
Received March 19, 2018, accepted May 9, 2018, date of publication May 22, 2018, date of current version June 26, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2839681

Macroscopic Cerebral Tumor Growth Modeling
From Medical Images: A Review
AHMED ELAZAB 1,2, YOUSRY M. ABDULAZEEM3, AHMED M. ANTER4, QINGMAO HU5,
TIANFU WANG1, AND BAIYING LEI 1, (Senior Member, IEEE)
1National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound
Imaging, Health Science Center, School of Biomedical Engineering, Shenzhen University, Shenzhen 518055, China
2Computer Science Department, Misr Higher Institute for Commerce and Computers, Mansoura 35516, Egypt
3Computer Engineering Department, Misr Higher Institute for Engineering and Technology, Mansoura 35516, Egypt
4Faculty of Computers and Information, Beni suef University, Beni suef 62521, Egypt
5Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences and CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems,
Shenzhen 518055, China

Corresponding author: Baiying Lei (leiby@szu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 81571758, Grant 81771922, and Grant
61501305, in part by the National Key Research and Develop Program under Grant 2016YFC0104703, in part by the National Natural
Science Foundation of Guangdong Province under Grant 2017A030313377 and Grant 2016A030313047, in part by the Shenzhen
Peacock Plan under Grant KQTD2016053112051497, and in part by the Shenzhen Key Basic Research Project under
Grant JCYJ20170818142347251 and Grant JCYJ20170818094109846.

ABSTRACT Mathematical models have been ubiquitously employed in various applications. One of
these applications that arose in the past few decades is cerebral tumor growth modeling. Simultaneously,
medical imaging techniques, such as magnetic resonance imaging, computed tomography, and positron
emission tomography, have witnessed great developments and become the primary clinical procedure in
tumors diagnosis and detection. Studying tumor growth via mathematical models from medical images
is an important application that is believed to play significant role in cancer treatment by predicting
tumor evolution, quantifying the response to therapy, and the effective treatment planning of chemotherapy
and/or radiotherapy. In this paper, we focus on the macroscopic growth modeling of brain tumors, mainly
glioma, and highlight the current achievements in the state-of-the-art methods. In addition, we discuss some
challenges and perspectives on this research that can further promote the research of this field.

INDEX TERMS Mathematical modeling, cerebral tumors, glioma growth, macroscopic models, diffusive
model, biomechanical model, chemotherapy, radiotherapy.

I. INTRODUCTION
Human brain is the most complicated organ in the body that
acts as the center of the nervous system. The average weight
of adult human brain is about 1.2–1.4 kg of a very soft,
jelly like matter and it consists, basically, of neurons, blood
vessels, and glial cells [1]. Roughly estimated, human brain
consists of 100 billion cells [2]. Each brain cell is connected
to around 10,000 other cells, which equals about 1000 trillion
connections inside the brain [3]. With this complex structure,
any small damage or interruption of cells’ functions may
result in very serious consequences.

Theword ‘‘tumor’’ is derived from the Latinword ‘‘tumor’’
which means swelling and recently it is called lesion. Brain
tumors or intracranial neoplasms are abnormal and uncon-
trolled growth of cells in the central nervous system (CNS)
that affect the brain functioning. Basically, brain tumors can

be classified either by place of origin or by the degree of
aggressiveness. Tumors that originally grow and remain in
the brain are known as primary tumors while those begin
elsewhere and spread to the brain are known as secondary
(metastatic) tumors.

According to the degree of aggressiveness, brain tumors
can be cancerous (malignant) or noncancerous (benign).
Benign brain tumors grow slowly and rarely invade the sur-
rounding tissues, therefore, they are less life threatening.
They usually have visible and clear borders which make
them easy in surgical resection. On the other hand, malignant
brain tumors grow very fast and invade the healthy brain
tissues which make quick medical intervention very urgent.
However, these types of tumors have unclear borders that
make surgical resection very difficult. Although brain tumors
are not very common compared with other types of cancer,
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e.g. lung and breast, they are among the most fatal cancers
with high mortality rate [4].

The most common primary malignant brain tumor is
known as glioma. It arises from the glial cells (from the
Greek word ‘‘glue’’) which support and nourish the brain.
Glioma accounts for 30% of all brain and CNS tumors
and 80% of all malignant brain tumors [5]. Based on the
type of the glial cells, gliomas mainly include astrocytoma,
oligodendroglioma, and ependymoma (Fig. 1a). According to
their locations in the brain, the other common primary brain
tumors are gliomas, meningioma, pituitary adenomas, and
vestibular schwannoma [6]. Fig. 1 shows the physiological
and anatomical characteristics of brain tumors [6].

FIGURE 1. Physiological and anatomical characteristics of brain tumor
[6]. (a) The glial cells involved and primary brain tumors. (b) Cells
associated with the brain tumor tissue.

Gliomas vary in histological and biological features from
low to high grades. The most known and accepted grad-
ing of gliomas are made by the World Health Organization
(WHO) which divides glioma according to the degree of
malignancy and other factors to four grades from I to IV [7].
Grades I and II, known as low grade glioma (LGG), tend to
be less malignant and slow-growing. These tumors account
for about 25% of all gliomas patients that may survive for
many years (3–8) and have a good quality of life during that
period [8]. However, LGG are vulnerable to transformation
to grade III and IV after variable period of time. In study on
transformation of LGG in 2011 [9], it was observed that 60%
of patients with LGG were progressed to high grade ones.

On the other hand, grades III and IV, known as high
grade glioma (HGG), are highly malignant tumors that
eventually lead to death. Grade III includes: anaplastic astro-
cytoma, anaplastic oligodendroglioma, anaplastic oligoastro-
cytoma, and anaplastic ependymomawhile grade IV is known
as gliomblastoma multiforme (GBM). The HGG, particu-
larly GBM, grows very fast and invades surrounding tissue.
In most cases, HGG exhibits a necrotic core surrounded by
edema that exerts pressure on surrounding brain tissues caus-
ing local mass effect (deformation). Unlike LGG, the prog-
nosis of HGG is very poor and, mostly, subject to recur after
treatment with average survival time of 1 year [10].

Brain tumors can be diagnosed by symptoms or some
other medical tests. However, medical imaging remains the
standard method to detect, examine, and diagnose brain
tumors. Such imaging techniques includemagnetic resonance
imaging (MRI), diffusion tensor imaging (DTI), computed

tomography (CT), and positron emission tomography (PET),
each has its favorable uses and benefits.

MRI is an imaging technique based on the principles of
nuclear magnetic resonance and can be anatomical, diffu-
sion, or functional. The anatomical and diffusion MRI are
commonly used when studying tumor growthmodeling while
functional MRI, to the best of our knowledge, plays no major
role in tumor growth modeling and there is no such study
reports this. Anatomical MRI provides different information
based on the applied radio frequency and the contrast agent
(gadolinium) injected into the subject during the imaging
process. Basically, there are 4 different sequences of the
anatomical MRI: T1-weighted, T1Gd (T1-weighted with
gadolinium), T2-weighted, and fluid attenuated inversion
recovery (FLAIR) images where the appearance of the tumor
regions and brain tissues differs accordingly. Fig. 2 shows
different appearances of brain tissues and glioma regions
in T1, T1Gd, T2, and FLAIR MR images.

FIGURE 2. The appearance of glioma in MR images (axial slices).
(a) T1-weighted image, (b) T1Gd image, (c) T2-weighted image,
and (d) FLAIR image.

On the other hand, DTI is another MRI protocol that
is relatively new imaging technique proposed in the mid
of nineties of the last century by Basser et al. [11], [12].
The main concept of DTI is that, water molecules diffuse
in different directions along the tissues depending on their
type, integrity, architecture, and presence of barriers, thus,
giving information about their orientation and quantitative
anisotropy [13]. The diffusion is less restricted along the
axon and tends to be anisotropic in white matter (WM)
whereas in gray matter (GM) it is usually less anisotropic and
unrestricted in all directions (isotropic) in the cerebrospinal
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fluid (CSF) [14], [15]. Such information is of great impor-
tance for tumor growth modeling, especially, for the diffusive
gliomas.

For isotropic diffusion, normal diffusion MRI represented
by one scalar parameter would be sufficient. However,
the anisotropic diffusion needs a tensor to fully describe
the molecular mobility in each direction and the correla-
tion between them. Tensor is represented by a 3 × 3 sym-
metric matrix, thus, one must collect diffusion weighted
imaging (DWI) scans with several gradient directions (at least
six directions are necessary) along with an image acquired
without diffusion weighting (called b0) [16]. DTI can provide
a plenty of information that can be widely used in many
applications [14], [16]–[19]. The most beneficial parameters
that can be used in studying tumor growth modeling are
mean diffusivity, fractional anisotropy, relative anisotropy,
and volume ratio.

In fact, MRI and DTI are not the only imaging modalities
used to study tumor growth modeling but they are the most
important and common ones. However, other imaging tech-
niques can be used to provide different information of interest
such as CT and PET [20]–[22].

Since late nineties of last century, the research of tumor
growth modeling became very active on both brain tumor
and other tumors as well. Although some interesting reviews
are already existing [23]–[35], they are either obsolete, focus
on biological aspects, or even non-comprehensive. In this
paper, we review recent publications from the literature and
classify different approaches to highlight the current achieve-
ments and challenges of the different tumor growth models.
In particular, we will review the diffusive models, mechanical
models, customization of the diffusive model parameters,
treatments efficacies on tumor growth modeling, mathemati-
cal solutions, and finally the relation between tumor growth
models and different applications, specifically, segmentation
and registration. Finally, we give some discussions and per-
spectives on the future of tumor growth modelling for further
research.

The rest of this review is structured as follows. Section II
represents the different classifications of tumor growth mod-
els. Section III is dedicated to the different treatments and
their efficacies on tumor growth modeling. Sections IV and V
discusses the customization of growth model parameters
and the mathematical solutions of the diffusive models.
The relationships between segmentation, registration, and
growth models are given in Section VI. Finally, discussions
and perspectives followed by conclusion are summarized in
Sections VII and VIII, respectively.

II. TUMOR GROWTH CLASSIFICATION
Tumor growth can be studied using three different strategies:
in vivo, in vitro, and in silico. In vivo, from Latin ‘‘within the
living’’, concentrates on growth dynamics by observing the
biological characteristics of a living organ and this mainly
uses animals for such experiments. While in vitro, from Latin
‘‘in glass’’, focuses on experiments done in test tubes to

observe only one thing rather than the whole organ. The in
silico, from Latin ‘‘in silicon’’, refers to experiments that are
simulated using machine with silicon semiconductors, which
is basically computers in our case. These three strategies
can be classified in different ways as microscopic (includes
in vivo and in vitro) and macroscopic (for in silico) [36].
From another point of view, growth models can be classified
into continuous, discrete, or hybrid [37]. Also, models can
be classified according to image spaces used; atlas-based
and patient-based. Here, we consider the microscopic and
macroscopic strategy.

Microscopic models focus on the observations at micro-
scopic level by describing the interactions between cells and
chemical excretion, nutrition sources, oxygen, and surround-
ing blood vessels. Based on microscopic point of view, there
are three different phases of growth which are: avascular,
angiogenesis, and vascular growths, see [38]–[42] for more
details. On the other hand, macroscopic models use com-
plex mathematical models guided by medical images and
histological slices to study the tumor growth which is our
main focus in this review. The macroscopic models can be
further divided into two different types: mechanical models
which focus on the induced mass-effect of the tumor on the
surrounding tissues and the diffusive models which focus on
the invasion of the tumor cells into the surrounding tissues.
Basic classification of the growth models is given in Fig. 3.

FIGURE 3. Basic classification of tumor growth models.

A. DIFFUSIVE MODELS
Majority of the published works on tumor growth modeling
are classified as diffusive models. These models use the
reaction diffusion (RD) formalism to describe the growth
of tumors [43]–[45]. The RD model is widely used due
to its simplicity and consistency with the biological tumor
growth process. It describes the tumor growth, when there
is no treatment administrated, with two terms: diffusion
term that describes the invasion of tumor cells in the sur-
rounding tissues (∇ · (D∇u) in Eq. (1)) and proliferation
term that describes the proliferation of tumor cells (f (u, t)
in Eq. (1)). The RD model can be represented by a system of
semi-linear parabolic partial differential equation (PDE) with
no-flux boundary condition which are defined as follows:

∂u
∂t
= ∇ · (D∇u)+ f (u, t) , (1)

γ · (D∇) u = 0, (2)
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where u is the tumor cell density, γ is normal direction, D is
the tumor cell diffusion rate, and f (u, t) is the proliferation
term andmostly can be described by either exponential, Gom-
pertz, or logistic terms [43] which are, respectively, defined
as follows:

f (u, t) = ρu, (3)

f (u, t) = ρu ln
(
1
u

)
, (4)

f (u, t) = ρu (1− u) . (5)

In case of using logistic proliferation, which is very common,
the RD model is known as Fisher Kolmogorov model [46].
Nevertheless, Murphy et al. [47] discussed other terms
that can be used for tumor growth. They demonstrated the
importance of careful consideration of model assumptions
when developing mathematical models in cancer treatment
planning. Interestingly, they found that there might be up
to 12-fold change in the predicted outcomes and that the
model that best fits experimental data might not be the model
that best predicts future growth [47].

One of the earliest growth models was proposed in 1995 by
Tracqui [48], [49] using RD model to isotropically (constant
diffusion coefficient) simulate the spatio-temporal change
of tumor cell concentration in 2D CT images. Tumor cells
diffuse with different rates according to the surrounding tis-
sues [50], faster in WM, slower in GM, and stops by CSF.
Based on these facts, Swanson et al. [51], [52] used a spa-
tial function D(x) to represent the heterogeneity (not the
anisotropy) of the diffusion coefficients in WM and GM
guided by tissue segmentation of an anatomical atlas. The
spatial function D(x) is defined as follows:

D(x) =

DWM for x ∈ WM
DGM for x ∈ GM
0 Otherwise

. (6)

Later, Yuan et al. [53] modified the RD equation by
introducing a weighted parameter to balance the diffusion
coefficient of the WM and GM. Local region similarity mea-
sure using normalized Bhattacharyya distance was estimated
to determine the weighted parameter guided by level set
function. Later, the same model was enhanced by includ-
ing viscous stress tensor [54]. Motivated by the work of
Yuan et al. [53], we proposed a content based modified
RD model using a weighted parameter that measures the
WMproportion in a small window [55]. Theweighted param-
eter was used to promote the cells diffusivity to be higher in
WM than GM without using tensor information from DTI.

Isotropic diffusion is not very precise and cannot accu-
rately simulate the invasion of glioma growth, particularly in
HGG [56]. Therefore, in this case, information provided by
DTI will be very useful in guiding the anisotropic invasion
of tumor cells. Earliest models that employed DTI were pro-
posed in 2005 by Jbabdi et al. [56] and Clatz et al. [57]. They
usedDTI to assign anisotropic diffusion inWMhaving higher
diffusion along the direction of fiber tracts by replacing D(x)

with D̄(x) that is defined as follows:

D̄(x) =
{
DWMDWater x ∈ WM
DGM I x ∈ GM ,

(7)

where I is 3× 3 identity matrix and DWater is the normalized
water diffusion tensor in the brain tissues measured by DTI.
These two models can better predict the spiky nature of
tumor shapes by controlling the ratio between diffusion coef-
ficients in WM and GM, respectively. Fig. 4 shows the effect
using different diffusion ratios [58]. Generally, the degree of
anisotropy is totally dependent on the construction method
of D̄(x). Because of high anisotropy in most parts of theWM,
the previous two approaches led to diffusivities that are much
lower than gray diffusion in the directions orthogonal to the
fibers. Moreover, the high ratios of anisotropy encountered in
those two models are computationally expensive.

FIGURE 4. Effect of using different diffusion ratios between WM and
GM [58] (red, DWM/DGM = 1; yellow, DWM/DGM = 10; green
DWM/DGM = 100).

DTI was also used by Painter and Hillen [59] to develop
a mesoscopic model for glioma invasion based on the indi-
vidual migration pathways of invading cells along the fiber
tracts. Via scaling, they obtained a macroscopic model
that allows to explore the overall growth of a tumor. The
DTI information was included in the model by assuming
that directional guidance along fiber tracts is described by
a bimodal von Mises–Fisher distribution (it is the normal
distribution on a unit sphere) and parameterized according
to the directionality and degree of anisotropy in the diffu-
sion tensors. Later, Engwer et al. [60] extended this model
to explicitly include adhesion mechanisms between glioma
cells and the extracellular matrix components which are
associated to WM tracts. Recently, Swan et al. [61] also
utilized the DTI anisotropic diffusion based on the model of
Painter and Hillen [59] and proved that it can have slight
improvement when compared to the proliferation model of
Swanson et al. [51].
Although DTI provides a very useful information about

the preferable directions of glioma growth, there are some
tradeoffs when use it. In fact, processing DTI is expen-
sive and mostly comes with low resolution which com-
promises the accuracy of the growth models. Therefore,
Stretton et al. [62] investigated the importance of usingDTI in
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tumor growthmodeling. They concluded that, refraining from
DTI would be fine if the images are very coarse (low resolu-
tion) in condition that there is a very good WM segmentation
in the areas surrounding the tumor. This conclusion is also
applicable in case of LGGs as they slowly grow and tend
to be isotropic. However, for the accurate growth modeling
of HGG, DTI is indispensable due to the anisotropic and the
spiky nature of these tumors.

The PDE system of the RD model can be approximated by
travelling wave solution [63]. Because tumor boundary is the
onlymeasurable parameter fromMR images and based on the
assumption that for large times, Konukoglu et al. [36], [64]
approximated the RD model using an anisotropic Eikonal
equation. This equation is then solved by using a recursive
fast marching algorithm [65]. Recently, the same model was
used to simulate the virtual glioma growth pattern in expert-
validated CSF segmentation of the MNI atlas [66] which
proved that accurate segmentation of WM had an important
role on the diffusive boundaries of glioma. Also, using the
anisotropic Eikonal equation introduced by Konukoglu [64],
Rekik et al. [67] proposed WM tumor diffusion tensor that
can handle high anisotropy and complex shapes of the tumors
using the following formulation:

D̄ (x)=E (x) [diag (e1 (x)DWM ,DGM ,DGM )]ET (x) , (8)

where E (x) is a matrix of sorted eigenvectors of DTI (x)
while e1 (x) is the normalized largest eigenvalue of DTI (x).
An example that shows the effect of the new formula-
tion of D̄ (x) on controlling the boundary spikiness and the
anisotropic diffusion is shown in Fig 5.

FIGURE 5. Examples show an anisotropic diffusions and boundary
spikiness in 4 different axial slices (a), (b), (c), and (d) of a patient
with 4 time point scans t1 (dark blue), t2 (light blue), t3 (dark red),
t4 (light red) [67].

Roniotis et al. [68] exploited the spatial proportions of
WM and GM extracted from brain atlas as well as the
DTI information extracted fromSRI24 atlas [69] to anisotrop-
ically simulate the tumor growth of HGG. They used different
construction of the D̄ (x) as follows:

D̄ (x) = D (x)W (x) , (9)

where W (x) represents the contribution of each direction of
the white fiber and it is calculated using:

W (x) =

wx (x) 0 0
0 wy (x) 0
0 0 wz (x)

, (10)

where wx (x), wy (x) , and wz (x) are, respectively, the direc-
tional diffusion weight with values between 0 and 1.

B. MECHANICAL MODELS
As previously mentioned, mechanical models study the
mechanical behavior of tumor growth and its effects on the
surrounding tissues. Mechanical models contain two distinct
formulations, one for the growth of the tumor while the other
for bio-mechanical characteristics of the brain tissue. In these
models, the mechanical interaction between the grown tumor
and brain tissue has to include the viscosity and the elasticity
of the brain material. One of the earliest mechanical models
was proposed by Wasserman et al. [70] that considered brain
tissue as a linear elastic material for which strain-stress rela-
tions could be given by generalized Hooke’s law. In addition,
an exponential growth term (Eq. 3) with fixed proliferation
rate was used to simulate the tumor growth in 2D space using
CT images.

Kyriacou et al. [71] characterized the brain tissues by non-
linear elastic materials that follow incompressible nonlinear
elastic neo-Hookean model to overcome the linear stress-
strain relation in the model of Wasserman et al. [70] and
simulate large deformation. That model was also applied
in 2D space and used simple proliferation term that made a
uniform strain.

Based on the model of [71], Mohamed and Davatzikos [72]
extended that model by considering the brain tissue as an
isotropic and homogenous hyperelastic material. They used
3D finite element method (FEM) to simulate brain tumor
mass-effect of both tumor and edema applied to 4 real
cases. Their model was able to describe large deformation.
Although this model yielded good simulation of tumor mass
effect, it was based on many assumptions and computation-
ally expensive. Hogea et al. [73], [74] reformulated the above
two models within a general Eulerian framework using a
level-set based method for the evolving tumor to improve
their efficiency. This model was able to deal with complex
geometries fast and in less expensive way. Simulation results
from the above models are shown in Fig. 6.

Later, Gevertz et al. [75], employed cellular automaton
algorithm to simulate spherically symmetric tumor growth
and generalized the algorithm to incorporate the effects of tis-
sue shape and structure. They demonstrated that, those mod-
els which do not account for tissue geometry and topology
lead to false simulations about tumor spread, size, and shape.
In addition, they showed that, the impact of organ-imposed
confinement and heterogeneity of tissue on the tumor growth
is greater when tumor grows close to the confining boundary.

Most recent biomechanical and hybrid models
(Section II.C) make use of the continuum mechanics to
study the volume expansion. For comprehensive review of
the-state-of-the-art constitutive models, readers are referred
to [76] and more details about the mechanical properties
of brain tumors can be found in [77]. Since tumors grow
over long time (days, months, or even years), in most of
cases, the deformation is quite slow. Thus, static equilibrium
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FIGURE 6. Simulation of tumor growth using different mechanical models
(a) from [72], (b) from [74], and (c) from [73].

equation can be utilized for the displacement as follows [57]:

div(σ )+ fext = 0, (11)

where σ is the internal stress tensor and fext is the external
force applied on the tissue and it can be defined as [78]:

fext = P.A.ϕ(n, γ ), (12)

where P is the pressure, A is the surface area, and ϕ(n, α)
is the direction from the von Mises-Fisher distribution
with mean direction n and concentration γ [78]. Following
Clatz et al. [57], the relationship for the strain computation
and the constitutive equation is:

σ = K · ε, (13)

ε = 0.5
(
∇u+∇uT

)
, (14)

where K and ε represent the elasticity and strain tensors,
respectively, while u represents the displacement.

C. HYBRID MODELS
Both mechanical and diffusive models can be combined
together to have more realistic simulation of tumor growth.
The hybrid models combine the RD and its boundary con-
dition in Eqs. (1) and (2) with the biomechanical model
given in Eqs. (11)-(16). The earliest trial was performed by
Clatz et al. [57] to simulate tumor growth by coupling tumor
diffusion and the biomechanical effect in one model that was
solved by FEM. The biomechanical effect considered the
brain as a linear viscoelastic material since the time scale of
tumor growth was relatively large (6 months in that work).
In their model, the mass effects of bulk tumor as well as
edema were considered (tested only on one MR dataset).
However, this model is susceptible to the discretization of
FEM which sometimes gives error.

In a similar work, Chen et al. [79], coupled the RD model
and linear mechanical model solved by FEM to simulate the
kidney tumor growth. In this model, the parameters were
estimated by the hybrid optimization parallel search package
based on segmented tumor volumes from contrast enhanced
CT images at different time points. Later, Liu et al. [80]
presented patient specific tumor growth model that coupled
both cell metabolism and mass effect from clinical CT and
fluorodeoxyglucose - PET (FDG-PET) images. They used an
inverse problem formalization as a coupled PDE constrained
optimization problem solved by finite difference method to
estimate the model parameters. However, their formulation is
very complicated and may not fit the requirements of realistic
models.

May et al. [81] established a multi-scale and multi-physics
approach to simulate tumor growth, considering both the cel-
lular and the macroscopic mechanical levels. Their composite
model led to significant tumor shape corrections (about 20%)
that were achieved through the utilization of environmental
pressure information and the application of biomechanical
principles. It was concluded from this study that the two
models could be coupled in a self-consistent manner without
any effect on each other.

Wong et al. [82] coupled the RD equation and the nonlinear
biomechanics to predict the tumor growth of pancreatic neu-
roendocrine using FEM and to overcome the shortcomings
of [57] and [79]. They fused physiological data of struc-
tural and functional images to improve the model customiza-
tion. Furthermore, they adopted a derivative-free global

30668 VOLUME 6, 2018



A. Elazab et al.: Macroscopic Cerebral Tumor Growth Modeling from Medical Images

optimization algorithm to facilitate the model complexity and
accommodate flexible choices of the objective functions.

Recently, three mathematical models of glioma growth
were developed by Hormuth et al. [83], [84] to establish a
framework for accurate prediction of changes in tumor vol-
ume as well as intra-tumoral heterogeneity. In the first model,
tumor cell movement was described by coupling movement
to tissue stress, leading to a mechanically coupled RDmodel.
In the secondmodel, intra-tumor heterogeneity was described
by including a voxel-specific carrying capacity to the
RD model. Eventually, the mechanically coupled and carry-
ing capacity models were also combined in a third model.
Experiments on 14 rats with glioma demonstrated that
mechanical–biological effects were a necessary component
for an efficient tumor growth modelling [83].

Very recently, Agosti et al. [85] developed diffuse-interface
mathematical model based onmixture theorywith continuous
mechanical model and solved by FEM to predict the patient-
specific evolution of GBM. This model also incorporated the
effects of chemotherapy and radiotherapy.

III. GROWTH MODELLING WITH TREATMENTs
One of the most important motivations of studying tumor
growth is therapy planning. Tumor growth models can incor-
porate the treatment effects into the model either to evaluate
its efficacy or to tailor the therapy, for instance calculate
the effective doses and fractions of specific therapy.
Glioma treatment comes in one or more of the following
ways: radiotherapy, chemotherapy, surgery, and targeted ther-
apy (like antiangiogenic therapy). In fact, combinations of
these methods are usually concurrently or adjuvantly used.
Generally, the treatment effect can be included as a loss term
in the RDmodel (Eq. (1)) to represent the number of the dead
cells due to the treatment.

The majority of aforementioned models did not include the
effect of treatments: neither chemotherapy nor radiotherapy.
Radiotherapy is a common treatment therapy used to control
tumor cells either by killing or damaging their proliferation
and is given, mostly, post-surgery in different fractionation
regimens according to many factors [86]. Linear quadratic
(LQ) model [87] is the most widely used methodology to
determine the effect of radiotherapy doses by estimating the
probability of cells surviving due to dose of radiation. The
LQ model has been successfully used with tumor growth
models to simulate the efficacy and responses of radiother-
apy [88]–[93]. Generally, the LQ estimates the probability of
cell survival S after radiation dose is calculated by [87]:

S = e−αdi(u,t)−βdi(u,t)
2
, (15)

where di (u, t) represents the radiation dose and α and β
are the linear and quadratic radiobiology coefficients, respec-
tively. The tumor cell loss is:

r (u, t, d i)=
{
0 no radiotherapy
1−S [α, β, di (u, t)] radiotherapy.

(16)

Using Eq. (16), the final loss term due to radiotherapy R (u, t)
that has to be included as a negative term in Eq. (1) is written
as follows:

R (u, t) = r (u, t, d i) .u (1− u) . (17)

Rockne et al. [88], [93] embedded the LQ model into
RD model to predict and quantify the efficacy of radiother-
apy with response to various therapy schedules and doses
distributions. Later, Corwin et al. [90] extended this work
and investigated generating patient-specific and biologically-
guided radiotherapy dose plans. Roniotis et al. [89] sim-
ulated the radiotherapy effect in the RD equation using
LQ model guided by DTI information extracted from the
SRI24 atlas [69].

Knoukoglu et al. [94], [95] extended their previous work
and proposed a different way to extrapolate the extents of
the tumor invasions that is not visible in MR images. Their
formulations aimed to create irradiation regions that take
into account tumor growth dynamics rather than the con-
ventionally used method of radiating 1.5-2.0 cm margin
around the visible tumor bulk. Unkelbach et al. [58] used the
RD model for the improvement and automation of target vol-
ume delineation for HGG. Their model considered the spatial
growth patterns of tumor and the anatomical barriers. They
concluded that, this approach is mainly useful for tumors
located close to the falx and the corpus callosum. However,
their model accuracy is totally dependent on an accurate
segmentation of the brain tissues, particularly the anatomical
barriers.

Different from LQ models, Pérez-García et al. [96],
explored mathematical model based on the RD model and
radiobiological facts to study the delay effects on radio-
therapy. Their model predicted that, tumors with high pro-
liferation will likely respond faster to radiotherapy than
those with slower proliferation values. However, the regrowth
is expected early in those tumors responding faster.
Galochkina et al. [97] went further to evaluate the optimal
radiotherapy fractionation for LGG in the standard protocol
of 30 fractions using mathematical models. Their optimal
results found minor deviations from the standard radiation
fractionations (6 weeks treatment period) which approve
the efficacy of the current fractionations of radiotherapy on
LGG treatment.

Another commonly used formalism in radiotherapy is
tumor control probability (TCP) model which is used to
define the probability of how a prescribed dose of radiation
eradicates or controls the tumor [98]–[102]. In fact, TCP is
basically based on LQ model [98] and that is the reason
that makes LQ model dominant in tumor growth models that
consider the radiotherapy efficacy. On the other hand, to the
best of our knowledge, there is no growth model in literature
that used TCP model to incorporate radiotherapy efficacy.

The other treatment regimen is to use chemotherapy either
as neoadjuvant, adjuvant, or concomitant. Chemotherapy acts
on rapidly proliferating cells by interfering with the cell-cycle
and other cell-cycle specific targets. It is also used to stop
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FIGURE 7. Effects of including chemotherapy and radiotherapy on the growth of LGG [108]. (a) Synthetic LGG
growth from single point on MNI atlas. The red and blue contours represent the tumor boundaries for 1 and
2 years with treatment effect while the green and magenta contours are the corresponding boundaries
without treatment. (b) Real LGG case; from left to right, T1 image, T2 image with manual delineation of tumor
boundary in red and blue, simulated growth in green, and enlarged view simulated growth.

or slow down tumor growth and can either be administrated
before, during, or after radiotherapy. Swanson et al. [103]
introduced simple technique to incorporate homogenous and
heterogeneous drug delivery of chemotherapy into tumor
growth model. The loss term due to chemotherapy can be
embedded into the RD model as a proportion of the tumor
growth rate [46].

Later, Stamatakos et al. [104] modeled the effect of
chemotherapy based on cellular automata to growth model
where the effect of the chemotherapy was included as a dam-
age to each cell independently. If that damage is large enough,
this would yield cell apoptosis. However, their model used
many parameters that cannot be observed from images which
reduce the model significance for real applications. Further,
Powathil et al. [105], [106] used log-kill model to represent
the cell death caused by the chemotherapy as removing con-
stant fraction of tumor cells at the time of administrating
it. In addition, the same model included the radiotherapy
effect using the LQ model. Another interesting work by
Bogdańska et al. [107] proposed to build mathematical
model that can incorporate the basic biological features
of LGG growth and its response to chemotherapy. Their
results showed that tumors had a shorter time to radiological
response after chemotherapy treatmentmight bemore aggres-
sive in terms of proliferation potential.

Recently, we were also able to combine the radiotherapy
and chemotherapy treatments with RD model. As previously
mentioned, chemotherapy effect is commonly hypothesized
to damage tumor cells to be proportional to the growth rate as

log-kill term [105]. However, this is not precise as chemother-
apy is usually delivered to the whole body and the absorption
of drug by tissues can differ accordingly. In [108], we tackled
this issue and related the heterogeneity of tissues with the
absorption of the chemotherapy using our previously pro-
posed weighted parameter that measures the WM proportion
in small window [55]. In addition, the LQ model was also
incorporated into the RD model to simulate the LGG growth.
Fig. 7 shows 2 different experiment on the MNI atlas and
a real LGG case. Later, we extended the previous model to
include brain viscoelasticity using Maxwell-Weichert model
with the RDmodel [109]. An example of the simulated results
is shown in Fig. 8.

IV. CUSTOMIZATION OF THE GROWTH MODEL
PARAMETERS
Every human being has some biometrics, e.g. finger print,
iris, and voice tag, which are unique and exclusive only
for him/her. Same applies also for brain structure and even
brain tumors. There are more than 120 different types of
brain and CNS tumors [110] each has different histology,
diffusivity rate, aggressiveness level, and so on. Therefore,
using same parameters of the growth model will not be
precise. Growth parameters of diffusive models are mainly
the diffusion coefficient (D) and the proliferation rate (ρ)
given in Eq. (1). Customization of these two parameters to
be patient-specific will have great impact on the accuracy
and the whole model performance. To do so, one has to
compare the model estimation with the visible abnormalities
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FIGURE 8. Simulation results of tumor growth in LGG subject [109]. From left to right, first and second scans with the red and blue contours
representing the tumor boundaries, the simulated growth with green contour, and a constructed 3D view of the simulated tumor growth.

from at least 2 MR images acquired at different time points.
Harpold et al. [25] described the customization of glioma
growth using RD model and an exponential proliferation
term. They presented the relationship between D and ρ of
LGG and HGG cases collected up to 2007 by log-log graph
as shown in Fig. 9. From Fig. 9, it can be noticed that LGGs
appear in the bottom-left as these tumors are slowly growing
with average velocity of 2 mm/year. In contrast, HGGs are
in the top-right enclosed within a rectangle defined by D/ρ
of 2 to 20 mm2 and velocities of 10 to 200 mm/year.

FIGURE 9. A log-log graph of D and ρ summarizing the distribution of
HGG and LGG (reproduced from [25]).

Hogea et al. [73] considered the parameter customization
as an inverse estimation to find the tumor growth model
parameters based on the patient’s MR images. They for-
mulated and solved this using PDE-constrained optimiza-
tion problem with first order information. However, their
optimization problem is slow and limited only to 1D case.
Recently, Gholami et al. [111] extended this work by using
second order Hessian information for the numerical optimiza-
tion instead of using only first order information and falling

back to a derivative free optimization. This method was able
to reconstruct themodel parameter considering the anisotropy
of the LGGwith reduced computational cost. However, it was
only applied to synthetic images with no demonstration on
real MR images with tumors.

Konukoglu et al. [64] used the derivative-free optimization
algorithm called bounded optimization by quadratic approxi-
mation tominimize the distance between the tumor segmenta-
tions observed from series of brainMR images and the output
of the model. Their formulation was based on an Eikonal
approximation of the RD model.

Based on the spherical asymptotic analysis,
Corwin et al. [90] customized the RD model parameters by
relating the asymptotic velocity and the invisibility index
from two segmented time point MR images of the same
patient. This customization was mainly targeted towards
biological optimization of radiotherapy treatment of HGG.

Probabilistic approaches can also be used to customize
the growth model parameters. Menze et al. [112] linked the
physical process model with the statistical image observation
model that enabled efficient estimation of the model param-
eters by Bayesian formulation. This model was based on
the approximation of the posterior probabilities using sparse
grids which was adopted via Markov Chain Monte Carlo
sampling.

Lately, Lê et al. [113], [114] analyzed the uncertainty in
the patient specific parameters of a tumor growth model by
sampling the posterior probability of the parameters from
MR images of the same patient. Their estimation was based
on parallelized implementation of the RD model using lattice
Boltzmannmethod and Gaussian process HamiltonianMonte
Carlo technique. To sum up, the most relevant growth models
described above are given in Table 1.

V. MATHEMATICAL SOLUTION TO DIFFUSIVE MODELS
Tumor growth modeling usually results in a complex
mathematical formulation using set nonlinear PDE. How-
ever, having a mathematical solution of such equation is not
straightforward and has to be done very carefully as there is
discretization in both time and the 3D space. In fact, studying
such solutions have many independent research topics and
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TABLE 1. Summary of most relevant tumor growth models.
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TABLE 1. Continued. Summary of most relevant tumor growth models.

has been studied extensively in the literature. Solving the
RD model, mostly, comes in two different forms, FEM and
finite difference method (FDM). Here, we just give a brief
introduction about them and highlight some techniques that
were proved to be suitable in the mathematical solution to
the tumor growthmodel. However, for further reading readers
can refer to [115]–[120].

FEM is a numerical methodology that is used to find
approximate solutions to boundary constrained problems and
tumor growth models. This method represents the brain as a
structure of several elements connected together. The size of
these elements is application dependent and reflects the com-
plexity of this method, tetrahedron (element with 4 nodes) is
sufficient for mass effect simulation in tumor growth mod-
els. FEM can handle the complex geometries and complex
structures, therefore, it was used in the following models

mechanical models [41], [71]–[74], [121], [122]. However,
using FEM is computationally very expensive and small mis-
take can lead to a fatal problem.

On the other hand, FDM is a discretization method that
approximates the solution to the PDE using derivatives. The
most popular methods of FDM are: forward Euler, backward
Euler, and Crank-Nicolson. These methods are easy to imple-
ment but the stability of their numerical solution is a challenge
as they are discretized in 3D and the challenge becomes
bigger when DTI is used. Therefore, the numerical solution
of the RD model is at stake if the stability is not guaranteed.
The leading work on the stability of the FDM was studied
by Weickert [123] by providing different discretization tech-
niques that makes the anisotropic diffusion unconditionally
stable. Later, Mosayebi et al. [124] extended this work to
investigate the stability of FDM on the mathematical tumor
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growth models in 3D. Fig. 10 demonstrates the stability effect
importance on the performance of the tumor growth models.

FIGURE 10. An example shows the stability effect on the performance of
tumor growth models [124]. (a) Unstable solution, (b) Stable solution.

Roniotis et al. [125], [126] presented mathematical solu-
tion for the RDmodel in 3D with different FDM schemes and
FEM. Namely, forward Euler, the backward Euler, the Crank-
Nicolson, and the θ -method were discussed in terms of
accuracy, simulation time, and storage. The authors con-
cluded that, FDM schemes are practically suitable solution
for glioma growth models and are 10 times faster than FEM.

Özuğurlu [127] focused on handling the stability issues
due to the discontinuity of the diffusion coefficient. He
demonstrated that, using the correct finite difference scheme
can overcome the stability issues by proposing two numer-
ical methods, the implicit backward Euler and the Crank-
Nicolson scheme, both in combinationwith Newton’smethod
for solving the governing equations.

In our recent works [108], [109], we tried to solve the
bottleneck challenge by employing the stable FDM proposed
by Mosayebi et al. [124] while including the effects of
both chemotherapy and/or radiotherapy, if any. In addition,
the brain tissue viscoelasticity effect was included in the
modified RD using Maxwell-Weickert approach.

VI. GROWTH MODELS, SEGMENTATION, AND
REGISTRATION
Tumor growth is not a standalone procedure, instead, it has
close relation to both segmentation and registration. On the
one hand, both segmentation and registration are used as
prerequisite steps in the growth models (Fig. 11). On the
other hand, tumor growth can be used to aid segmentation
and registration which are ubiquitous applications in medical
image analysis and other applications as well [128]. Some
interesting integrations between them are given below.

A. SEGMENTATION AND GROWTH MODEL
One cannot proceed in studying tumor growth before seg-
menting the tumor regions and the brain tissues. The former
is mostly done manually or semiautomatic while the latter
is done automatically. Since here we only discuss the rela-
tion between segmentation and growth modeling, readers are
referred to the following comprehensive reviews on brain

FIGURE 11. Relationship between tumor growth, segmentation, and
registration.

tumors and brain tissue segmentations [129]–[135]. Simi-
larly, skull stripping is necessary for the no-flux boundary
condition of the RD model (Eq. 2). On the other hand,
tumor growth model can be used in tumor segmentation
which is considered as very subjective and complicated task.
Several studies were proposed to generate synthetic realistic
MR images bearing tumorswhere there is known ground truth
to be used for validation. However, realistically simulating
the tumor and describing the effect of the tumor growth on
the grayscales of the MR image are not straightforward.

Rexilius et al. [136] proposed one of the earliest models
for generating a realistic brain tumor phantom. Their tumor
model included three compartments: active tumor, necrotic
core, and edema. The active tumor and the necrotic core were
manually drawn on MR image of a healthy subject. A radial
displacement model was used to simulate the displacement
of the surrounding tissue assuming linear elastic material
properties of WM and GM. The image intensities on the
necrotic core were assigned using Gaussian noise where the
edema was represented by an intensity fading with increasing
distance to the active tumor.

Prastawa et al. [78] enhanced the model of Clatz et al. [57]
for more 3D realistic generation of synthetic tumors and an
improved appearance in the MR images. Furthermore, they
introduced tensor model for the warping and destruction of
WM fibers. Later, Cordier et al. [137] presented a generative
model for the synthesis of multimodal medical images of
pathological cases by using an iterative multi-atlas patch-
based algorithm. Although the iterative nature of their method
could synthesize more realistic images, this model is costly
and extremely slow (in days).

B. REGISTRATION AND GROWTH MODEL
Registration is also a prerequisite step to align the acquired
time-point images from single modality or multimodality to
a common space before studying the tumor growth [138].
It makes it easy to track the changes of the anatomical tissues
and sizes of the pathology. Registration of MR images with
tumor to an anatomical atlas is of great interest in clinical
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usage to track the effect of the lesion growth. However,
this process is very challenging when lesion size is big
which makes conventional registration methods inappropri-
ate. Many methods were proposed to address the challenges
related to image registration such as [139]–[144]. In this
regard, tumor growth models can also be included in the
registration process and improve the registration outcomes.

Kyriacou et al. [71] proposed a 2D atlas to patient reg-
istration based on tumor growth dynamics. They simulated
the resection of the tumor allowing images to be registered to
an atlas and obtain tumor-free images. Then, the tumor-free
images with real images were used to estimate the parameters
of the growth model. Finally, using the estimated parameters
they performed the mechanical tumor growth inside the reg-
istered atlas to the final atlas to patient registration.

Mohamed et al. [145] took a statistical approach for the
atlas to patient registration. They proposed statistical model
on the deformation map created by applying a nonlinear
elastic registration to align the atlas with patient image.
Their statistical model used the space displacement fields
and decomposed the deformation field on two orthogonal
hyperplane, one for the tumor-induced deformation while the
other for the inter-subject variability.

Gooya et al. [146] used multi-parametric imaging modali-
ties for segmentations of various tissues, and then used super-
vised learning to compute the posterior probability map of
membership to each tissue class. By simulating the tumor
growth using RD model, similar maps were generated in the
atlas. The expectation-maximization algorithm was used in
the registration procedure to approximate the spatial trans-
formation while tumor growth parameters were optimized.

Later, Gooya et al. [147] presented a generative approach
for simultaneously registering a probabilistic atlas to the
brain MR scans showing glioma and segmenting the scans
into tumor and healthy tissues. Their method was based on
the expectation maximization algorithm that incorporates a
glioma growth model for atlas seeding. The seeded atlas was
then registered to patient image to estimate the probabilities
of various tissue labels.

VII. DISCUSSIONS AND PERSPECTIVES
From the above review, it is clear that, the challenges sur-
rounding the tumor growth modeling research are many and
there is still much to go. Almost each step involved in the
tumor growth modeling can be an independent research topic.
Therefore, much integrated efforts have to be exerted to have
efficiently and widely applicable models rather than theoret-
ical and simple computer simulations. Below, we elaborate
the main challenges and give some perspectives for further
research.

One of the earliest key points researchers consider when
starting their research projects is the dataset availability.
Unlike many segmentation and identification tasks that have
publicly available datasets, studying tumor growth modeling
suffers from dataset availability as, to the best of our knowl-
edge, there is neither standard MR nor any modality dataset

that can be used as benchmark for tumor growth modelling.
In fact, having such dataset requires at least 2 time-point
scans for the same subject within few months in case of
LGG or few weeks in case of HGG. For HGG, after the
first scan subjects usually go for surgery where tumor bulk
is mostly resected which makes the second time-point scan
meaningless for studying the tumor growth. In case of LGG,
subjects likely have treatments in forms of chemotherapy,
radiotherapy or/and surgery which makes it a bit easier to
have multi-time points than HGG. However, these treatments
may have potential effects on the quality of the MR images
and thus become difficult to use them. This challenge is
obvious in the previous works where we can find some stud-
ies only used 1 dataset [55], [57], [66], [81], [103], [105]
or even 2 datasets [41], [64], [71], [73], [108]. Similarly,
open sourcing in studying tumor growth modeling is very
limited as there are very few studies with open source
codes [78], [148].1,2

Realistic validation using an in vivo mechanism of the
growth models is still a problem and hard to apply, except
in rare studies on animals. Even though some in vitro
experiments were conducted, one cannot assure that, such
growth will match the exact dynamics and behaviors of the
tumor in vivo. However, fusing information from different
and advanced imaging techniques rather than depending on
the conventional MRI and DTI may help to have more
accurate and plausible tumor growth simulation. Such
imaging techniques may include PET, magnetic reso-
nance spectroscopy, and magnetic resonance elasticity imag-
ing. Furthermore, exploring genomic information regarding
disease-driving mutations and embedding it with multimodal
images into growth models could lead to better results.

Another challenge which, to the best of our knowledge,
remains unexplored is the linking between the microscopic
dynamics and macroscopic parameters in modeling tumor
growth especially when treatment is administrated. Such link-
ing will be considerably useful to closely estimate the therapy
efficacy and the possible plans for effective treatments.Mean-
while, the customization of model parameters shall also be
adaptive during the growth simulation due to the effects of
the chemotherapy and/or radiotherapy.

The ultimate goal of studying tumor growth modeling
is to clinically use it to help predicting the tumor progno-
sis and response to treatment. However, model validation
on sufficient number of datasets is very important to have
sensitivity analysis of the model parameters. Another note-
worthy point for clinical application, is the running time.
As previously mentioned, processing several 3D images and
solving higher order PDEs increase the complexity and the
running time drastically (days in some models). This makes
conventional numerical solutions of PDE less significant and
opens new directions to find faster solutions and use parallel
processing.

1https://www.nitrc.org/projects/tumorsim/
2https://github.com/banderie/murine-GL261-tumors
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Finally, we aim that machine learning can play a role
in tumor growth modeling. Although machine learning can
be partially used indirectly in segmentation tasks associated
with tumor growth, it is not directly used in the modeling
process itself. Machine learning can be involved when mul-
timodal imaging techniques and genomic information are
used. Also, it can be utilized for validation but this is subject
to datasets availability. However, deep learning algorithms,
particularly, convolutional neural networks showed its favor
in pancreatic tumor growth prediction [149], [150]. Yet, to
the best of our knowledge, there is no such study that reports
any deep learning algorithms in the cerebral tumor growth
prediction or modeling as well as the incorporation of any
clinical information.

VIII. CONCULSIONS
In this review, we went through the different models in lit-
erature that focus on the macroscopic growth modeling of
cerebral tumors. We recalled the diffusive and mechanical
models and their basic concepts. We also highlighted the
merits of those models to include the treatment effects in
different ways to tailor therapies and evaluate their efficacies.
We hope this review can help researchers to be aware of this
research field and its importance to go through for further
achievements.
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