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ABSTRACT This paper presents the design of a linear state feedback controller for the stabilization of two
inverted pendulums, namely, Furuta pendulum and pendubot. Such a controller design allows eliminating
the limit cycle that appears in the systems due to the effect of a nonlinearity, that is, dead-zone, which
is induced by static friction at the motor shaft. To do this, the differential flatness approach is applied to
the linear approximate model of the inverted pendulums under study. Then, the resulting flat systems are
translated to the frequency domain for which a control scheme is proposed. Subsequently, the dead-zone
nonlinearity is treated off-line as an approximation obtained through the describing function method. Since
this is an approach intrinsically based on frequency response, the frequency response-based approach is
suitable for tuning the gains of the proposed control scheme. An advantage of using the frequency response-
based approach along with the describing function method is that they allow obtaining precise formulas
that simplify the tuning of the proposed control scheme, so that the limit cycle caused by the dead-zone is
eliminated. This must be contrasted with a time response-based approach, proposed recently by the authors,
where precise formulas were not obtained and intuitive ideas have to be used to eliminate limit cycle. Finally,
the procedure of the controller design herein proposed is verified via experimental tests.

INDEX TERMS Inverted pendulum, Furuta pendulum, pendubot, stabilization, state feedback control,
differential flatness, dead-zone, frequency response, describing function, limit cycle.

I. INTRODUCTION
There are several control schemes designed to stabilize
inverted pendulums [1]–[3]. With the accelerated develop-
ment of technology such control schemes are demanded to
have a better performance. Thus, stabilization control designs
dealing with uncertainties and external disturbances [4]–[7],
unknown parameters, models, and velocities [8]–[10], fric-
tion compensation [11]–[14], etc. have been reported. It is
well known that in inverted pendulums, and in all control sys-
tems involving mechanical motion, the control performance
also degrades by the presence of nonlinearities, such as back-
lash [15], [16], dead-zone [17], [18], rolling friction, drive-
train friction, and sensor bandwidth, among other. These
nonlinearities cause limit cycle phenomenon or even insta-
bility in the system [19].

Regarding limit cycles generated by friction and stiction in
control systems, there are different contributions [20]–[25].
In particular, the limit cycle in stabilization control of inverted

pendulums have been reported in different papers [26]–[33].
However, most of the papers are focused on generation and
behavior study of stable limit cycles and only two of them
treat the reduction [30] and elimination [32] of limit cycle
caused by nonlinearities. Also, most of the papers ([20], [21],
[23]–[31]) use advanced control techniques, such as: dual-
relay feedback approach, negative stiffness control, bifurca-
tion analysis, asymptotic solutions, sliding mode approach,
partial nonlinear feedback linearization and dynamic con-
trol, passivity-based and nonlinear observers, and Jacobian
Poincaré maps. Thus, [32] is interesting because it shows
that a simple linear state feedback controller suffices for limit
cycle elimination. There, a suitable tuning procedure based
on linear system differential flatness, describing function,
and classical control, i.e., root locus, was introduced. Hence,
themain ideas are simple comparedwith the advanced control
techniques introduced in the above cited papers. Despite this,
procedure in [32] has the drawback that controller design
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relies on the time response of the system;whereas the describ-
ing function method is an approach intrinsically based on
frequency response. This implies that procedure in [32] does
not provide precise formulas, so that intuitive ideas had to
be used to eliminate limit cycle. On the other hand, it is
important to remark that some authors [11] have reported that
oscillatory behavior induced by static friction, i.e., dead-zone
nonlinearity [34], in a Furuta pendulum remains in spite of
modifying the parameters of the control system. Finally, other
papers dealing with performance improvement of inverted
pendulums have been reported [35]–[38].

Based on the previous literature review, it is evident that
procedures to mitigate the effects of nonlinearities are needed
to improve the performance of control systems. In that
direction, contribution of the present paper is introducing
a frequency response-based solution for problem described
in [32]. As a result and despite that, similarly as in [32],
the controller gains that eliminate the limit cycle are still
found via an iterative experimental procedure, several precise
formulas are obtained in the present paper. These formulas
render easier selection of the controller gains and commis-
sioning of experimental procedure for the limit cycle elimi-
nation in the Furuta pendulum and pendubot.

This paper is organized as follows. Section II presents
the differential parametrization of the Furuta pendulum and
pendubot. In Section III a control scheme is proposed to sta-
bilize those systems, facing the static friction-induced dead-
zone nonlinearity. Procedure to select gains of the control
scheme is given in Section IV, which is extended in Section V
to experimentally eliminate dead-zone nonlinearity-induced
limit cycle. Also, Section V details advantages with regards
to controller design reported in [32]. Lastly, Section VI gives
the conclusion.

II. FURUTA PENDULUM AND PENDUBOT
LINEAR MODELS
This section presents the linear approximate model as well
as the corresponding differential flatness model of the
inverted pendulums under study, that is, Furuta pendulum and
pendubot.

A. DESCRIPTION OF THE SYSTEMS
On the one hand, the Furuta pendulum mechanism is essen-
tially composed by a motor and two bars called arm and
pendulum. Motor shaft is fixed at one end of the arm, pro-
ducing arm angular movement in a horizontal plane. While,
pendulum is placed at the free end of the arm by means
of a joint allowing rotation of pendulum in a vertical plane
orthogonal to arm. On the other hand, the pendubot is mainly
composed for two rigid bars and amotor. Themotor is fixed at
one end of one bar, the free end of this bar is interconnected
with the other bar by a rotational join. The motion of both
bars is in the vertical plane. In the remainder of the paper
bar connected to the motor shall be called bar A, while bar
connected to this latter shall be called bar B.
Themechanisms above described as well as its correspond-

ing variables and parameters are shown in Fig. 1. There,

FIGURE 1. Diagrams of the inverted pendulums under study. (a) Furuta
pendulum. (b) Pendubot.

for the Furuta pendulum, θ0 and θ1 are the arm angular
position measured with respect to an arbitrary position and
the pendulum angular position measured with respect to the
upright position, respectively, τ denotes the torque generated
by the motor and applied to arm, I0 stands for motor inertia
plus arm inertia (when this turns around an axis orthogonal to
one of its ends), L0 corresponds to the arm length. Whereas,
m1, l1, and J1 are themass, center ofmass location, and inertia
around the center of mass of the pendulum, respectively.
Likewise, for the pendubot, θa, ma, Ia, la, and la1 are the
angular position, mass, inertia, length, and distance to the
center of mass of the bar A, respectively; whereas θb, mb, Ib,
lb, and lb1 are the angular position, mass, inertia, length, and
distance to the center of mass of the bar B, respectively. τP is
the torque generated by the motor and applied to the bar A.
Lastly, g is the acceleration of gravity.

B. LINEAR APPROXIMATE MODELS
The general linear approximate model of a nonlinear
system is:

ẋδ = Axδ + Buδ, (1)

where xδ is the incremental state vector,A and B are constant
matrices, and uδ is the incremental input of the system. Such
a linear approximate model is valid only around the constant
operation point x with the constant input u.

In [43] and [44] it was shown that (1) for the Furuta
pendulum has the following definitions:

xδ =


xδ1
xδ2
xδ3
xδ4

 =

θ0 − θ0

θ̇0 − θ̇0
θ1 − θ1

θ̇1 − θ̇1

, uδ = τ − τ = τ,

A =


0 1 0 0
0 0 a23 0
0 0 0 1
0 0 a43 0

, B =


0
b21
0
b41

,
(2)
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with

a23 =
−gm2

1l
2
1L0

I0
(
J1 + m1l21

)
+ J1m1L20

,

a43 =

(
I0 + m1L20

)
m1l1g

I0
(
J1 + m1l21

)
+ J1m1L20

,

b21 =
J1 + m1l21

I0
(
J1 + m1l21

)
+ J1m1L20

,

b41 =
−m1l1L0

I0
(
J1 + m1l21

)
+ J1m1L20

,

(3)

around the operation point:

x =
[
θ0 θ̇0 θ1 θ̇1

]T
=
[
0 0 0 0

]T
,

u = τ = 0.
(4)

It is useful to know that the approximate model (1) for the
Furuta pendulum is also valid if θ1 = ±2π .
Also in [43] and [44] it was obtained that (1) for the

pendubot has the following redefinitions of (2), (3), and (4):

xδ =


xδ1
xδ2
xδ3
xδ4

 =

θa − θa

θ̇a − θ̇a
θb − θb

θ̇b − θ̇b

, uδ = τP − τP,

A =


0 1 0 0
a21 0 a23 0
0 0 0 1
a41 0 a43 0

, B =


0
b21
0
b41

,
(5)

with (3) redefined as

a21 =
(α2α4 − α3α5) g

α1α2 − α
2
3

,

a23 = −
α3α5g

α1α2 − α
2
3

,

a41 =
(α1 + α3) α5g− (α2 + α3) α4g

α1α2 − α
2
3

,

a43 =
(α1 + α3) α5g

α1α2 − α
2
3

,

b21 =
α2

α1α2 − α
2
3

,

b41 =
−α2 − α3

α1α2 − α
2
3

,

(6)

where

α1 = mal2a1 + Ia + mbl
2
a , α2 = mbl2b1 + Ib,

α3 = mblb1la, α4 = mala1 + mbla, α5 = mblb1,

around the redefined operation point:

x =
[
θa θ̇a θb θ̇b

]T
=
[
π
2 0 0 0

]T
,

u = τP = 0.
(7)

C. DIFFERENTIAL FLATNESS MODELS
In [32] and [39] it was determined that (1) with (2) and (3) is
differentially flat [40, Ch. 2]. Hence, it was shown in [32] that
the following flat output, F , and differential parametrization
is obtained for the Furuta pendulum:

F = xδ1 + hxδ3, (8)

Ḟ = xδ2 + hxδ4, (9)

F̈ = (a23 + a43h)xδ3, (10)

F (3)
= (a23 + a43h)xδ4, (11)

F (4)
= a43F̈ + b41(a23 + a43h)τ, (12)

where

h =
J1 + m1l21
L0l1m1

.

In the pendubot case, since the determinant of its control-
lability matrix, C, is obtained by using (5) and (6) as follows:
det C = det

[
B AB A2B A3B

]
,

= det


0 b21 0 a21b21 + a23b41
b21 0 a21b21 + a23b41 0
0 b41 0 a41b21 + a43b41
b41 0 a41b21 + a43b41 0

,
=

α25α
2
3g

2(
α1α2 − α

2
3

)4 ,
which is different to zero, therefore (1) with (5) and (6)
is controllable and, in consequence, differentially flat [40].
Thus, the flat output of the pendubot is given by

FP = λ
[
0 0 0 1

]
C−1xδ, (13)

where λ is an arbitrary nonzero constant, conveniently chosen
as:

λ = (c2b21 − c1b41)
(
α1α2 − α

2
3

)
,

with

c1 =
α22α4g+ α

2
3α5g

2(
α1α2 − α

2
3

)2 ,

c2 =
α2α4 (α2 − α3) g− α3α5 (α1 + α3) g(

α1α2 − α
2
3

)2 .

After calculations, FP and its first four time derivatives are
determined by

FP = xδ1 +
α2

α2 + α3
xδ3, (14)

ḞP = xδ2 +
α2

α2 + α3
xδ4, (15)

F̈P =
α5g

α2 + α3
(xδ1 + xδ3) , (16)

F (3)
P =

α5g
α2 + α3

(xδ2 + xδ4) , (17)

F (4)
P =

(
α1α5 + α2α4

α1α2 − α
2
3

)
gF̈ −

α4α5

α1α2 + α
2
3

g2F

−
α3α5

(α2 + α3)
(
α1α2 − α

2
3

)τP. (18)
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The expressions (12) and (18) represent the differential
flat model that describes the dynamics (1) for the Furuta
pendulum and pendubot, respectively.

III. LINEAR STATE FEEDBACK CONTROL
A linear control scheme for stabilization of the Furuta pen-
dulum and pendubot mechanisms is proposed in this section.
This control is derived by using the flat models (12) and (18).
Furthermore, such a control scheme is studied under the effect
of a dead-zone nonlinearity induced by static friction at the
shaft of the actuator in each system.

A. PROPOSING THE CONTROL SCHEME
It is shown in [32] that, by applying Laplace transform to (12),
the following transfer function is equivalent to (1) with (2)
and (3) around the operation point (4):

GF (s) =
F(s)
τ (s)
=
b41(a23 + a43h)
s2(s2 − a43)

, (19)

where F(s) and τ (s) stand for Laplace transforms of flat out-
put and applied torque of the Furuta pendulum, respectively.
Poles of this transfer function are real located at s = 0 (two of
them), one at s = −

√
a43 < 0, and another at s =

√
a43 > 0.

It is stressed that a43 is a positive real number.
Proceeding similarly for the pendubot, by applying

Laplace transform to (18) it is found that the following trans-
fer function is equivalent to (1) with (5) and (6) around the
operation point (7):

GP (s) =
FP(s)
τP(s)

=
−nP

s4 − nPs2 + mP
, (20)

where FP(s) and τP(s) are the Laplace transforms of flat
output and applied torque of the pendubot, respectively, and

nP =
α3α5g

(α2 + α3)
(
α1α2 − α

2
3

) ,
mP =

α4α5g2

α1α2 − α
2
3

.

Note that nP > 0 for any parameters of the pendubot and that
the four poles of (20) are complex conjugate, two of them
with positive real part and the other two with negative real
part.

Block diagram in Fig. 2 is a slightly modified version of
control scheme proposed in [32] to control (19), where a
dead-zone nonlinearity is considered. There, α, kv, kd , kp
are the control gains. Also, it is not difficult to verify that
b41(a23 + a43h) < 0 for any set of Furuta pendulum
parameters.

From Fig. 2, it is clear that control τ (s) is given by:

τ (s) = kvF (s) s3 + αF (s) s2 + kdF (s) s+ kpF (s). (21)

The same control law is also used to control (20), as repre-
sented in Fig. 3. Since nP > 0, −nP < 0 for any parameters
of the pendubot. Also, note that the controller in Fig. 3 is
realizable because it consists in the feedback of the output
of the fourth order plant and its first three time derivatives.

FIGURE 2. Closed-loop system of the Furuta pendulum, considering a
dead-zone nonlinearity.

FIGURE 3. Closed-loop system of the pendubot, considering a dead-zone
nonlinearity.

When replacing in (21) the differential parametrization
of the Furuta pendulum and pendubot, that is, (8)–(12) and
(14)–(18), respectively, it is found that the control (21) is
equivalent to the following linear state feedback controller:

uδ = −Kxδ,

= −k1xδ1 − k2xδ2 − k3xδ3 − k4xδ4, (22)

where K = [k1, k2, k3, k4] is the gain vector and uδ , xδ stand,
for the case of the Furuta pendulum, as defined in (2) if the
below relations are used:

−kp = k1,
−kd = k2,

−
[
α (a23 + a43h)+ kph

]
= k3,

− [kv (a23 + a43h)+ kdh] = k4,

(23)

and, for the case of the pendubot, as defined in (5) if the
following relations are considered:

−

(
αα5g
α2 + α3

+ kp

)
= k1,

−

(
kvα5g
α2 + α3

+ kd

)
= k2,

−

(
αα5g+ α2kp
α2 + α3

)
= k3,

−

(
kvα5g+ α2kd
α2 + α3

)
= k4.

(24)

B. THE DESCRIBING FUNCTION APPROACH
It is suggested in [41, Ch. 5], to represent the closed-loop
systems in Figs. 2 and 3 in the standard form shown in Fig. 4.
This is carried out applying block algebra on Figs. 2 and 3.
The nonlinearity input being e = τ (s) for the case of the
Furuta pendulum and e = τP(s) for the pendubot, while the
linear time invariant system G(s) is:

G (s) = G1 (s)G2 (s) , (25)
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where G1 (s) =
−b41(a23+a43h)
s2(s2−a43)

, with −b41(a23 + a43h) > 0,

when treating the Furuta pendulum or G1 (s) =
−(−nP)

s4−nPs2+mP
,

with − (−nP) > 0, when attending the pendubot, and
G2 (s) = kvs3 + αs2 + kd s + kp is the controller. Note that
G(s) in both the Furuta pendulum and pendubot has four poles
and only three zeros, i.e., magnitude of (25) behaves as a low-
pass filter, which is needed to apply the describing function
method.

FIGURE 4. Equivalent representation of block diagrams in Figs. 2 and 3.

The describing function of a dead-zone nonlinearity is an
approximate frequency response description, which is given
by [41, Ch. 5]:

N (A) =
2k
π

π
2
− sin−1

(
δ

A

)
−
δ

A

√
1−

(
δ

A

)2
, (26)

if A ≥ δ, where the dead-zone is located at the interval
e ∈ [−δ, δ] and k is the nonlinearity slope outside this
interval. It is assumed that the nonlinearity input e is a sinu-
soidal function of time with amplitude A and frequency ω.
‘‘Transfer function’’ N (A) is real, positive, frequency inde-
pendent but dependent on the input amplitude A. Its maximal
value is N (A) = k > 0, which is reached as A → ∞, and
its minimal value tends to zero if A → δ. A limit cycle may
exist if [41, Ch. 5]:

G(jω) = −
1

N (A)
. (27)

In other words, a limit cycle may exist if polar plot of
G(jω) intersects the negative real axis in the open interval
(−∞,−1/k). This latter is true since N (A) is real and pos-
itive, which implies that −1/N (A) is real and negative. The
oscillation frequency, ωσ , and amplitude of the oscillation
are found as the values of ω, in G(jω), and A, in −1/N (A),
at point σ where their plots intersect [41, Ch. 5]. A graphic
representation of this idea is depicted in Fig. 5.

IV. PROCEDURE FOR SELECTING THE CONTROL GAINS
Selection of the control gains kv, α, kd , and kp can be per-
formed as explained in the following.

For the Furuta pendulum, recalling Fig. 2 and omitting
the dead-zone nonlinearity, the transfer function of the two
internal loops can be obtained as:

b41(a23 + a43h)
s2 − b41(a23 + a43h)kvs− (a43 + αb41(a23 + a43h))

.

(28)

Note that, since b41(a23+a43h) < 0, ensuring all coefficients
of characteristic polynomial in (28) to be positive requires to
choose positive values for kv and α and, also, α must be large
enough so that a43 < |αb41(a23 + a43h)|.

FIGURE 5. Polar plot of G(jω) and −1/N(A).

For the pendubot, when considering Fig. 3 and neglecting
the dead-zone nonlinearity, the following transfer function in
closed-loop is obtained:

−nP
s4 + nPkvs3 + a1s2 + nPkd s+ a2

, (29)

where

a1 = nPα −

(
α1α5 + α2α4

α1α2 − α
2
3

)
g,

a2 = mP + nPkp,

from which it is obtained that

kv > 0, (30)

α > 0 ∧ nPα >
α1α5 + α2α4

α1α2 − α
2
3

, (31)

kd > 0,

kp > 0

are necessary to ensure all coefficients of characteristic poly-
nomial in (29) to be positive. Hence, conditions (30) and (31)
are used to choose kv and α for the controller of the pendubot.

With kv and α chosen as indicated for the Furuta pendulum
and pendubot, in both cases kd and kp can be selected by
considering the following:
a) Note that −b41(a23 + a43h) > 0 and − (−nP) > 0,

hence, phase of G1(jω) is−360◦ for all ω ≥ 0. This can
be verified by replacing s by jω in G1 (s) for the Furuta
pendulum and pendubot.

b) Replacing s by jω in G2 (s) it is found:

G2 (jω) = kv (jω)3 + α (jω)2 + kd (jω)+ kp,

= j
(
kdω − kvω3

)
+

(
kp − αω2

)
,

whose magnitude is given as,

|G2 (jω)| =
√(

kdω − kvω3
)2
+
(
kp − αω2

)2
. (32)

Solving (32) for kp, it is obtained:

kp = ±
√
|G2 (jω)|2 −

(
kdω − kvω3

)2
+ αω2. (33)
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c) In order to force the polar plot of G (jω) to intersect the
negative real axis, i.e., to render phase ofG (jω) equal to
−180◦ at some ω > 0, phase of G2 (jω) must be +180◦

for the same ω (see a) above), that is:

6 G2(jω) = arctan
(
kdω − kvω3

kp − αω2

)
= +180. (34)

This is satisfied if,

kp − αω2 < 0, (35)

kdω − kvω3
= 0. (36)

Therefore, sign in (33) has to be chosen so that (35) is
accomplished.

d) From (36) the following relation to find kd is obtained:

kd = kvω2. (37)

Note that to find kp and kd , it is necessary to propose the
frequency ω = ωσ at which it is desired that polar plot of
G (jω) intersects the negative real axis. Also, the magnitude
|G2 (jωσ )| that must be introduced by the control has to be
known. To this end, a desired magnitude for G (jω) when
ω = ωσ has to be proposed. Since:

|G (jωσ )| = |G1 (jωσ )| · |G2 (jωσ )| ,

then

|G2 (jωσ )| =
|G (jωσ )|
|G1 (jωσ )|

. (38)

where |G1 (jωσ )| can be obtained from Bode diagrams of
G1 (jω). Thus, Bode diagrams are a suitable tool to design
the controller gains kv, α, kd , and kp.

V. EXPERIMENTAL PROCEDURE FOR
LIMIT CYCLE ELIMINATION
In this section, the procedure described in Section IV to select
the gains of control (21) is extended in order to eliminate
the limit cycle that appears in the control systems under
study, when a dead-zone nonlinearity is considered. Such an
extension is exemplified through iterative experimental tests.
Also, advantages of this procedure with regards to the one
presented in [32] are given. The following conjecture has
been introduced in [32].

A. CONJECTURE
According to the dead-zone nonlinearity characteristic func-
tion [32], if |e| ≤ δ then a zero value appears at the plant
input c = 0, i.e., torque applied by motor to the mechanism
is zero and it might rest at the operation point: (4) of the
Furuta pendulum or (7) of the pendubot. Since threshold δ
is uncertain because static friction is uncertain, it is natural to
wonder whether it is possible to render A < δ in experiments
if A is small enough, despite (26) is only valid for A ≥ δ.
In such a case, mechanism might stay at rest at the operation
point if A is chosen to be small enough, i.e., limit cycle might
vanish under these conditions.

In the following sections, the above conjecture is tested
through experiments.

B. DESCRIPTION OF THE PROTOTYPES
The Furuta pendulum and pendubot prototypes used in the
experimental tests are shown in Fig. 6 and were built at the
Mechatronics Laboratory of CIDETEC-IPN. These proto-
types have four stages: a) Mechanical structure, refers to the
mechanical elements composing each prototype. b) Actua-
tor and sensors, this stage corresponds to DC motor model
14204S006 from Pittman and two incremental encoders used
to measure the angular positions of each system. Encoder
used to measure the arm position and the bar A position is
included in the DC motor chassis and has 500 PPR. Encoders
for measuring the position of the pendulum and bar B are an
ITD01A4Y1 model and an ITD01B14 model, respectively,
both from Baumer and with 1024 PPR. c) Power stage, it is
integrated by the HF100W-SF-24 switched power supply
and an AZ12A8DDC servo-drive manufactured by Advanced
Motion Controls. This latter possesses an inner current-loop
driven by a PI controller, which allows to assume that the
current flowing through the DC motor terminals reaches the
current imposed by the control signal. This means that torque
can be used as the control signal. d) Data acquisition and
processing, this stage corresponds to a DS1104 board from
dSPACE, Matlab-Simulink, and ControlDesk through which
the controller is implemented and system variables are read.
In all experiments, the angular velocities θ̇0, θ̇1, θ̇a, and θ̇b
were estimated via a derivative block of Simulink and the
sampling period was set to 1 ms.

FIGURE 6. Prototypes built. (a) Furuta pendulum. (b) Pendubot.

The mechanical parameters of the Furuta pendulum and
pendubot prototypes are presented in Table 1. They were
found by measuring the lengths of the arm, pendulum, bar
A, and bar B, weighing them, and computing the inertias
using formulas from Physics [42]. Regarding the numerical
value of δ, this was experimentally obtained. The experi-
ments consisted in applying a ramp of torque to the motor
of both prototypes, which was set first as r = mt and then
as r = −mt . For the Furuta pendulum r = τ and m = 0.002
whereas for the pendubot r = τP andm = 0.016. The test was
repeated several times and the obtained results are depicted
in Fig. 7, from which the largest δ was chosen, that is,
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δ = 8.157 × 10−3 for the Furuta pendulum and δ = 24.7 ×
10−3 for the pendubot.

FIGURE 7. Experimental obtaining of δ. (a) Furuta pendulum.
(b) Pendubot.

TABLE 1. Parameters of the prototypes.

C. EXPERIMENTAL RESULTS
With the parameters in Table 1 the following was found for
the Furuta pendulum:

b41 (a23 + a43h)=−7.6842× 104, a43=93.6678, (39)

and for the pendubot:

−nP = −3.7465× 104. (40)

According to conjecture in Section V-A, limit cycle might be
avoided if the oscillation amplitude A is chosen to be small
enough. On the other hand, according to Section III-B, with
the purpose of reducing the amplitude of the limit cycle, polar
plot ofG (jω)must intersect the negative real axis at a point σ
located farther to the left of the point −1/k = −1; since in a
conventional DC motor k = 1 is considered. This suggests
that |G (jωσ )| � 1 and this must occur at an oscillation
frequency ω = ωσ .
Based on the aforementioned ideas, gains kv, α, kd , and kp

of the control (21) are computed for the Furuta pendulum and
pendubot using formulas introduced in Section IV, proceed-
ing as follows:

1) Plot Bode diagrams of plant G1(s).
2) Propose some value for ωσ and |G (jωσ )|. A suitable

value for ωσ = 2π fσ can be chosen by selecting
some reasonable frequency in Hertz fσ for oscillation
of the flat output. Using this value of ωσ and Bode

diagrams plotted above, measure |G1 (jωσ )|. Propose
some approximate desired oscillation amplitude Ad for
the flat output and using Ad = |G1 (jωσ )|A compute
the limit cycle amplitude in the torque signal such that
A > δ. If this condition is not satisfied propose another
larger Ad and recompute. Finally, using (26) and (27)
compute |G (jωσ )|.

3) Notice that (35) implies that sign of square root in (33)
should be negative. However, from Figs. 2 and 3 it
is also concluded that some kp > 0 is necessary to
ensure closed-loop stability in both Furuta pendulum
and pendubot. It is clear from (33) and (35) that,
in order to avoid negative values for kp, larger val-
ues of either α or ωσ are required. In the particular
case of the Furuta pendulum, from the second degree
characteristic polynomial in (28), it is concluded that
a larger α is possible if the imaginary part of roots
of this characteristic polynomial is larger. Moreover,
a larger real part is also required to avoid bad damped
responses. Thus, compute kv and α by proposing, for
transfer function in (28), poles with larger imaginary
part and larger negative real part. In the case of the
pendubot, compute kv and α according to (30) and (31).
If it is preferred to increase ωσ , propose a larger value
and go back to step 2).

4) Compute kd using (37). Notice that this, (36) and (33)
ensure that kp is always real. Thus, if care was put in
the previous step to select kv and α, kp will be positive
and, hence, closed-loop stability will be ensured. Thus,
if this is not the case, go back to step 3).

5) If a limit cycle appears, i.e., if F or FP are not con-
stants, maintain ωσ , increase |G (jωσ )| and go back to
step 3) until either limit cycle disappears or consider-
able mechanism vibration is observed.

6) If limit cycle does not disappear and considerable
mechanism vibration is observed then increase ωσ and
choose |G (jωσ )| to be the same as in the first experi-
ment performed with the previous ωσ and go back to
step 3).

7) If limit cycle disappears, that is, if F or FP are constant,
a successful design has been accomplished and the
procedure ends.

In step 2) above, a methodology is described to select
a suitable |G(jωσ )|, which requires the knowledge of the
parameter δ of the dead-zone nonlinearity. However, if the
parameter δ is not known, step 2) can be completed using any
small δ or just skip this part of step 2) to directly propose
some |G(jωσ )|.
Bode diagrams of the plant G1 (jω), Furuta pendu-

lum or pendubot, associated with step 1) are plotted in Fig. 8.
Following step 2), the above procedure was initially applied
to the Furuta pendulum using ωσ = 4 rad/s and to the
pendubot using ωσ = 10 rad/s, which yields from Fig. 8
|G1 (jωσ )|dB = 32.8 dB for the Furuta pendulum and
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|G1 (jωσ )|dB = −0.232 dB for the pendubot, i.e.,

|G1 (jωσ )| = 10|G1(jωσ )|dB/20 = 44.1570, (41)

|G1 (jωσ )| = 10|G1(jωσ )|dB/20 = 0.9735, (42)

respectively. Also, |G (jωσ )| = 4 was initially employed in
both cases.

FIGURE 8. Bode diagrams of G1 (s). Continuous line: Furuta pendulum.
Dash line: pendubot.

In step 3), kv and αwere computed for the Furuta pendulum
using the characteristic polynomial of (28), obtaining the
following:

kv = 0.00035, α = 0.0073,

whereas for the pendubot they were computed using
(30) and (31), founding:

kv = 0.00140, α = 0.0411.

These numerical values were used to find:

|G2 (jωσ )| =
4

44.1570
= 0.0906, (43)

and

|G2 (jωσ )| =
10

0.9735
= 4.1088, (44)

respectively.
With the numerical value in (43) and (44), (33) and (37)

were computed founding the constants:

kp = 0.0259, kd = 0.0056, (45)

and

kp = 0.0012, kd = 0.1400, (46)

for the Furuta pendulum and pendubot, respectively.
As stated in step 3), sign “−” was used in (33) since this

renders kp − αω2
σ = −0.0906 < 0 for Furuta pendulum

and kp − αω2
σ = −4.1088 < 0 for the pendubot. Therefore,

in the case of the Furuta pendulum, when using the relations

in (23) the following gains for the linear state feedback con-
troller (22) were found:

k1 = −0.0238, k2 = −0.0056,
k3 = −0.5381, k4 = −0.0321.

(47)

Similarly in the case of the pendubot, when using the relations
in (24) the following gains for (22) were found:

k1 = −1.2045, k2 = −0.1810,
k3 = −1.2038, k4 = −0.0974.

(48)

Bode diagrams of the compensated systems G (s) are shown
in Fig. 9. There, it is corroborated that systems in open-loop
have the desired phase and magnitude, that is −180◦, and
|G (jωσ )|dB = 12, i.e., |G (jωσ )| ≈ 4. This can also be clearly
seen in polar plot of G (jω) depicted in Fig. 10.

FIGURE 9. Bode diagrams of G (s). Continuous line: Furuta pendulum.
Dash line: pendubot.

FIGURE 10. Polar plot of G
(
jω

)
. Continuous line: Furuta pendulum. Dash

line: pendubot.

On the one hand, the linear state feedback control (22) with
the gains in (47) was experimentally implemented to stabilize
the Furuta pendulum prototype. Since (22) only stabilizes the
prototype at xδ = 0 when operating close to (4), the controller
reported in [43] and [44] was used to swing-up the pendulum
from the initial position θ1 = π . Therefore, the switching
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condition that obeys the controllers (22), with (47), and the
one reported in [43] and [44] was determined as:

τ = 0.18/5 Nm for t < 0.1 s,

(22) for
√
x2δ3 + x

2
δ4 ≤ 0.3,

[43] , [44] for
√
x2δ3 + x

2
δ4 > 0.3.

(49)

where xδ3 and xδ4 stand as in (2).
It is important to remark that one of effects of friction

on the Furuta pendulum during the swing-up stage is that
pendulum may reach the inverted configuration when arm
position is far from zero. Hence, if this variable is used in
the above switching condition, this condition might never be
satisfied. In fact, this is the behavior that has been observed in
experiments and this has motivated formulation of the above
switching condition.

On the other hand, (22) was also experimentally tested
to stabilize the pendubot using gains in (48). In this case,
the swing-up stage was carried out manually. The switching
condition that obeys the controller (22), with (48), and the
manual action was determined as:(22) for

√
x2δ3 + 0.1x2δ4 ≤ 0.5 ∧ |xδ1| ≤ 0.3,

manual action for
√
x2δ3 + 0.1x2δ4 > 0.5 ∧ |xδ1| > 0.3,

(50)

where xδ1, xδ3, and xδ4 stand as in (5).
The results of the experimental implementation of (49) and

(50), are shown in Fig. 11. Only the part of time where the
linear controller is working is shown in this figure. In Fig. 11
it is observed that a limit cycle appears in both systems
under study. For the Furuta pendulum the amplitude AeF =
0.0526 Nm and oscillation frequency ωσeF = 1.6377 rad/s
of the limit cycle were obtained from the torque signal.
Whereas, for the pendubot the amplitude AeP = 0.0605 Nm
and oscillation frequency ωσeP = 2.2737 rad/s of the limit
cycle were obtained also from the torque signal. Note that θ1
remains close to 2π . Recall that the linear approximate model
in (1) with (2) is also valid for θ1 = ±2π .

All gains that were computed and experimentally tested
are shown in Tables 2 and 3. These tables also include
the amplitude and oscillation frequency of the limit cycle
measured from each experiment. In Table 2, which refers to
the Furuta pendulum, amplitude and oscillation frequency of
the limit cycle are denoted as AeF and ωσeF , respectively.
Whereas in Table 3, which refers to the pendubot, amplitude
and oscillation frequency of the limit cycle are denoted as
AeP and ωσeP, respectively. The experiment where the limit
cycle was completely eliminated is located, for the Furuta
pendulum, at |G (jωσ )| = 17 and ωσ = 8 rad/s in Table 2
and, for the pendubot, at |G (jωσ )| = 25 and ωσ = 14 rad/s
in Table 3. In order to give an idea of the evolution of the
Furuta pendulum and pendubot experiments from the one pre-
sented in Fig. 11, Fig. 12 shows the results when |G (jωσ )| =
11 and ωσ = 6 rad/s are considered for the Furuta pendulum
and when |G (jωσ )| = 12 and ωσ = 12 rad/s are taken

into account for the pendubot, in which the amplitude and
oscillation frequency of the limit cycle are AeF = 0.0221 Nm
and ωσeF = 0.8304 rad/s, respectively, for the Furuta pen-
dulum, and AeP = 0.0365 Nm and ωσeP = 1.9635 rad/s,
respectively, for the pendubot. Note that in both systems the
amplitude of the limit cycle in Fig. 12 is smaller than the
amplitude of limit cycle in Fig. 11 and |G (jωσ )| � 1 is
satisfied, which is in accordance with Sections III-B and V-A.
Whereas, the result where the limit cycle is completely elim-
inated is presented in Fig. 13. It is important to say that for
the Furuta pendulum the limit cycle is partially eliminated
when using set of gains related to |G (jωσ )| = 13 and
ωσ = 8 rad/s, that is, occasionally some oscillations appear.
This is the reason of why AeF ≤ δ is reported in Table 2 when
|G (jωσ )| = 13 and ωσ = 8 rad/s. The gains associated
with the experimental results in Figs. 11, 12, and 13 (when
limit cycle is completely eliminated) have been highlighted
in Tables 2 and 3. Furthermore, Fig. 14 shows how the
amplitude of the limit cycle changes until vanishes during the
experimental procedure as |G (jωσ )| andωσ are larger in both
prototypes. In such a figure it is clear thatAeF < δ = 0.00817
and AeP < δ = 0.0232. Also, in Fig. 14 it can be seen
that amplitudes AeF and AeP of limit cycles of the Furuta
pendulum and pendubot, respectively, are smaller for a given
|G (jωσ )| ifωσ is chosen to be larger. According to conjecture
in SectionV-A, this is useful to eliminate limit cycle because a
too large value of |G (jωσ )|may result in excessive vibration,
due to noise, instead of limit cycle elimination.

FIGURE 11. Experimental results when considering (47) for the Furuta
pendulum and (48) for the pendubot.

In order to verify robustness of the proposed control
scheme, an additional experiment was performed which
consisted in two parts. First, when t ≤ 40 [s] the linear
state feedback controller (22) was implemented using the best
gains obtained by the authors via the Matlab acker() function,
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FIGURE 12. Experimental results when considering
∣∣G (

jωσ
)∣∣ = 11 and

ωσ = 6 rad/s for the Furuta pendulum as well as
∣∣G (

jωσ
)∣∣ = 12 and

ωσ = 12 rad/s for the pendubot.

FIGURE 13. Experimental results when considering for the Furuta
pendulum

∣∣G (
jωσ

)∣∣ = 17 and ωσ = 8 rad/s and for the pendubot∣∣G (
jωσ

)∣∣ = 25 and ωσ = 14 rad/s.

FIGURE 14. Evolution of the limit cycle amplitude during experimental
procedure.

that is, the following gains for the Furuta pendulum:

k1 = −0.1301, k2 = −0.1041,
k3 = −1.8905, k4 = −0.2170,

(51)

FIGURE 15. Experimental results with disturbances.

and the following gains for the pendubot:

k1 = −3.9597, k2 = −0.6357,
k3 = −3.6777, k4 = −0.3316,

(52)

and with which a limit cycle exist in both prototypes. Then,
when t > 40 [s] the gains of (22) were switched to the
ones that eliminate the limit cycle, that is, gains at bottom of
the third column of Tables 2 and 3 for the Furuta pendulum
and pendubot, respectively. Second, once the limit cycle was
eliminated, the prototypes were kicked intentionally just to
perturb the systems. The corresponding experimental results
are shown in Fig. 15. There, it can be seen that in the Furuta
pendulum the limit cycle does not disappear immediately
when switching the gains (51) to the ones that eliminate
it, but it does after a short interval of time. Then, it is
observed that the effect of one kick in the pendulum at
t ≈ 126.5 [s] is well countered by the controller, since
limit cycle disappears again, not immediately but after a
few seconds elapsed. With regards to the pendubot, in Fig. 15
it is shown that the limit cycle vanishes almost immediately
when switching the gains (52) to the ones that eliminate
it. The same happen when bar B was kicked once. Thus,
with the intention of making more visible the disturbance
in the pendubot, bar B was kicked consecutively in three
times, starting the first kick at t ≈ 125 [s]. From the
results in Fig. 15, it can be concluded that the controller is
successful against disturbances and, in consequence, robust
to eliminate limit cycles in both inverted pendulums under
study.

D. OBSERVATIONS FROM EXPERIMENTS
First important observation to make is that maximum values
of |G (jωσ )| for each ωσ , allowed by the Furuta pendulum
and pedubot prototypes to perform experiments in closed-
loop, appear at the bottom of each column in Tables 2 and 3,
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TABLE 2. Computed gains of controls (21) and (22) for the Furuta pendulum.

respectively. After that values, the prototypes presented
notable vibration. Thus, from Table 2, i.e., for the Furuta
pendulum, it can be concluded that lower frequencies allow
larger magnitudes of G (jω) and that at larger frequencies
magnitude of G (jω) must be decreased to avoid excessive
vibration in the closed-loop system and to approach to the
limit cycle elimination. In contrast with Table 2, in Table 3,

which refers to the pendubot, same magnitud of G (jωσ ) is
reached for all ωσ .
Second observation is that experimental results corroborate

conjecture in Section V-A, i.e., that limit cycle is elimi-
nated as selecting gains of controller such that polar plot of
G (jω) crosses the negative real axis at a point located farther
to the left. Moreover, an additional observation from the
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TABLE 3. Computed gains of controls (21) and (22) for the pendubot.

experiments is that limit cycle elimination is accomplished as
frequency ωσ , where polar plot ofG (jω) crosses the negative
real axis, is chosen larger.

It is important to stress that in [41] it is stated that, because
of the approximate nature of the describing function method,
results are not very accurate some times, i.e., a) the predicted
amplitude and frequencymight not be accurate, b) a predicted
limit cycle might actually not exist, or c) an existing limit
cycle is not predicted. Moreover, the first kind of inaccu-

racy, i.e., a), is quite common. Furthermore, dead-zone is
an idealization of the nonlinear phenomenon that is actu-
ally present in the practical plant. This explains differences
between experimental and desired frequencies.

E. ADVANTAGES OF THE PROPOSED
CONTROL DESIGN METHOD
In this section, a brief comparison between the stabi-
lizing control design method presented in this paper to
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eliminate limit cycles and that introduced in [32] is
presented.
• First. The design method in [32] is based on the
time response approach, i.e., root locus, whereas in
the present paper the frequency response approach is
employed.

• Second. Notice that, according to the describing function
method, conjecture introduced in Section V-A in the
present paper, and experiments in Section V-C, two
parameters are found to be important for limit cycle
elimination: magnitude |G (jωσ )| and frequencyωσ . The
fact that both of these parameters are naturally defined
in the open-loop system entails that frequency response
is instrumental to obtain precise formulas, such as those
in (33) and (37), useful to compute the control gains kp
and kd in the present paper. On the other hand, although
parameters |G (jωσ )| and ωσ are also equally important
for limit cycle elimination in [32], precise formulas
to compute control gains satisfying these parameters
do not exist. In order to compute control gains kp
and kd in that paper, intuitive ideas must be employed
to, by means of a guess-based procedure, assign an
open loop zero which, it is guessed, will approximately
modify the resulting |G (jωσ )| and ωσ in the expected
direction.

• Third. In the present paper kv and α are computed by
assigning poles of transfer function in (28) and (29)
farther to the left with a larger imaginary part. Reasons
for this are precisely explained from (33) because use
of this expression must ensure that a positive kp will be
obtained, i.e., to ensure closed-loop stability. Notice that
(33) gives a precise condition that α must satisfy. Thus,
poles may be proposed iteratively until such a condi-
tion is satisfied. See item 3) in procedure introduced in
Section V-C. On the other hand, in [32], kv and β must
also be computed by assigning poles of a second order
transfer function similar to that in (28) in the present
paper. Moreover, these poles also must be placed farther
to the left with a larger imaginary part. However, reasons
for this pole assignment is rather intuitive instead of pre-
cise. Since this transfer function is obtained by closing
two internal loops (see Fig. 2, for instance), root locus-
based arguments in [32] make the designer just to guess
that such a pole assignment could also render possible to
assign farther to the left the closed-loop poles. This is an
imprecise procedure since the closed-loop poles have to
be assigned by means of the external loop, i.e., to be per-
formed in the next step of the design procedure. More-
over, this assignment rule for the closed-loop poles is
concluded by guessing that faster closed-loop poles will
result in larger values for |G (jωσ )| and ωσ . Although
this is a correct guess, however there is no manner to
ensure that precise values for this parameters will be
assigned. This is also stated in the previous paragraph.

• Four.When procedure reported in [32]was applied to the
Furuta pendulum shown in Fig. 6 in the present paper,

successful results were not obtained, that is, limit cycle
was not eliminated. This is illustrated in Fig. 16 where
some results are presented using the following controller
gains:

k1 = −3.8029, k2 = −0.9120,
k3 = −8.4526, k4 = −1.4420.

(53)

which were computed using the tuning procedure
in [32]. This is the limit cycle with the smallest ampli-
tude that was possible to accomplish.
The controller in [32] cannot be applied to the pendubot,
this is the reason of why experimental results of the
pendubot in closed-loop with controller in [32] are not
presented.

FIGURE 16. Better experimental results obtained when following [32] for
Furuta pendulum in Fig. 6.

In contrast with the results in Fig. 16, an experiment was
performed to test the controller and tuning procedure
proposed in this paper when using the Furuta pendulum
prototype reported in [32]. The reader is referred to
that paper for information on the numerical values of
parameters of that experimental prototype. Two sets of
controller gains were tested. The first one was computed
by proposing ωσ = 7.2 [rad/s], |G(jωσ )| = 3.7792,
and the complex conjugate poles −15± 17j for transfer
function in (28). This results in:

k1 = −0.0202, k2 = −0.0128,
k3 = −0.3410, k4 = −0.0315.

(54)

The second set of gains was computed by proposing
ωσ = 11.8 [rad/s], |G(jωσ )| = 8.87, and the complex
conjugate poles −24.3 ± 37.5j for transfer function
in (28), resulting the following:

k1 = −0.0302, k2 = −0.0550,
k3 = −1.1263, k4 = −0.0940.

(55)
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In Fig. 17 the experimental results are presented when
using the controller gains in (55) for t < 35 [s] and t >
55 [s] and the controller gains in (54) for 35 [s] ≤ t ≤
55 [s]. Notice that the limit cycle disappears when con-
troller gains in (55) are employed, which are computed
by using larger values for both ωσ and |G(jωσ )|. Thus,
these results are in agreement with the results obtained
in the present paper for the Furuta pendulum in Fig. 6.

FIGURE 17. Experimental results of the Furuta pendulum in [32] when
using (54) and (55) obtained following procedure described in this paper.

From Figs. 16 and 17, it can be concluded the fol-
lowing: it is difficult to obtain successful results when
applying controller and tuning procedure described
in [32] to eliminate limit cycle in other Furuta
pendulums due to the procedure nature based on
a guess. Whereas controller and tuning procedure
reported in this paper to eliminate limit cycle is
easy to repeat in other Furuta pendulums. Until here,
a performance comparison between the controller and
tuning procedure herein reported against the con-
troller and tuning procedure in [32] has been car-
ried out when using different prototypes of the Furuta
pendulum.
Now, since behavior of the controller and procedure
here proposed to eliminate limit cycle in the Furuta
pendulum prototype of [32] is known as successful
(see Fig. 17). It is important to compare the robustness
of the controller herein reported with that reported in
[32], this in the sense of limit cycle elimination. Hence,
another experiment in the Furuta pendulum of [32],
similar to that shown in Fig. 17, was performed using
two sets of gains reported in [32, Table 4], that is:

k1 = −0.0415, k2 = −0.0415,
k3 = −0.5189, k4 = −0.0728,

(56)

and

k1 = −0.0118, k2 = −0.0118,
k3 = −0.2742, k4 = −0.0298,

(57)

The procedure to obtain these gains is explained in [32].
We stress that controller gains in (56) are reported in [32]
to eliminate the limit cycle whereas controller gains
in (57) are reported not to eliminate the limit cycle. (56)
was used for t < 30 [s] and t > 50 [s] whereas (57)
was employed for 30 [s] ≤ t ≤ 50 [s]. Fig. 18 shows
the corresponding experimental results, where there is
not any important difference between the performance
achieved in Fig. 17, that is, with the tuning procedure
introduced in the present paper.

FIGURE 18. Experimental results of the Furuta pendulum in [32] when
using (56) and (57) obtained following procedure described in [32].

• Lastly, it must be stressed that the proposed control
scheme is not based on friction compensation tech-
niques, which have the following disadvantages: i) most
compensation terms are complex and require numerical
values of frictional parameters [30], ii) undercompen-
sation leads to steady-state error and overcompensation
may induce limit cycles [20], [45]. Hence, methodology
in the present paper is simple and effective for the
elimination of limit cycles.

Drawbacks described above of method in [32] and friction
compensation techniques have been the main motivations for
the present paper.

VI. CONCLUSION
In this paper we have presented a control scheme for the
stabilization of two inverted pendulum, that is, Furuta pendu-
lum and pendubot. Such a control scheme allows eliminating
the limit cycle due to the effect of a dead-zone nonlinearity
induced by static friction at the motor shaft of the systems.
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The proposed control exploits the differential flatness prop-
erty of the system to translate a linear state feedback control
design into a design based on the classical frequency domain.
As the result of a describing function-based analysis we have
established, as a conjecture, that controller design must be
performed such that the limit cycle amplitude is rendered
small enough. Successful experimental results have corrob-
orated correctness of such a conjecture and support the effec-
tiveness of the proposed control scheme to eliminate limit
cycles. Also, robustness of the control to eliminate the limit
cycle in presence of disturbances has been demonstrated.
A new information resulting from experiments is that the limit
cycle oscillation frequencymust be chosen to be large enough
in order to avoid limit cycles. Differences and advantages of
this control design with respect to the one reported in [32]
have also been remarked. Main advantage of this control
design is the application of control theory in such a simpli-
fied fashion, rendering a method straightforward for practical
application. This in comparison with control methodologies
based on friction compensation. Thus, importance of this
paper lays on that it could be useful for a wide acceptation
of control methods in practice.

Future work contemplates application of the proposed
control scheme to eliminate limit cycle in other inverted
pendulums.
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