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ABSTRACT The weighted K-nearest neighbor (WKNN) algorithm is one of the most frequently used
algorithms for indoor positioning. However, the traditional WKNN algorithm weights the reference points’
coordinates by the inverse of the received signal strength indication (RSSI) difference, which is not accurate
enough because of the exponential relationship between RSSI and physical distance. Furthermore, methods
based on probabilistic model or data fusion do not consider the uneven spatial resolution of the Wi-Fi RSSI.
Therefore, in order to improve the positioning accuracy of traditional location algorithms, this paper proposes
a new weighted algorithm based on the physical distance of the RSSI. Experiments were conducted in an
office building and the results demonstrate that the proposed method considerably outperforms the KNN,
Euclidian-W-KNN, Manhattan-W-KNN, EWKNN, LiFS, and GPR in terms of positioning accuracy, which
is defined as the cumulative distribution function of position error.

INDEX TERMS Weighted K-nearest neighbor, spatial resolution, Euclidean distance, physical distance
of RSSI.

I. INTRODUCTION
Indoor positioning methods based on Wi-Fi received sig-
nal strength indication (RSSI) [1], [2] are generally divided
into two categories: the trilateration algorithm and the
location fingerprint positioning method. The trilateration
algorithm [3] utilizes RSSI to measure the distance between
two nodes based on the channel propagation model. On the
contrary, fingerprint positioning method [4], [5] utilizes a
RSSI database and specific geometric or probabilistic algo-
rithm to calculate the location of the unknown point without
channel propagation model. So the fingerprinting position-
ing algorithm has gained increasing attention as it requires
neither the location of Wi-Fi access points (APs, also termed
hotspots) nor the channel propagation model.

The most frequently used method in fingerprint posi-
tioning is the weighted k-nearest neighbors (WKNN) algo-
rithm, which weights the reference points’ coordinates by
the inverse of the RSSI distance. Niu et al. [6], [7] utilize

the KNN (K-Nearest Neighbor) classification method
with three different weighted distances (Euclidian-W-KNN,
Manhattan-W-KNN and KL-W-KNN) and find that the KNN
algorithm with the Manhattan distance performs best. How-
ever, it will suffer from the exponential relationship between
RSSI and physical distance. Moreover, both fusion methods
and probabilistic methods [8]–[13] have not addressed the
problem of the uneven spatial resolution of Wi-Fi RSSI.
Ranging error is roughly proportional to the real physical
distance, while RSSI Euclidean distance is a logarithm func-
tion of real physical distance. Motivated by this considera-
tion, this paper proposes a new weighted algorithm based
on the real physical distance between test point and refer-
ence point (RP) and real physical distance of Wi-Fi RSSI.
Experimental results demonstrated that the positioning accu-
racy of the proposed algorithm is significantly better than
that of other methods, such as KNN, Euclidian-W-KNN,
Manhattan-W-KNN [6], [7], EWKNN [8], LiFS [9]
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and GPR [10]. Meanwhile, the proposed algorithm is insen-
sitive to the variation of the parameters in the channel propa-
gation model.

II. RELATED WORKS
A. K-NEAREST NEIGHBOR (KNN)
The NN algorithm [14] is the basic matching method in
fingerprint positioning. First, one calculates the Euclidean
distance between the online observed RSSI vector at the
test point and the fingerprint observed offline at the i-th RP,
recorded in the fingerprint database as

Li =

√√√√√ M∑
j=1

(Pr,dB(d j)− Pr,dB(d
j
i ))

2, i = 1, 2, . . . ,N (1)

where Pr,dB(d j) is the online observed RSSI of the j-thAP
at the test point which have a distance d j to the transmitter,
and Pr,dB(d

j
i ) is the offline observed RSSI of the j-th AP

at the i-th RP which have a distance d ji to the transmitter.
It is assumed that there are M APs and N RPs. Once all
the N RSSI Euclidean distances are calculated, one finds
out the smallest Euclidean distance. The corresponding RP is
selected and its position is taken as the estimate of the test
point position.

However, in complex and dynamic indoor propagation
environments, fading usually occurs, which may result in
the near-far problem. That is, the RP far from the test point
may have a smaller Euclidean distance Li than the nearest
neighbor RP. Therefore, the NN algorithm may produce a
significant position estimation error. TheKNNalgorithm [15]
is intended to deal with the issue associated with the NN algo-
rithm. Instead of selecting only one RP with the smallest
Euclidean distance, the KNN algorithm selects k (k > 1)
smallest Euclidean distances. The average of the positions
of these k corresponding RPs is then taken as the position
estimate of the test point:

(x, y) =
1
k

k∑
i=1

(xi, yi) (2)

B. WEIGHTED K-NEAREST NEIGHBOR (WKNN)
The WKNN algorithm [16] also selects k RPs to calculate
the position of the test point. But it assigns a weighting
coefficient to the position coordinates of each RP instead of
taking the simple average. In general, the weighting coeffi-
cient depends on the RSSI Euclidean distance between the
RP and the test point, which is determined by:

ωi =

1(
M∑
j=1

∣∣∣Pr,dB(d j)−Pr,dB(d ji )∣∣∣p
)1/p

k∑
i=1

1(
M∑
j=1

∣∣∣Pr,dB(d j)−Pr,dB(d ji )∣∣∣p
)1/p

(3)

where ωi is the weighting coefficient for the i-th RP,
p is selected as one for the Manhattan distance and two for

Euclidean distance [17]. The estimated position of the test
point is then the weighted average of the positions of RPs:

(x, y) =
k∑
i=1

ωi(xi, yi) (4)

Clearly, a small RSSI Euclidean distance is assigned with a
larger weighting coefficient to emphasize the contribution of
the RPs closer to the test point.

III. THE PROPOSED WEIGHTED ALGORITHM BASED ON
THE UNEVEN SPATIAL RESOLUTION OF WIFI RSSI
A. THE UNEVEN SPATIAL RESOLUTION OF WIFI RSSI
As indicated in [18], Wi-Fi signal intensity attenuation model
can be described by

Pr,dB(di) = Pr,dB(d0)− η10 log10(
di
d0

) (5)

where η is the path loss exponent. Since d0, Pr,dB(d0), and
η are known in advance through modeling and Pr,dB(di) is the
measured RSSI, the unknown distance di can be calculated by

di = d010

( Pr,dB(d0)−Pr,dB(di)
10η

)
(6)

From (7) the differential distance can be readily obtained as

1dij = di − dj

= d010

( Pr,dB(d0)−Pr,dB(di)
10η

)
− d010

( Pr,dB(d0)−Pr,dB(dj)
10η

)
(7)

In the case where the transmitter and receiver are on the
same floor, the path loss exponent is 2.76, d0 is chosen to
be 1 m, and Pr,dB(d0) is −31.7dBm [19]. Table 1 displays
a range of RSSI values and the corresponding propagation
distances. The differential distances between each pair of
neighboring RSSI values are also shown.

TABLE 1. Relationship between WIFI RSSI and physical distance.

As shown in Table 1, given the same differential
RSSI value, a larger pair of RSSI values produces a
smaller differential distance. The differential RSSI and the
differential distance has a nonlinear relationship, showing
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uneven spatial resolution, so it is inaccurate to assign
weights only based on RSSI Euclidean distance for position
estimation.

B. THE POSITIONING ERROR OF WKNN
Now let us analyze the positioning error of WKNN based
on simulation results. Consider five test points (TP1, TP2,
TP3, TP4, and TP5) and only two RPs (RP1 and RP2). For
better understanding, one dimensional positioning is consid-
ered and the five test points are located between the two RPs.
Table 2 shows the positioning errors of the WKNNmethod at
these five test points.

TABLE 2. Positioning errors of the WKNN.

As shown in Table 2, given the same two RPs, the posi-
tioning error based on WKNN increases as the location of
the test point goes towards the middle of the two RPs. The
positioning error is the largest when the location of the test
point is in the middle of the two RPs. Therefore, the uneven
spatial resolution of RSSI affects the positioning accuracy of
WKNN considerably. One way to deal with the problem is to
use physical distance to assign weights.

C. PROPOSED ALGORITHM BASED ON THE PHYSICAL
DISTANCE OF WIFI RSSI
The above analysis indicates that the uneven spatial resolution
of RSSI should be taken into account to enhance positioning
accuracy. Here, we propose to use physical distance instead
of RSSI distance to generate weights for position calculation.
Two different physical distances are defined. The first phys-
ical distance (Di) is defined as the square root of the sum of
the differences between the distance from test point to an AP
and that from RP to the AP as

Di

=

√√√√√√ M∑
j=1

d010
(
Pr,dB(d0)−Pr,dB(dj)

10η

)
− d010

(
Pr,dB(d0)−Pr,dB(dji )

10η

)
2

= d010
Pr,dB(d0)

10η

√√√√√ M∑
j=1

(
10
−Pr,dB(dj)

10η − 10
−Pr,dB(dji )

10η

)2

(8)

which means

Di ∝

√√√√√ M∑
j=1

(
10
−Pr,dB(dj)

10η − 10
−Pr,dB(dji )

10η

)2

(9)

From formula (5), the partial derivative of Pr,dB(di) with
respect to d is obtained as

∂(Pr,dB(di))
∂(d)

= −
10η
ln 10

•
1
d

(10)

That is,

∂(
∣∣Pr,dB(di)∣∣)
∂(d)

∝
1
d

(11)

Therefore, for the i-th RP, the first physical distance based
weight, denoted as DDW (differential distance based weight),
is defined as

DDWi =

1
Di
k∑
i=1

1
Di

=

1√√√√√ M∑
j=1

(10
−Pr,dB(dj)

10η −10
−Pr,dB(dji )

10η )2

k∑
i=1

1√√√√√ M∑
j=1

(10
−Pr,dB(dj)

10η −10
−Pr,dB(dji )

10η )2

(12)

Using the propagation model based distance formula (6),
the second physical distance for the i-th RP is defined as the
square root of the sum of the distances from the RP to all
the APs:

Ri =

√√√√√√√ M∑
j=1

d010
 Pr,dB(d0)−Pr,dB(dji )

10η


2

(13)

Then, the second physical distance based weight, denoted
by RPDW (RP distance based weight), for the i-thRP is
determined by:

RPDWi =

1
Ri
k∑
i=1

1
Ri

=

1√√√√√√√√√
M∑
j=1

d010
 Pr,dB(d0)−Pr,dB(dji )

10η


2

k∑
i=1

1√√√√√√√√√
M∑
j=1

d010
 Pr,dB(d0)−Pr,dB(dji )

10η


2

=

1√√√√√√√√ M∑
j=1

10

−Pr,dB(dji )
10η


k∑
i=1

1√√√√√√√√ M∑
j=1

10

−Pr,dB(dji )
10η



(14)

It can be seen from (12) and (14) that both weights are
independent of parameters d0 and Pr,dB(d0) in the channel
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propagation model, so that only the knowledge of one param-
eter (i.e. the path loss exponent) is required.

We propose to combine the two weights to form the final
weight ωi for the i-th RP as

ωi =
DDWi · RPDWi

k∑
i=1

(DDWi · RPDWi)

(15)

The final position estimate is obtained by substituting (15)
into (4). The flowchart of the proposed weighted algorithm is
shown in Figure 1.

FIGURE 1. The flow chart of indoor positioning based on the proposed
weighted algorithm.

IV. EXPERIMENT AND ANALYSIS OF ITS RESULT
In order to evaluate the performance of the proposed
algorithm, experiments were conducted in Science and Tech-
nology Building of Shenzhen University. The left panel
in Figure 2 shows the floor plan of the twelfth floor of
dimensions of 52.5m×52.5m, whereWi-Fi RSSIs frommore
than 50 Wi-Fi hotspots were received. It should be note
that a large part of these Wi-Fi hotspots are not in the
twelfth floor, but in the neighboring floors. The right panel
in Figure 2 shows the floor plan of the fourteenth floor of
dimensions of 52.5m×52.5m, the mobile can receive Wi-Fi
RSSIs frommore than 50 hotspots. At each test point, only six
APs (i.e. M = 6) with the largest RSSI values were selected
for both good accuracy and low computational complexity.
The sampling rate of 1 s was used to collect the RSSI for
about 40 seconds at each RP, and the sampling rate of 0.2 s
was used to collect the RSSI for 5 seconds at each test point.
The 67 points denoted by triangles of the location area are
selected as RPs, while other 153 points denoted by solid dot
are the test points whose positions are to be determined. The
distance between the adjacent points is about 2 meters. For
convenience, an independent coordinate system is established
in each floor for position determination purpose.

On each floor the same ordinary Android mobile phone
was used to collect data during both offline training phase
and online location phase (MI 3 for the twelfth floor and
MEIZU-M57A for the fourteenth floor). In reality, the type
of smartphone used for collecting training fingerprints may
be rather different from that carried by a pedestrian, which

collects data during online location phase. For instance, one
is MI and the other is MEIZU. To handle such device het-
erogeneity, the relationship between RSSI (relative RSS) of
one type of device and that of a different type of device
should be established in advance for this proposed method.
Also, it is useful to determine if there is an RSS offset
between two different types of device. If the RSS offset is
rather minor and the devices use the same relative RSS to
calculate RSSI, the proposed method can be used in pres-
ence of device heterogeneity. Otherwise, to use the proposed
method, one needs to find out the offset and the difference
in RSSI calculation so that the RSSI observed by a device
can be converted to that observed by a different device. This
will be useful future research. Due to significant variation
in RSSI observations caused by fading, the observed RSSI
values over a short period of time are usually pre-processed
such as by the mean algorithm. In this paper, the improved
Wi-Fi RSSI measurement method in [20] has been used to
preprocess the RSSI data.

A. INFLUENCE ON LOCATION ACCURARY OF DIFFERENT
PATH LOSS EXPONENT VALUES
As indicated by (12) and (14), the weight ωi is dependent on
the path loss exponent. Thus, it is useful to know how the
path loss exponent affects the weight. The accuracy measure
is the cumulative distribution function (CDF) of the position
error which is the distance between the true and estimated
positions. The path loss exponent in free space is 2 [21], [22]
and in an office building with rooms separated by concrete
walls and corridors, it is about 3 [23]. Thus, a number of path
loss exponents ranging between 2 and 3 are tested.

Table 3 shows the CDF of the position error in the four-
teenth floor with respect to path loss exponent range from
2.0 to 3.0. A total of 153 test points are tested and twelve
different position error thresholds are selected, which are 0.3,
0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 m, respectively. We can see
that the impact of path loss exponent on the CDF is insignifi-
cant, with the CDF standard deviation for each error threshold
being between 0.51% and 2.03%. Therefore, the proposed
weighted algorithm is insensitive to the selection and vari-
ation of parameter η in the channel propagation model.

B. LOCATION ACCURARY COMPARISON
Now let us compare the positioning accuracy among
the six different algorithms (KNN, Euclidian-W-KNN,
Manhattan-W-KNN [6], [7], EWKNN [8], LiFS [9] and the
proposed). Preprocess of RSSI data is the same for different
algorithms, and the method in [20] has been adopted in the
pre-processing of RSSI data for all these six algorithms. The
accuracy measure is still the CDF of the position error. Since
the impact of the path loss exponent on the CDF is rather
minor, path loss exponent is simply set at 2.

From the results displayed in Figure 3, we can see
that the proposed algorithm significantly outperforms the
other two algorithms. For instance, when error threshold
is 2 m and 4 m, the CDF of the proposed algorithm is

VOLUME 6, 2018 26591



W. Xue et al.: New Weighted Algorithm Based on the Uneven Spatial Resolution of RSSI

FIGURE 2. The schematic diagrams of experimental point distribution.

FIGURE 3. Comparison of location accuracy of six algorithms in terms
of CDF.

respectively 30.72% and 70.59%, which is significantly
higher than the 7.84% and 30.07% of the KNN, the 18.30%
and 51.63% of the Euclidian-W-KNN, the 16.34% and
42.48% of the Manhattan-W-KNN, the 15.69% and 44.44%
of the EWKNN, and the 19.61% and 40.52% of the LiFS.
For error threshold of 3 m, the CDF of the proposed algorithm
is 52.94%. It is a good positioning accuracy when considering
that the distance between the adjacent two RPs is about
10 meters.

Next, let us examine the positioning accuracy of the six
different algorithms in terms of error vector at each test point,
which is represented by an arrow pointing from the real
position to the estimated position. From the results of the

fourteenth floor displayed in Figure 4, we can see that the
proposed weighted algorithm produces smaller error vector
than the other algorithms. Table 4 shows the corresponding
statistical results.

From the results of the fourteenth floor displayed
in Table 4, we can see that the proposed weighted algorithm
produces an 80th percentile error of 5.32m, which is signifi-
cantly better than the 10.67m, 7.22m 9.55, 8.50, and 10.03m
of KNN, Euclidian-W-KNN, Manhattan-W-KNN [6], [7],
EWKNN [8] and LiFS [9], respectively. And, from the results
of the twelfth floor displayed in Table 4, we can see that
the proposed weighted algorithm produces an 80th percentile
error of 8.72m, which is significantly better than the 10.36m,
9.40m, 10.47m, 9.81m and 15.44m of KNN, Euclidian-W-
KNN,Manhattan-W-KNN, EWKNN, and LiFS, respectively.
Note that a large part of Wi-Fi hotspots used for localization
in the twelfth floor are in the neighboring floors, which has
degraded in localization accuracy with weaker RSSI.

In addition, the proposed physical distance based weighted
algorithm not only can apply to the deterministic algo-
rithm, but also can apply to the probabilistic algorithm.
Next, the positioning accuracy of physical distance based
one probabilistic algorithm is examined. Figure 5 shows the
positioning accuracy comparison between the two different
algorithms (GPR [9], and the proposed -GPR).

From the results displayed in Figure 5, we can see that
the proposed solution based GPR algorithm significantly
outperforms the normal GPR algorithm. For instance, when
error threshold is 2 m and 4 m, the CDF of the proposed
-GPR and is respectively 38.10% and 65.71%, which are
significantly higher than the 22.86% and 55.24% of the GPR.
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TABLE 3. The effect of path loss exponent on the positioning accuracy in terms of CDF (%).

FIGURE 4. Comparison of location accuracy of six algorithms in terms of error vector.

Therefore, the proposed physical distance based weighted
algorithm can achieve a performance gain when applied
to both the deterministic algorithm and the probabilistic
algorithm.

C. COMPARISON OF COMPLEXITY AND ROBUSTNESS
In addition to positioning accuracy, algorithm complex-
ity and robustness are also important positioning perfor-
mance indexes. Table 5 shows the complexity and robustness
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FIGURE 5. Comparison of location accuracy of two probabilistic
algorithms in terms of CDF.

TABLE 4. Positioning error statistics.

TABLE 5. Complexity and robustness comparison of the seven different
algorithms.

comparison of the seven different algorithms. The complexity
of KNN, Euclidian-W-KNN, Manhattan-W-KNN, EWKNN
and proposed algorithm ismuch lower than the LiFS andGPR
algorithm. Considering the exponential relationship between
RSSI and physical distance, the proposed algorithm based
on the physical distance of RSSI would have stronger ability
of interference tolerance with handling the Uneven Spatial
Resolution of Wi-Fi RSSI.

V. CONCLUSION
This paper presented a new weighted algorithm for indoor
localization. The algorithm is intended to cope with the issue
of uneven spatial resolution of RSSI. The two different phys-
ical distances are exploited for determining the weighting
coefficients. The algorithm only requires the knowledge of
one parameter, i.e. the path loss exponent in the propagation
model, but it is insensitive to the uncertainty in this model
parameter. The performance of this algorithm was tested
through conducting experiments in a typical office building.
Experimental results demonstrated that the positioning accu-
racy of the proposed algorithm is considerably better than
that of the KNN, Euclidian-W-KNN, Manhattan-W-KNN,
EWKNN, LiFS and GPR.
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