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ABSTRACT As a new type of network structure, the Software Defined Network (SDN) provides a new
solution for network flow management and optimization, which has made the accurate detection of anomaly
SDN flows a hot research topic. This paper presents an SDN-based flow detection method, builds structures
for detecting anomaly SDNflows and performs classification detection on the flows using the double P-value
of transductive confidence machines for K-nearest neighbors algorithm. The experimental results show that
the algorithm proposed achieves a lower false positive rate, higher precision, and better adaptation to the
SDN environment than do other algorithms of the same type.

INDEX TERMS Intrusion detection, detection algorithms, nearest neighbor searches, SDN.

I. INTRODUCTION
With the development of Internet technology, network flows
have increased rapidly. In addition, DDoS attacks [1],
which seriously threaten network security, have become
more prevalent. DDoS attacks mainly occupy target system
resources or link bandwidths by directly or indirectly sending
a large number of data packets, thereby causing host paraly-
sis or network congestion. Due to the diverse attack methods
and wide variety of attacks, it is impossible to guard against
DDoS attacks. In recent years, scholars have been com-
mitted to researching DDoS anomaly detection techniques.
They have applied Bayesian algorithm, wavelet analysis and
support vector machine (SVM) to detect anomaly flows.
However, the existing prevention and detection techniques
for DDoS attacks have many security risks. For example,
the dependence on software and devices increases the net-
work burden; it is difficult for a single attack index to realize
an exact match; and status updates slow down when security
policies change.

As a new type of network structure, SDN [2] has many
advantages. It manages an entire network with controllers
and separates the data plane from the control plane. SDN
deprives switches of control functions and enables them only
to forward data packets. In addition, it implements centralized
and uniform control over data, thereby realizing the optimal

management of network resources and greatly improving the
network’s flexibility and controllability. Since SDN adopts
OpenFlow [3], which is a protocol that runs between con-
trollers and switches, the communication between the two
should follow OpenFlow standards. OpenFlow switches take
flow tables as the core and match and forward data packets
in accordance with flow table information while flow table
information is issued and updated by upper controllers. This
approach has achieved good results in resolving traditional
DDoS attacks. However, SDN is characterized by strong
openness, which indicates that users can customize networks
freely by virtue of programming interfaces and are under the
threat of DDoS attacks. Therefore, the detection of anomaly
SDN flows has important research value and broad applica-
tion prospects.

Based on the centralized control of an SDN, this paper
applies its technology to DDoS anomaly detection and
presents a detection method for anomaly SDN flows. The
paper consists of six sections. Section II elaborates detec-
tion methods for anomaly flows in traditional networks and
SDN separately. Section III introduces the basic structure and
process flow for detecting anomaly SDN flows. Section IV
proposes an optimized method for anomaly detection - the
DPTCM-KNN algorithm. Section V performs simulation
experiments on the algorithm proposed and compares it
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with other algorithms, and Section VI summarizes the entire
paper.

II. RELATED RESEARCHES
Currently, there are many detection methods for anomaly
flows in traditional networks, and these methods are divided
into three main types: methods based on statistical analy-
sis, methods based on machine learning and methods based
on data mining. PCA (Principal Component Analysis) is a
data reduction technique based on statistical analysis [4].
Although this method can make full use of the correlation
of global traffic in the event of an abnormality to improve
the recognition efficiency, if the PCA method injects traffic
with large fluctuations into the training phase, it can build
a special attack to avoid detection by the PCA recognition
system. Of the machine learning-based methods, Bayesian
analysis [5] and correlation analysis [6] are the two most
commonly usedmethods. The Bayesian analysis method uses
a probability graph model to study the statistical correla-
tion between anomalies and measured values. In addition to
causality, the setting of various probabilities and the selec-
tion of models in this method have a large influence on
the accuracy. If the probability or model parameters are not
properly selected, then the recognition accuracy will be poor.
Data mining-based analysis methods are divided into two
main methods: classification and clustering. Support vector
machine (SVM) [7] is a common data mining classification
method. Using SVM for anomaly detection can guarantee that
the prior knowledge is insufficient. There is good classifica-
tion accuracy, but both SVM and neural networks are plagued
with high false alarm rates to varying degrees. Cluster anal-
ysis [8] is an unsupervised learning process that requires
no training process, but there is no significant difference in
the distribution of the probability density between abnor-
mal and normal samples, especially hidden worms and slow
DDoS.

Among the data mining-based anomaly detection methods,
the KNN algorithm (k-Nearest Neighbor) [9] is quite popular
because it not only has mature theories, low retraining costs,
high precision and strong real-timeliness, but it also supports
instant incremental learning. Document [10] presents the
TCM-KNN algorithm and optimizes the feature selection and
feature weight mechanism. The original algorithm, which is
based on the nearest neighbor concept of the KNN algorithm,
explores the deviations between detection points and normal
training sets by calculating p values to classify the detec-
tion points. However, the algorithm has some deficiencies:
when the abnormal points serve as thresholds between normal
and abnormal points, it is necessary to make a judgment
on the basis of the relative deviation. Since the algorithm
has defects in anomaly detection of the detection points, its
precisionmust be improved further. Document [11] combines
the KNN algorithm with the ACO (ant colony optimiza-
tion) algorithm; the KNN-ACO algorithm is proposed on
this basis and employs the ID3 (decision tree) algorithm for
feature reduction. By performing experiments on the KDD

CUP99 data sets, it is verified that the algorithm has a higher
detection precision.

Although these detection methods for anomaly flows in
traditional networks have a certain reference value for SDN
security protection, they are characterized by poor scalabil-
ity, low precision and low efficiency in identifying massive
and rapid data flows. Therefore, the SDN-based detection of
anomaly flows has gradually become a hot issue in recent
years.

In terms of attack detection in an SDN, Documents
[12], [13] analyze the relations between the data flow
features and the threshold values and considers the algo-
rithm precision and cost sensitivity, ultimately proposing an
elephant flow detection system - a system with high detec-
tion precision. In response to new DDoS attacks with low-
speed flows, Document [14] proposes a detection method
for SDN controllers. This method classifies the interface
flows and performs an SPRT (Sequential Probability Ratio
Test) [15] on them, thereby accurately identifying the
DDoS attacks and injured interfaces. Both methods have
strong pertinence and fail to detect DDoS anomalies in real
time.

With the convenient, efficient, rapid and comprehensive
collection of sFlow, Document [16] collects data and realizes
effective and scalable anomaly identification in the SDN
control plane based on OpenFlow. Document [17] uses the
program-controlled capability of OpenFlow to improve the
features of remotely triggered black hole filters and mitigate
flow anomalies caused by DDoS attacks. Document [18]
presents a method for identifying and mitigating SYN flood-
ing attacks. Thismethod sends the flows captured by attackers
from agents to sFlow collectors for analysis and regulates
flow table rules with OpenFlow controllers, thereby prevent-
ing anomaly flows.

Document [19] proposes a lightweight and rapid DDoS
detection method based on entropy. This method protects
controllers by considering the abilities of SDN controllers
and calculates the entropy in accordance with grouping the
requests received by SDN controllers, thereby identifying
anomalies quickly. To provide an SDN with better security
in large data environments, Document [20] presents a fault-
tolerant control structure (MCSSDN), in which each device is
managed by multiple controllers. It resists Byzantine attacks
on controllers and communication links between controllers.

Overall, although scholars have proposed many identi-
fication methods for anomaly SDN flows in recent years,
the research is still in its infancy, and it still has many prob-
lems:

1) The SDN-based flow detection method puts a large
amount of pressure on the controllers. With an increase
in network flows, the controllers are required to mon-
itor the entire network environment, issue flow tables
to switches and detect flow anomalies, which greatly
increases the burden on the controllers. Therefore, it is
necessary to propose more perfect detection architec-
tures for SDN anomalies.
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FIGURE 1. Detection Structure of Anomaly Flows in an SDN.

2) The existing anomaly detection algorithms for SDN
are characterized by low precision and poor real-
timeliness. At the same time, they do not support incre-
mental learning. Therefore, it is crucial for SDN-based
flow detection to improve and optimize the traditional
KNN algorithm and establish high-precision and real-
time identification models for anomaly flows so it can
adapt to large-scale networks.

This paper proposes to construct detection architectures for
anomaly SDN flows and regard the DPTCM-KNN algorithm
as the core algorithm of anomaly flow detection mechanism,
which improves the detection precision in the SDN environ-
ment and decreases the burden on controllers to a certain
extent.

III. ANOMALY FLOW DETECTION BASED ON SDN
To solve the defects of SDN-based flow detection methods,
this paper designs an anomaly flow detection method for
SDN: the flow collection module of the controllers collects
the flow table information and extracts the flow features,
and the anomaly detection mechanism preprocesses the flow
features and performs classification detection on the network
flows with the DPTCM-KNN algorithm. Through division
and coordination, the switches, controllers and the anomaly
detection mechanism eventually realize anomaly detection
in the SDN environment. The detection structure is shown
in Fig. 1.

A. SWITCHES AND CONTROLLERS
In the SDN environment, OpenFlow switches serve as data
forwarding devices and are responsible for collecting and for-
warding data. By virtue of the OpenFlow protocol, switches

send messages to controllers regularly to inform them of
the current flow status and update the flow table informa-
tion issued by the controllers in a timely manner when the
anomaly detection mechanism finishes the flow detection.
The central controller considers the RYU controller to be the
core, and the RYU controller is the central execution unit of
the OpenFlow networks for realizing programmable control.
The RYU controller maintains basic information (topology
and flow table rules) of the entire network, thereby managing
and monitoring the entire network environment by control-
ling the switches.

To finish the anomaly flow detection, the controllers are
divided into the flow collection module and feature extraction
module. Here, the flow collection module sends requests
(p_flow_stats_request) to switches every 10 seconds to obtain
the flow table information and submits the information to
the feature extraction module. The feature extraction module
extracts the flow feature information (including data bytes
from the source host to the target host, and lost packets,
errors, port rates and data bytes from the target host to the
source host), classifies the information, forms flow feature
vectors and sends them to the anomaly detection mechanism.
The anomaly detection mechanism preprocesses the flow
feature vectors, performs anomaly detection and provides
feedback on the detection results to the central controller via
secure channels, thereby finishing the modification of the
flow tables.

B. ANOMALY DETECTION MECHANISM
The anomaly detection mechanism centrally analyzes the
data flow information and detects anomalies. It obtains a
large number of flow feature vectors by virtue of the SDN
controllers; it preprocess these vectors and classifies by the
anomaly detection methods to identify the anomalies. The
anomaly detection mechanism consists of two parts: the pre-
processing module and the anomaly detection module. Here,
the preprocessing module is mainly responsible for standard-
izing and normalizing the flow feature vectors sent by the
controllers. It is assumed that there are n flow feature vectors
and each vector has t features(Xij(1 6 i 6 n, 1 6 j 6 t)).
The preprocessing processes of Xij are described below:
• Standardization

X ′ij =
Xij −Meanj
AvgDevj

(1)

where,

Meanj =
X1j + X2j + · · · + Xnj

n
(2)

AvgDevj =

∣∣X1j −Meanj∣∣+ · · · + ∣∣Xnj −Meanj∣∣
n

(3)

In Eq. (1), Meanj is the mean value, and AvgDevj is the
mean absolute deviation value. During standardization,
the following points should also be considered:
1) If Meanj = 0, Xij = 0
2) If AvgDevj = 0, Xij = 0
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FIGURE 2. A Process Flow Chart of Anomaly Flows.

• Normalization
Normalization means normalizing the standardized data
into [0, 1]. It is assumed that X ′′ij is the normalized value
of X ′ij.

X ′′ij =
X ′ij − Xmin

Xmax − Xmin
(4)

where,

Xmin = min{X ′ij} (5)

Xmax = max{X ′ij} (6)

After the preprocessing module of the anomaly detec-
tion module finishes the preprocessing process, it passes
the anomaly detection module to perform anomaly detec-
tion on the preprocessed stream feature vector. The anomaly
detection module uses the DPTCM-KNN algorithm to detect
the traffic. The concept of TCM (Transductive Confidence
Machines) is to obtain the confidence level of a detection
point by virtue of stochastic algorithm theory, and it uses the
probability p to measure whether the detection point belongs
to the category. The larger the p value is, the more likely it is
that the detection point belongs to the category. The DPTCM-
KNN algorithm explores the absolute deviation and relative
deviation between the detection point and other points, and it
introduces strangeness and independence, thereby obtaining
two p values (p1 and p2) and judging the abnormality of the
detection point on this basis. The anomaly detection module
generates an anomaly detection report at regular intervals
according to the detection result of the DPTCM-KNN algo-
rithm.

C. SDN FLOW PROCESSING
Under the SDN architecture, when receiving a large number
of data flows, the switches enforce the following processes,
as shown in Fig. 2.

1) The OpenFlow switches submit information to the cen-
tral controller to inform it of the current flow status.
Meanwhile, they send requests to the controller for the
latest flow table forwarding rules.

2) The central controller extracts the flow features from
the flow table information that is sent by the switches
and summarizes by the feature extraction module,
forms multi-dimensional flow feature vectors, and
sends them to the anomaly detection mechanism.

3) The anomaly detection mechanism preprocesses (stan-
dardizes and normalizes) the flow feature vectors that
were received and employs the DPTCM-KNN algo-
rithm to calculate the strangeness and independence
of the detection points, thereby finishing the anomaly
detection.

4) The anomaly detection mechanism generates anomaly
detection reports after receiving the detection results
and sends the reports to the central controller regularly
by virtue of secure channels. The central controller can
control the parameters related to the anomaly detection
mechanism in accordance with the network conditions.

5) The central controller modifies the flow table forward-
ing rules according to the reports received and issues
them to OpenFlow switches for anomaly treatment.

IV. ANOMALY DETECTION ALGORITHM
A. RELATED DEFINITIONS
In the second section, a TCM-KNN algorithm proposed in
reference [10] is introduced. The algorithm combines the
TCM idea with the KNN classification algorithm. The algo-
rithm combines the TCM idea with the KNN classifica-
tion algorithm to calculate the KNN distance Dyi from the
unknown point i to class y. The distance from this point to

another class is D−yi . The ratio
Dyi
D−yi

is used to estimate the

relative suitability of the unknown point i and the class, and
the p-value is used to assess the extent to which the unknown
point belongs to the class. However, when the algorithm
is applied to anomaly detection, only the relative deviation
between the unknown point and the class is considered, and
the absolute deviation is ignored; thus, the invasion cannot
be fully detected, which affects the accuracy of the anomaly
detection. Therefore, this paper proposes the DPTCM-KNN
algorithm, which introduces the concept of independence of
estimation of absolute deviation, and uses the strangeness
of the relative deviations as a criterion for making a joint
judgment. By calculating the double p-values that are used for
anomaly detection, the detection loopholes in the TCM-KNN
algorithm are avoided as much as possible, and the accuracy
of the anomaly detection is improved.

For a training set that contains n elements {(x1, y1), · · · ,
(xn, yn)}, Xi(x1i , x

2
i , · · · , x

t
i ) is the value set of the t features

that are extracted from the detection point i, while yi is the cat-
egory that the detection point i belongs to. Usually, it ranges
from 1 to c. Elements of the anomaly detection systems are
divided into two parts, namely, normal elements and abnor-
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mal elements. To classify the detection points, the following
definitions should be made.
Definition 1 (Euclidean Distance Between Two Points):
The Euclidean distance is usually used to measure the

proximity between two points and is expressed as Dyij
(Euclidean distance between point i and point j in category
y). The calculation formula is as follows:

Dyij =

√√√√ t∑
a=1

(Xia − Xja)2 (7)

where, Xi and Xj are the value sets of the extracted features
of i and j, respectively; Xia is the value of the ath attribute of
Xi; and t is the length of the vector Xi.
The Euclidean distance measures the absolute spatial dis-

tance between the various points. The larger the distance is,
the greater the difference between two points will be. The
calculation of the Euclidean distance is a fundamental step
of the KNN algorithm.
Definition 2 (Strangeness): It is assumed that the normal

elements and abnormal elements of the anomaly detection
systems belong to y and -y, respectively. When the Euclidean
distances between i and the other points in category y are
sorted in accordance with the KNN algorithm, Dyij represents
the Euclidean distance between i and the jth nearest neighbor
in y. The ratio is defined as strangeness in the DPTCM-KNN
algorithm.

αiy =

∑k
j=1 D

y
ij∑k

j=1 D
−y
ij

(8)

where k is number of nearest neighbors in the KNN algo-
rithm and iy is the strangeness of i relative to y. Strangeness
describes the belonging degree of a point to a category. The
greater the strangeness is, the less likely it is that the point
belongs to the category.
Definition 3 (Independence): Independence is the sum of

the Euclidean distances between a detection point and its k
nearest neighbors, namely, the absolute deviation between the
two. It is expressed as follows:

θiy =

k∑
j=1

Dyij (9)

where, θiy is the independence of i relative to y; k is the
number of nearest neighbors; and Dyij is the distance between
i and the jth nearest point. At the same time, θiy represents
the belonging degree of a detection point to a category. The
smaller the independence is, the more likely it is that the point
belongs to the category.

In contrast to the strangeness, which describes the relative
distance between a detection point and a category, the inde-
pendence measures the absolute distance between the two
and explores the abnormal points that are far from the nor-
mal points. The two metric values are complementary and
integral, and they influence the precision of the TCM-KNN
algorithm.

Definition 4 (Double p Value): The probability p is used
to demonstrate the anomaly probability of a detection point
relative to other points, namely, the belonging degree of a
detection point to a category. The greater the p value is,
themore likely it is that the point belongs to y (normal points).
The calculation formula is as follows:

p1(αi) =
#{j = (1 . . . n) : αj ≥ αi}

n+ 1
(10)

where, αi is the strangeness of i in y; αj is the strangeness of
the jth train point relative to y; and # is the element number of
the finite set, namely, the number of training points whose
strangeness is greater than that of i in y. The calculation
formula of p is as follows:

p2(θi) =
#{j = (1 . . . n) : θj ≥ θi}

n+ 1
(11)

p1(αi) and p2(θi) constitute double p values and serve as
anomaly detection standards of the DPTCM-KNN algorithm.
The detection point is deemed to be normal only when both
requirements are met.

B. ALGORITHM DESIGN
As an anomaly detection algorithm based on classifica-
tion, DPTCM-KNN has strong real-timeliness and supports
incremental learning. It takes strangeness and independence
as the judgment methods, thereby obtaining two p values
and improving the detection precision of the TCM-KNN
algorithm. The main steps of the algorithm are described
below:
Step 1 (Calculate the Euclidean Distances Between the

Training Set Samples): The DPTCM-KNN algorithm clas-
sifies the detection points into normal points and abnormal
points by virtue of training, employing Eq. (7) to calculate the
KNN distances between the various points and other points of
the same type, namely, the Euclidian distances between the
various normal and abnormal points (Dyij and D

−y
ij ). It saves

the calculation results.
The calculation of the Euclidean distance serves as the first

step and the preparation phase of the TCM-KNN algorithm.
It provides the basis for the subsequent strangeness and inde-
pendence calculations.
Step 2 (Calculate the Strangeness and Independence of the

Training set Samples):To calculate the strangeness of the var-
ious points, theDPTCM-KNNalgorithm obtains the k nearest
neighbors of each point in accordance with the Euclidean
distances calculated in Step 1; it summarizes the k nearest
neighbors to obtain

∑k
j=1 D

y
ij and

∑k
j=1 D

−y
ij and calculates

strangeness of the various points with Eq. (8). Similarly,
it obtains the independence of the various points by virtue
of Eq. (9).
Step 3 (Calculate the Strangeness and Independence of

the Detection Points): The algorithm calculates the Euclidean
distances between i and the various points in the training
set, sorts the Euclidean distances after the calculation and
saves the distances between i and the k nearest neighbors.
Based on the distance information, Eq. (8) and Eq. (9),

VOLUME 6, 2018 27813



H. Peng et al.: Detection Method for Anomaly Flow in SDN

Algorithm 1 The DPTCM-KNN Algorithm
Parameters:k(number of nearest neighbors); m1(number of
normal subsets y);m2(number of abnormal subsets -y); τ1 and
τ2 (confidence thresholds)
Input:

i (points to be detected)
Output:

normal or abnormal
1: for i = 1 to m1 do
2: Calculate the Euclidean distances Dyij of the points in

the normal subset by virtue of Eq. (7)
3: save the results
4: end for
5: for i = 1 to m2 do
6: Calculate the Euclidean distances D−yij of the points in

the abnormal subset by virtue of Eq. (7)
7: save the results
8: end for
9: Calculate α for each point in the normal subset by Eq. (8)
10: Calculate θ for each point in the normal subset by Eq. (9)
11: Calculate αi of the detection point i by Eq. (8)
12: Calculate θi of the detection point i by Eq. (9)
13: Sort the strangeness and independence of the points in

the normal subset
14: calculate p1 and p2 of the detection point i by Eq. (10)

and Eq. (11)
15: if p1 ≥ τ1&&p2 ≥ τ2 then
16: return normal
17: else
18: return abnormal
19: end if

it obtains the strangeness and independence of the detection
point i.
Step 4 (Obtain the Double p Values of the Detection

Points): The algorithm sorts the strangeness of n normal
points in descending order to obtain {α1, α2, · · · , αn} and
obtains p1(αi) by virtue of αi and Eq. (10). Similarly, it is
feasible to obtain {θ1, θ2, · · · , θn} by sorting the indepen-
dence of the normal training sets and obtain p2(θi) by
virtue of Eq. (11). Here, p1 and p2 constitute the dou-
ble p values and jointly serve as the anomaly detection
standards.
Step 5 (Identify the Anomalies):Anomalies of the detection

points are determined by the confidence level δ and are
influenced by τ (δ = 1− τ ). Here, τ is the significance level
(0.01, 0.05 or 0.1) of the hypothesis testing. It is controlled
by the central controller.

To prove that the detection point i is normal, the following
requirements should be met:p1(αi) ≥ τ1 and p2(θi) ≥ τ2.
In other words, the detection point is normal
when p1(αi) ≥ τ1&&p2(θi) ≥ τ2; otherwise, it is
abnormal.

To summarize, the process of the anomaly detection
algorithm is described as follows.

FIGURE 3. The Topology Diagram.

C. ANALYSIS OF THE ALGORITHM
Assume that the number of normal subsets is m1 and the
number of abnormal subsets is m2. When the DPTCM-KNN
algorithm is training a subset, the distance between all the
sample points in the two subsets must be obtained first, and
then, the strangeness and independence of all the points in
the normal set are calculated. Thus, the time complexity of
the entire training process is O(m1 ∗ (m1 + m2)). When the
algorithm performs anomaly detection on the detection point
i, only the distance operation between detection point and
the two subset sample points can be performed to obtain its
strangeness and independence. At the same time, the sort-
ing algorithm is used to determine the double p value. The
average time complexity of the DPTCM-KNN algorithm for
anomaly detection is O(m1log2m1).
In summary, the DPTCM-KNN algorithm presented in this

paper can achieve lower complexity in the anomaly detection
phase, and it is suitable for a real-time online SDN-based
anomaly detection architecture.

V. EXPERIMENTS AND DISCUSSIONS
To test the performances of the DPTCM-KNN algorithm,
the paper simulates SDN environments with Mininet and an
ryu controller. The experiment designs a network topology
based on multiple data centers to collect flow data, as shown
in Fig. 3.
In Fig. 3, c1 and c2 are core switches; a3 to a6 are aggrega-

tion switches and convergent points of edge switches; e7 to
e10 are edge switches; and h1 to h8 are hosts. Since DDoS
attacks are attacks of multiple computers on one target host,
this experiment selects h1 as the object of attack and all of
the remaining hosts to ping it, to cause a problem of resource
insufficiency.
For the flows generated by the data center networks in

mininet, the ryu controller collects the flow table information
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TABLE 1. Summaries of the data.

TABLE 2. Details of the data feature.

every 10 seconds and generates samples for testing. The
received flow table information is extracted, preprocessed
and classified in accordance with the DPTCM-KNN algo-
rithm. If the flows are normal, then the SDN switches do not
suffer DDoS attacks; otherwise, they are attacked. Overall,
53,174 data flows were collected during the experiment. The
following distribution samples were obtained through prepro-
cessing and training.

Among them, the 11 characteristic information items of the
sample are as follows.

A. PARAMETER SELECTION
In this section, the detection rate TPR is employed to evaluate
the effects of the proposed DPTCM-KNN algorithm.

TPR =
TP

TP+ FN
(12)

where TP represents the number of anomaly flows that are
identified as anomaly flows and FN represents the number of
anomaly flows that are identified as normal flows. In other
words, TPR is the percentage ratio of the number of correctly
classified anomaly flows to the total number of anomaly
flows.

K and τ are especially important to the precision of the
DPTCM-KNN algorithm. If the K value is too large, then
many bad positions will be introduced into the algorithm,
thereby increasing the errors. If the K value is too small, then
the contingency of the algorithm detection will be increased.
Similarly, the values of τ1 and τ2 also affects the detection
rate of the algorithm.

To simulate the optimal parameter combination of the
DPTCM-KNN algorithm, 2000 samples are selected from the
training sets, and matlab2014a is introduced for simulation
under different τ1, τ2 and K values. The experimental results
are as follows.

According to Table 3, the TPR of the DPTCM-KNN algo-
rithm increases with a decrease in τ1 and reaches its max-
imum (95.1%) when τ1 = 0.01 and K = 20. In Table 4,
the detection rate reaches a maximum of 94.6% at τ2 = 0.05
and K=20; thus, the optimal K value for DPTCM-KNN is
20. Therefore, (K, τ1, τ2)=(20, 0.01, 0.05) is selected as
the optimal parameter combination for the DPTCM-KNN
algorithm in this paper.

TABLE 3. Relation between TPR and K, τ1.

TABLE 4. Relation between TPR and K, τ2.

TABLE 5. Relations between TPR and R.

In addition, the detection rate of the DPTCM-KNN algo-
rithm is also related to the number of the normal subset y
and the abnormal subset -y in the training set. Let R = m2

m1
,

m1 and m2 are the number of normal and abnormal subsets.
We randomly take 4,000 samples and use the above optimal
parameters to examine the detection rate of the DPTCM-
KNN algorithm with different R values.

It can be seen that the DPTCM algorithm achieves the
highest TPR when R takes 0.75, in other words, when the
number of normal and abnormal subsets reaches 4 to 3,
the algorithm has the highest detection rate. Therefore, we use
an R of 0.75 as the best R value of the DPTCM-KNN
algorithm.

B. PERFORMANCE COMPARISON
This section not only employs TPR, but also adopts FPR and
ACC to evaluate the algorithm performances. The formula is
as follows:

FPR =
FP

TN + FP
(13)
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FIGURE 4. Relation between TPR and the sample size.

FIGURE 5. Relation between FPR and the sample size.

where FP represents the number of normal flows that are
identified as anomaly flows and FN represents the number
of normal flows that are identified as normal flows. In other
words, FPR is the percentage ratio of the number of correctly
classified normal flows to the total number of normal flows.

ACC =
TP+ TN

TP+ FP+ TN + FN
(14)

ACC, which is the percentage ratio of the number of
correctly classified samples to the total number of samples,
reflects the discrimination capability of the classifier.

In this paper, (K, τ1, τ2, R)=(20, 0.01, 0.05, 0.75)
is selected as the optimal parameter combination of the
DPTCM-KNN algorithm. The TCM-KNN algorithm in Doc-
ument [10], the KNN-ACO algorithm in Document [11] and
the ABTSVM algorithm in Document [7] are considered as
control groups. The present paper performs simulation exper-
iments on the four algorithms under different sample numbers
and demonstrates the simulation results in fig. 4 to fig. 6.

The experimental results show the following: Although the
detection rate TPR is higher in the ABTSVM algorithm, its
false positive rate FPR has no obvious advantage. With an

FIGURE 6. Relation between ACC and the sample size.

FIGURE 7. ROC plots of the algorithms.

TABLE 6. AUC of algorithms.

increase in the number of samples, the TPR of the TCM-KNN
algorithm has an increase rate that is relatively sluggish, and
the false positive rate increases significantly, exceeding that
of the KNN-ACO algorithm. The DPTCM-KNN algorithm
presented in this paper has the highest detection rate TPR
and accuracy ACC. When the number of samples is 4000,
these can reach 96.7% and 98.2%, respectively; at the same
time, it has the lowest FPR compared to the other compari-
son algorithms. The fig.7 shows the ROC curve of the four
algorithms and calculates the AUC (Area Under Curve) to
more objectively evaluate the classification performance of
the algorithm.

Fig.7 and Table 6 show that the DPTCM-KNN algorithm
has the largest AUC under the ROC graph. Comparedwith the
other algorithms, the DPTCM-KNN algorithm significantly
improves the classification performance of the anomaly flow.
It can be seen that the DPTCM-KNN algorithm has a higher
detection rate, accuracy, and low false positive rate, and it
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can realize high-precision anomaly detection in the SDN
environment.

VI. CONCLUSION
To solve the defects of the SDN-based flow detection meth-
ods, this paper builds an architecture for detecting anomaly
flows under an SDN environment and proposes an anomaly
flow detection algorithmDPTCM-KNN as an anomaly detec-
tion mechanism. The algorithm takes strangeness and inde-
pendence as its dual inspection standard, which are the
loopholes of the TCM-KNN algorithm in its detection, and
improves the accuracy of the anomaly flow detection. Finally,
through platforms such as mininet and matlab2014a, this
paper conducts simulations of the algorithm. The experimen-
tal results show that the DPTCM-KNN algorithm improved
the detection rate and accuracy rate of the anomaly flow
detection and, at the same time, reduced the false positive rate
in the process of detection, which indicates that the algorithm
has good performance under an SDN environment.
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