming work-
load among themselves, avoiding time delays associated
with network latency, and thus achieving better performance.
Fig. 3 is intended to demonstrate through the ISS example
that the majority of data exchange and computation takes
place at the very edge of the network topology. Smart edge
devices (e.g. mobile phones and smart CCTV cameras) form
a local cluster and are able to spread the workload among
themselves. This way, the CCTV camera can distribute
video/image processing tasks among worker nodes consti-
tuting the local edge cluster.

Clustering, churn management, AAA (authentication,
authorisation, and accounting) and security, job distribution
and scheduling, data serialisation, and synchronisation are all
challenging tasks in their own right, and require an advanced
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FIGURE 3. The ‘horizontal’ offloading pattern in CPSS/ISS.

middleware platform, supporting all these activities. As stated
above, given the relatively constrained nature of edge devices,
such a platform is expected to be lightweight and support
in-memory data processing of continuously streaming raw
data. Taken together, all these factors have paved the way for
Apache NiFi2 to be employed in the context of the presented
research effort as the underlying Stream Processing cluster
middleware.

Apache NiFi is an open-source Stream Processing frame-
work, based on the notion of ‘Flow-Based Programming.’
A data flow conceptually represents a multi-step processing
sequence, through which data is streamed. These processing
steps, known as ‘processors’, range from simple mathe-
matical operations to more advanced ones, such as transla-
tion or data format conversion. To date, there are more than
100 built-in processors in NiFi, with a possibility of devel-
oping and plugging user-customised processors. Processors
are equipped with input/output ports, which serve to connect
them, and thus create complex data flow topologies.

Based on these considerations, a three-tier architecture
on top of NiFi, depicted in Fig. 4, is proposed to deal
with the described CPSS scenarios that involve Big Data
Stream Processing at the very edge. The proposed archi-
tecture includes the hardware, middleware, and software
tiers, adapting and extending them towards edge devices and
associated requirements. The diagram also highlights novel
aspects, which have not been part of the NiFi default stack.
First, the hardware level is extended beyond the traditional

2https://nifi.apache.org/

FIGURE 4. Three-tier architecture on top of Apache NiFi.

concept of full-blown servers, and now also includes edge
devices together with physical sensors/actuators attached to
them. In the context of ISSs, these might include smart CCTV
cameras, as well as any other smart devices, equipped with
processing and networking capabilities. Second, the middle-
ware level implements five additional functions – namely,
Task Partitioning, Node Discovery, Node Selection, Place-
ment and Configuration, and Orchestration, as well as
employs Overlay Networking facilities with support for
ad-hoc network topologies, as required by the dynamic nature
of mobile devices and (wireless) networks. As far as the ISS
scenario is concerned, these activities serve to establish a
cluster of edge devices by discovering and selecting appro-
priate network devices that are then configured to run the
face detection/recognition routine. These novel features are
specifically required to handle dynamic edge clusters, and
their roles in the proposed approach are discussed below in
more details.

IV. EDGE NODE CONFIGURATION AND MANAGEMENT
To support the proposed solution andmodules, corresponding
enabling technologies and mechanisms should be provided.
Constituted by multiple mobile and portable smart devices
that can move across different geophysical and network loca-
tions, the CPSS ecosystem is very dynamic in its nature,
mainly due to its social component. Accordingly, the related
challenges can be conceptually split into issues dealing with
user subscription, AAA, and reputation – on the one hand,
and ad-hoc networking – on the other.

A. SUBSCRIPTION AND AAA
Asa fundamental underpinning og the proposed approach,
it is necessary to provide basic subscription and AAA
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mechanisms to enable contributors and edge nodes to join
the CPSS ecosystem. In particular, each contributor/node
has to define a policy regulating the contribution, by, for
example, specifying an upper bound on resource (CPU,
memory, storage) utilisation, or a lower bound on the battery
level, or even more complex compound metrics. Moreover,
a reputation management system associated with proper
incentive mechanisms has to be provided to improve node
discovery and selection, rewarding contributing nodes with
a positive record of completed tasks.

All such features call for an overarching solution that could
be provided by the concept of community, widely adopted
in the IoT, IoP and SIoT contexts such as smart communi-
ties [20]. A community-based approach could be a way of
addressing the issues raised above, relying on a community
management framework providing all the required services,
similarly to the concept of virtual organisation in Grid
Computing.

FIGURE 5. Sequence diagram of subscription and authentication phases.

To establish and manage a CPSS community, a specific
server hosting a Web service on a (physical or virtual)
machine is required (i.e. CPSS Community WS, as shown
in Fig. 5). It is in charge of managing new node subscrip-
tion, also providing AAA facilities and advanced (overlay)
networking mechanisms (which are discussed in the next
section). Subscriptions can be implemented through Web
forms to be filled with personal data (full name, login, pass-
word) and a contribution profile (bounds on resource utilisa-
tion, battery depletion, etc.). The full registration request is
then submitted to the CPSS Community WS which elabo-
rates it and sends back a configuration package including the
contribution client and related settings (such as the contri-
bution profile). This is then installed by the new node that,
upon logging in the CPSS Community, can trustfully interact
with other nodes (thereby becoming a CPSS Community
Node).

It is important to remark that the community-based mech-
anism is not strictly necessary for the proposed approach,

but if computational task offloading has to be performed
with some (even minimal) security/trustworthiness require-
ments, it becomes mandatory. In this regard, the CPSS
Community WS also provides other facilities that can
prove to be useful during cluster node discovery and selec-
tion (in particular, for mobile devices), such as reputation
management and related incentivemechanisms. Furthermore,
as stated above, it also provides advanced networking func-
tionalities in order to overcome networking issues through
overlays, as discussed in the following section.

B. NETWORKING
To establish an edge cluster it is expected that involved
edge nodes are able to communicate via a network. Given
the increasingly important role of mobile devices, relying
on an assumption that edge clusters are based on a fixed
network topology limits the application scope of the proposed
approach to rather static, well-defined scenarios, where
cluster nodes and their network locations are known well
in advance and, therefore, are not necessarily required to be
discovered and selected. On contrary, CPSS network topolo-
gies are typically not fixed, but rather continuously change
with respect to mobile nodes joining and leaving the network
at unpredictable rates.

As a more generic, scalable and flexible alternative, in the
presented approach, dynamic run-time clusterisation is aided
by overlay networking facilities. To this end, we extend the
existing NiFi’s built-in support for static network and cluster
configurations and introduce support for ad-hoc topologies,
in which worker nodes can be discovered, selected, added
and removed dynamically at run-time in a seamless and trans-
parent manner. Since the dynamic nature of such topologies is
underpinned by wireless connectivity coupled with mobility
patterns, possibly inducing the traversal of different network
domains, it is important to take into account some issues
that may arise as a result of these conditions. These issues
may include (sudden) introduction of address/port transla-
tors or security-oriented appliances (e.g. firewalls) between
any two nodes, which may immediately block or significantly
modify inter-node communications, hindering the process of
wireless node discovery and clusterisation.

We rely on existing work [21] for that, to provide
support for (transparent) network communications among
edge devices traveling across heterogeneously-administrated
subnets (e.g. in a Metropolitan Area Network, or even
smaller scope, such as a university campus), with the
help of an (overlay) networking coordinator (i.e. CPSS
Community WS), which gets contacted by all nodes at
the system start-up to establish an always-on command-and-
control stream of messages, compliant to WebSocket-based
WAMP (Web Application Messaging Protocol). Available
commands to be sent by the coordinator include requests for
nodes to establish (reverse) tunnels to the CPSS Community
server, as shown in the bottom of Fig. 5.

In this solution, WebSockets are leveraged to actually
pierce ‘middle boxes’ and implement overlay networks
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among CPSS edge nodes by transporting (node-initiated)
tunnels, as described in [22]. In particular, transparent
Layer-3 (L3) networking is enabled by the overlay coor-
dinator instantiating, managing and routing coordinator-
terminated tunnels to all cluster nodes. Network barriers
are overcome through WebSocket-based (reverse) tunneling,
setting up the functional equivalent of private, isolated, secure
VPN environments. This way, clustered edge devices, such as
smart CCTV cameras, are enabled to discover and interact
with peer nodes, as if they all were on the same physical
network.

V. CLUSTERISATION PROCESS
The clusterisation process covers several steps to be taken by
a node either to i) establish an edge cluster from scratch, or
ii) join an existing cluster. In the former case, the node acts
as the cluster initiator and governs the whole clusterisation
process, eventually becoming the cluster coordinator. In the
latter case, it interacts with the coordinator of an already
existing cluster in order to join the cluster. From a behavioural
perspective, this dynamics of a NiFi edge cluster adopting
the proposed solution is shown in Fig. 6. It highlights the
workflow of a stream processing job in an edge cluster –
i.e. partitioning into tasks to be (horizontally) offloaded to
worker nodes.

FIGURE 6. Sequence diagram of the clusterisation process.

As discussed above, involved nodes are resource-
constrained edge devices, which could be battery-powered
and/or could not have enough resources to support the
requested computation on their own. In the CPSS context,
contribution and mobility of personal devices rise up the
complexity of the problem at hand. In the described ISS
scenario, the activity is initiated by a specific CCTV camera,
referred to as the Initiator (which will later become the
Coordinator), which starts interacting with the other nodes
by sending a broadcast discovery offloading request through
the Node Discovery service provided by the framework.

These requests specify the main functional requirements
(both hardware and software) each node has to provide to
become part of the clustered computation.

Edge nodes meeting such requirements could either
accept or refuse the offloading request. In the former
case, available nodes could be further selected depending
on other (non-functional) parameters (e.g. distance, battery
life-time, potential security issues) at the Selection step.
Next, the worflow topology is placed and configured on
the selected nodes at the Selection and Configuration step.
Once the cluster configuration is finalised, the Processing
phase will run on the selected nodes in parallel to
Orchestration/Lifecycle Management on the Coordinator.
The latter is in charge of the Orchestration service, which
interacts with the Job Scheduling & Synchronisation module
of the customised NiFi framework. Further details on these
stages are reported below.

A. TASK PARTITIONING
Usually tasks to be processed are computationally-intensive
to an extent making individual edge devices not capable of
accomplishing them on their own. This limitation requires
edge devices to partially offload computation to peer
network nodes. In the Stream Processing paradigm, such
task offloading can be seen as a multi-step data processing
workflow, in which each individual step is performed by
a dedicated software component deployed on one of the
nodes, constituting a local-area cluster. From this perspective,
a computational task is seen as a pipelined sequence of atomic
data processing operations. In this light, task partitioning –
i.e. identifying individual steps of a more complex task, and
their interconnections – becomes an important challenge.
Moreover, task partitioning also serves to outline functional
requirements for future cluster nodes – that is, by identifying
specific operations within the workflow and understanding
what resources are required to perform them, it is possible
to discover and select corresponding devices with matching
capabilities.

Task partitioning is acknowledged to be the most chal-
lenging functionality to be implemented in an automated
manner. Closely related to the notion of software compos-
ability, it requires exhaustive descriptions of all the indi-
vidual elements of a complex task, including intermediate
processing steps and input/output ports. Such descriptions
are expected to model both the semantic (e.g. what informa-
tion is being transferred or processed, or what functionality
an individual processing step implements) and the syntactic
(i.e. the structure and the format of the data) aspects. Ideally,
taking these self-describing building blocks, the system is
able to chain complex workflows, validate information flows,
as well as input data and output results in a completely auto-
mated manner. Admittedly, task partitioning is a challenging
research topic in its own right, going beyond the scope of the
presented research.

Therefore, in the ISS example, it is assumed to be
performed manually – i.e. the system administrator is aware
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of the individual atomic steps constituting the use case
scenario, and thus is able to design the workflow. This way,
also reflecting Fig. 2, the following three tasks have been
identified for the ISS workflow:

1) CaptureVideo (CV) continuously captures video from
a camera, splitting the stream into separate frames
(i.e. static images) and sending them to an output port.

2) DetectFaces (DF) implements feature extraction by
detecting and cropping human faces in each of the
received frames. Once faces have been detected, corre-
sponding objects are serialised and transferred to the
next task/processor.

3) RecogniseFaces (RF) is responsible for the actual
recognition of faces detected at the previous stage. This
component is first trained against a predefined set of
human faces. Once trained, the processor is ready to
perform the face recognition routine: it takes as input an
image (containing a face), processes it with respect to
its training set, and outputs a prediction value for each
of the faces in the training set. Simply put, it decides
to which extent the detected face resembles each of the
faces in the training set.

B. RUN-TIME NODE DISCOVERY
To tap into the idle potential of ubiquitous edge devices, it is
important to discover them first, thus facilitating their inte-
gration into a local-area cluster. This process should happen
dynamically at run-time, since many of the edge devices
are expected to be mobile (e.g. mobile phones, tablets,
and other hand-held portable devices) – i.e. joining and
leaving the wireless network at unpredictable rates. Further-
more, it becomes particularly challenging, as far as edge
devices with sensing/actuating capabilities are concerned –
i.e. as opposed to more traditional Stream Processing servers,
these need to be (semantically) described to be discoverable.

Accordingly, node discovery is seen as a first step of
the two-phase procedure, in which suitable cluster nodes
are first discovered and then selected. In the presence of a
wide range of ‘heterogeneous’ edge devices, it is not guar-
anteed that all of these nodes will necessarily be capable
of processing the current workload for a number of reasons
(e.g. missing hardware/software components, low compu-
tational capabilities, high network latency, etc.). In these
circumstances, it is important to check first whether a
particular node is indeed suitable for processing a given
task – that is, to discover nodes and check their functional
compliance for the aforementioned task. To enable such kind
of analysis, it is expected that the cluster initiator, after
partitioning the task and identifying corresponding require-
ments, will send a broadcast request to potential cluster nodes
(which could be conveyed though the CPSS Community
WS to enlarge the scope). This offloading request may
include both functional and non-functional requirements,
specifying, for example, available hardware resources and
software components, the type of power supply (power line vs
battery), the type of network connection (wired vs wireless),

the distance from/to the cluster initiator, the type of device
(static vs mobile), security and privacy mechanisms available
on-board, etc. Next, these nodes are expected to perform
basic compliance check by analysing whether they meet the
incoming task requirements or not, by matching them against
their self-descriptions. For example, in the considered ISS
scenario, there may be a set of ten computational nodes, out
of which only five are actually equipped with face detec-
tion/recognition software, and, therefore, only these five will
reply to the cluster initiator, acknowledging they are function-
ally suitable to participate in the given ISS scenario.

Implementation-wise, in the ISS proof of concept,
discovery can be implemented by means of the TCP port
scanning facilities integrated into NiFi’s initialisation code.
As a result, the cluster initiator (i.e. the smart CCTV camera)
first scans for other nodes with a specific network port
open – this way, it becomes aware of other nodes running
the NiFi middleware, and, therefore, potentially ready to join
the cluster. To avoid situations when some other software
occupies the given port, nodes discovered via the port scanner
are also expected to report their unique ID, as part of the
heartbeat payload. If no node ID is reported, the network
device is assumed not to be running a NiFi instance, and
therefore is no longer considered for clustered processing.
Thus, a prerequisite for node discovery lies in leveraging the
aforementioned overlay networking capabilities to establish a
virtual network for unhindered communication among nodes,
as discussed in Section IV-B.

C. NODE SELECTION
There are many situations when functional compliance check
of task requirements performed by potential cluster initia-
tors is not enough to identify suitable nodes and establish
the cluster. There is a crucial distinction to be taken into
consideration, in this respect – it is important to differen-
tiate between suitability for a task and suitability for being
part of the cluster. The motivation behind this difference
is that nodes have a limited view on the arrangement of a
cluster – that is, they are only able to evaluate their individual
capabilities to address the task requirements, but not their
suitability to be engaged in the cluster. For example, a device
might be equippedwith sufficient hardware resources, as well
as face recognition software (i.e. thus meeting the ISS task
requirements). However, it might turn out that, due to its
network location and configuration, network latency between
the cluster initiator and this node is unacceptably high, which
might become a cluster bottleneck in the future. Admittedly,
the node itself is not expected to be aware of this ‘external’
context-related information, which becomes known only to
the cluster initiator once it receives acknowledgements from
nodes. In these circumstances, the cluster initiator has to
govern these internal cluster dependencies, aiming to achieve
an efficient and robust topology.

Accordingly, the selection of edge nodes – i.e. the second
step after the node discovery – becomes an important duty
of the cluster initiator that receives replies from all nodes,
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and, therefore, has a global view on the system, including
context-related information. The cluster initiator has to
further analyse and evaluate available nodes that acknowl-
edged its offloading requests, with respect to their suitability
to become part of the cluster for the given task. The selection
process is supposed to be underpinned by a set of corre-
sponding policies, which manage the selection process and
provide the initiator with selection decision rules.

Referring to the target ISS implementation, after discovery,
the initiating CCTV camera is aware of other network nodes,
which have ‘advertised’ themselves (e.g. unique ID, node
type, available hardware resources, network location, avail-
able software functionality, etc.) by exchanging heartbeats.
The heartbeat payload can be a JSON message, which
includes all relevant fields. Next, the CCTV camera, based
on node selection policies and task requirements on the one
hand, as well as on available nodes and resources on the other,
is able to configure the cluster as required. More specifically,
in the context of the presented ISS scenario, based on internal
selection rules, the smart camera decides to involve mobile
phones only if they will have sufficiently high reputation and
reliability. Furthermore, a corresponding policy for personal
and mobile devices contributing to the ISS can force their
owners to inform the system before leaving and complete
ongoing task processing. This way, more stable behaviour
of the overall system and guaranteed job processing are
expected since there would be no dropped tasks.

D. PLACEMENT AND CONFIGURATION
Once all nodes and their capabilities are identified, it is time
to actually deploy and configure the workflow topology on
the resulting cluster, taking into account available resources.
More specifically, it is important to align the software require-
ments with the number of cluster nodes and their computa-
tional resources. For example, having identified that there are
mobile nodes present in the cluster, it makes sense to assign
these nodes with less intensive tasks – i.e. taking less time to
be accomplished, given that these nodes may disconnect from
the cluster at any point.

From this perspective, such behaviour can be described
as ‘software-defined’ – that is, high-level software require-
ments determine and modify the underlying infrastructure
and network topology. To implement such kind of software-
defined functionality, the proposed approach utilises NiFi’s
API and extends its core functionality in following three
ways.

1) Creating custom prioritisers that define the order,
in which jobs are delivered to processors, is the
simplest, yet limited way of implementing ‘software-
defined’ behaviour inNiFi. In addition to default priori-
tisers (e.g. ‘First In – First Out’, ‘Last In – First
Out’, etc.), an attribute-based custom prioritiser can be
defined. Based on flowfile attributes, such a custom
processor is able to define which flowfile in a queue
has the highest priority, and, therefore, has to be
processed first. Prioritisers, however, are not expected

to modify the underlying cluster configuration or
workflow topology, but are rather used to manage the
order of job processing.

2) The Stream Processing paradigm typically assumes
that individual processors within a workflow are
loosely coupled and there is no direct communication
between them – that is, when a NiFi topology execution
is triggered, a flowfile is transferred forward from one
processing step to another via flowfile queues. This
way, processors are isolated from each other, and are
not ‘aware’ of upcoming processors (and their capabil-
ities) that are yet to appear down the workflow pipeline.
This means that dynamic run-time flowfile routing
based on characteristics of upcoming processors does
not seem to be feasible (or at least is not so straightfor-
ward). In these circumstances, flowfile attribute-based
compliance check might be a solution. For example,
to ensure that a flowfile containing a video frame will
be processed by processors running on a node with
sufficient software/hardware resources, it is required
to put corresponding requirements as attributes on the
flowfile. Thus, once received, flowfile attributes will be
parsed to decide whether the current node is an appro-
priate candidate for processing. If not, the processor
will roll back – i.e. the flow file will be first placed back
on the input queue, and eventually will be transferred
to a different node.3

3) NiFi can be accessed and managed via its RESTful
interface.4 Among other things, the API provides
entry points for querying and updating the current
cluster configuration by, for example, connecting/
disconnecting nodes. More specifically, by checking
compliance of the nodes, currently constituting the
cluster, it is possible to isolate (i.e. temporarily discon-
nect) non-compliant ones from the cluster, and spread
the workload only among the rest of the nodes, which
acknowledged themselves as computation-ready, thus
ensuring that only suitable cluster nodes participate in
the current computation. This kind of node discovery
can be implemented as a programming script or a sepa-
rate custom processor – in both cases they need to be
invoked before executing the main topology.5

Once the CCTV camera (now – the Coordinator) knows
all nodes within the cluster, it is time to deploy the work-
flow topology specified by partitioning, as described in
Section V-A. This functionality can be implemented by

3To avoid situations where a flowfile is being infinitely queued due to
the absence of relevant processing nodes, it is also possible to implement a
custom processor, which would query the list of available processing nodes
in the system, and, if there are no suitable ones, remove the flowfile from the
queue and persist it in a repository for later processing.

4NiFi’s Web interface is essentially a visual user-friendly ‘wrapper’ for
invoking RESTful commands.

5Please note that the RESTful API, including cluster and topology
re-configuration commands, can be invoked at any point during run-time.
These calls are, however, not recommended after the processing starts,
as they may result in inconsistent and unstable behaviour of the overall
system.
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FIGURE 7. The ISS scenario of face detection/recognition on a park or suburban area.

means of the previously described NiFi’s RESTful API.
Among other things, the API provides entry points for
querying and updating the current cluster configuration by,
for example, connecting/disconnecting nodes or specifying
standalone processes (i.e. to be executed on a single node).

E. ORCHESTRATION/LIFECYCLE MANAGEMENT
AND PROCESSING
Once the cluster has been initialised, the selected cluster
nodes are ready to proceed with the processing step. The
processing tasks run in parallel on worker nodes, returning
results to the elected cluster coordinator (i.e. the CCTV
camera), which periodically reduces and aggregates them,
according to the application/business logic. In parallel to
this, the coordinator keeps on periodically scanning the
network for new edge nodes appearing on the network in
the meanwhile, supported by the CPSS Community WS.
Whenever a new node appears, it should expect to receive
a task offloading request from the coordinator, perform the
initial compliance check and reply back to the coordinator.
If eventually selected by the coordinator, the node will be
integrated into the running cluster andwill start receiving jobs
for processing. The clustered processing will continuously
iterate on new tasks till completion.

This functionality is also supported by NiFi’s built-in
‘zoo keeping’ functionality that handles node churning and
synchronises topology changes across all cluster nodes –
that is, whenever a new node is added (or an existing node
disconnects), these changes are propagated across the whole
cluster.

VI. CASE STUDY
As discussed in Section II, the presented proof-of-concept
focuses on an ISS use case scenario, where slow or congested

FIGURE 8. The streaming workflow in the context of the ISS scenario.

(mobile) network connectivity prevents sending video
streams for analysis to a remote processing location. This
could apply, for example, to a city park or suburban area,
where a CCTV smart camera is tasked with monitoring
a given area to detect (and recognise faces of) potential
suspects. When the region of interest is clear or just few
people are within the camera field of view, the full processing
workflow (face detection and recognition) can be performed
on the camera itself. If the region of interest becomes
crowded (i.e. exceeding 3-4 people), the camera is no longer
able to process the images, and has to request support
from third parties, i.e. static and mobile devices currently
located nearby. Fig. 7 schematically depicts this case
study.

To implement this case study, NiFi supports custom
processors to be defined and added to the set of existing
built-in processors. The NiFi code base was therefore
extended accordingly to provide the enhanced functionality
and support data processing on an edge cluster, applying
the reference architecture in Fig. 4 to the face detec-
tion/recognition problem for the described ISS scenario. As a
result, the schematic workflow topology depicted in Fig. 8 is
placed on the cluster for execution.
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To implement the processors, an established open-source
face detection/recognition library JavaCV6 has been used.
Essentially, it is a collection of Java wrappers for the C++
library OpenCV.7 which contains a wide range of utility
methods for handling various face detection/recognition
tasks.

A. TESTBED SETUP
The goal of the experiments is two-fold: i) to demon-
strate how the performance of an edge cluster changes,
as volunteering mobile devices join and leave the cluster, and
ii) to evaluate the performance of the cluster of edge (static
and mobile) devices with respect to a similar Cloud setup.
To achieve the former goal, the experiments were conducted
over a relatively long timeline, where mobile nodes randomly
join and leave the cluster of static nodes. Performance corre-
sponding to each time segment, as well as the average
value, were measured accordingly. To address the latter
goal, in addition to the setup with an edge cluster of static
and mobile nodes, two Cloud setups were implemented,
providing similar face recognition functionality.

1) APACHE NIFI EDGE CLUSTER SETUP
To establish the described ISS scenario using the proposed
approach, the following equipment was used:
• an 8-Megapixel camera acted as the CCTV source;
• three Raspberry Pi 3 boards (ARM Cortex A53 CPU
1.2 GHZ, 1GB RAM) were the default static processing
nodes;

• three Android smartphones (Google Nexus 4 – Qual-
comm Snapdragon S4 Pro CPU 2.3GHz, 2GB RAM)
were the selected mobile processing nodes, qualified for
the given scenario.

All devices, connected through a local wireless network,
run a Linux OS with the installed enhanced NiFi middle-
ware. To emulate the Linux environment on top of Android
OS on smartphones, Linux Deploy8 was used.9 The exper-
iments were conducted in a public park, as discussed
above.

2) CLOUD SETUP
The same ISS scenario has been implemented using the tradi-
tional ‘vertical’ pattern, in which a similar NiFi architecture

6https://github.com/bytedeco/javacv/
7http://opencv.org/
8https://github.com/meefik/linuxdeploy
9Admittedly, the performance of such a setup is somewhat lowered by the

virtualised architecture. Also, for demonstration purposes we were running
‘clean’ versions of Android OS with minimum number of user apps and
processes running at the background. In practice, however, it is expected
that mobile smartphones are primarily busy with their personal jobs, and
can contribute their resources to the cluster only partially. We expect this
kind of aspect to be also specified in the contribution profile submitted when
subscribing to the system, as described in Section IV-A.

was deployed on a single cloud instance.10 Such an archi-
tecture includes a Cloud-based NiFi deployment, running
the face detection/recognition processors, which receive
images from a CCTV camera, serialised, and transferred
via a messaging queue. NiFi then extracts images from
the queue, detects and recognises faces in the frames. The
detection/recognition workflow is identical to the one in the
edge cluster setup – i.e. the system is first trained on a set
of images, and then executes the recognition routine over
the incoming frames. With a few modifications, the camera
performs a similar role in this setup – it captures a video
stream, samples it into frames, and sends the resulting images
to the Cloud-based queue service using a public broadband
Internet connection.

To conduct the described experiments, Heroku11 (VM
instance Standard-1X – Intel Xeon CPU 2.5GHz, 512MB
RAM) and Amazon EC212 (VM instance T2 Medium –
Intel Xeon CPU 2.4GHz, 4GB RAM) – two well-established
Cloud platforms – were chosen. As queueing facili-
ties, Amazon Simple Queue Service13 (SQS) and Heroku
CloudAMQP14 services were used respectively.

3) NETWORK CONFIGURATION AND
BENCHMARKING METRICS
The network configuration of the three testbeds is
summarised in Table 1.

TABLE 1. Testbed network configuration.

It is worth noting that unlike the local NiFi setup, both
Cloud setups are assumed to be dependent on the quality
of the external Internet connection. The latter factor puts
the following constraints on the scenario under discussion:
i) the CCTV camera in charge of image capturing is expected
to be connected to the Internet to be able to transfer captured
frames; ii) the network itself might range from dedicated
broadband connections to mobile (i.e. 3G/4G) networks;

10It is worth noting that we also implemented a similar clustered setup
on the cloud, which is composed of five interconnected NiFi-enabled cloud
instances. This, however, turned out to be a redundant and inefficient solution
due to the increased network latency. As it will be demonstrated below
by the experiments, primary time delays in the Cloud setups were due to
the network communication, rather than insufficient processing capabilities.
That is, even in the presence of multiple cloud instances, task processing
is undertaken only by one of them, while the rest always stay idle. For this
reason, the cloud-based NiFi setups are deployed on a single instance, which
is sufficient as far as processing capabilities are concerned.

11https://www.heroku.com/
12https://aws.amazon.com/ec2/
13https://aws.amazon.com/sqs/
14https://elements.heroku.com/addons/cloudamqp
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FIGURE 9. Benchmarking results for the edge cluster. (a) Mobile nodes randomly join and leave the static cluster. (b) Time delay benchmarking results.

iii) the bandwidth of the network might also be limited
in some way (e.g. either traffic-shaped by the network
provider, or throttled by the client system software due to
metered subscription fees).

To be able to compare different setups, it is important
to agree on common benchmarks, against which each of
the them has to be evaluated. Accordingly, the main bench-
marking metric was time delay – i.e. the time difference
between the moment when an image is first captured by the
camera and the moment when the system accomplishes the
face recognition task and returns the results to the Coordi-
nator. This time difference includes all possible delays asso-
ciated with network latency, data serialisation, and queueing.
To achieve more stable and deterministic results, the exper-
iments were conducted over several days with more than
1000 iterations in each setup. In all experiments the size
of images sent over the network for face recognition is
3264 × 2448 pixels, which results in 1200 KB aggregate
payload transferred on average. Considering the sampling
frequency of 5 frames per second, this requires a bandwidth
of 5.86 MB/s.

B. EXPERIMENTS AND BENCHMARKING
Figure 9a illustrates the dynamic behaviour of the edge
cluster, where constantly present three static nodes are
supported by randomly joining mobile devices. Each time
interval on the graph corresponds to 10 minutes, and the blue
time-wise graph depicts how many nodes were present in
the cluster at different time intervals. The horizontal red line
indicates 4.6 – an average number of nodes constituting the
cluster over the overall timeline of 200 minutes.

Please note that for demonstration purposes the graph
in Fig. 9a does not include the transient intermediate phases –
i.e. the time periods, when nodes join and leave the cluster –
which, nevertheless, need to be benchmarked for a fair
overview of the viability of the presented solution. As it
was explained, the current implementation of node discovery

and selection is based on broadcast network scanning, which
makes this process relatively fast (i.e. up to 3 seconds to scan
up to 256 LAN addresses, collect acknowledgements, and
reconfigure device settings accordingly). The performance
drops, however, with restarting the devices – that is, after
each node has overwritten its cluster settings, it is required to
reboot in order for the new configuration to be applied. This
process might take up to 1 minute (depending on the number
of cluster nodes and deployed NiFi processors). Same applies
to a situation, when a node joins an already running cluster –
i.e. having received cluster configuration, it needs to update
its settings, which takes up to 1 minute. This lack of support
for ‘hot plug’ is seen as a limitation of the current version of
Apache NiFi, albeit this feature is already announced to be
included in one of the future releases. In any case, the clus-
terisation process is a one-off process that is not expected to
affect the system performance in the long run.

Figure 9b illustrates how the performance of the cluster
is affected, as more nodes are added to the cluster. More
specifically, the default cluster of three static nodes is able
to process incoming images at the rate of 7.274 seconds per
frame, whereas by including the other three mobile nodes,
this number gets as low as 1.813 seconds per image. Accord-
ingly, taking the considered time frame of 200 minutes and
4.6 as the average number of nodes present in the cluster,
it can be assumed that the average performance of the cluster
approximately equalled to 2.967 seconds per frame.

The results obtained from running the second set of exper-
iments are summarised in Fig. 10, which depicts average
values for time delay for a single job (face detection and
recognition) processing on (edge cluster vs Cloud) nodes,
including the 95% confidence interval, which is negligible
(±1.18 for the cluster, ±4.26 for Heroku, and ±4.14 for
EC2) due to the high number of experiments (>1000).
By looking at the histogram chart, it can be highlighted that
the proposed Stream Processing architecture on top of the
wireless Apache NiFi edge cluster consisting of 6 nodes
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FIGURE 10. Time delay in three setups, ms.

performs up to 5-6 times faster than the Cloud deployments
on top of either EC2 or Heroku, respectively.

VII. CONCLUSIONS
The IoT is still primarily acting as just a source of data, only
capable of pushing this data upwards to the Fog and/or the
Cloud over a network in a vertical manner. However, with
the new generation of users increasingly dependent on their
mobile and portable devices, the IoT has transformed into a
complex cyber-physical-social ecosystem, in which humans
(and their personal devices) are seen not only as passive data
generators and IoT service consumers, but rather as active
participants and contributors. More specifically, the emerging
Social IoT and IoP reveal a great potential of increasingly
powerful portable devices to be leveraged in the context of
various data processing tasks in close proximity to actual data
sources, thereby addressing network latency issues.

As a potential way of fulfilling this vision based on
the principles of volunteer computing and mobile crowd-
sensing, this paper presented a novel approach to perform
collaborative data processing at the very edge of an IoT
network topology, utilising idle resources of mobile devices.
As opposed to the established practice to offload computa-
tional tasks to the Cloud (through the Fog) in a ‘vertical’
manner, the proposed approach relies on enabling local clus-
ters of edge devices on top of the NiFi stream processing
middleware. In these circumstances, wireless edge devices,
belonging to the cluster, are able to spread workload among
themselves – that is, implement a ‘horizontal’ offloading
pattern – andminimise the amount of data sent over the poten-
tially congested link to the wide-area network. As demon-
strated by the ISS proof-of-concept implementation and
a number of benchmarking experiments, the proposed
approach has the potential to outperformCloud-centric setups

by i) keeping the computation locally, close to the data source,
and ii) involving volunteering mobile devices in clustered
computation at the Edge.
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