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ABSTRACT Many decision-making processes are determined in an incomplete data environment. The
analysis of decision-making problems on incomplete soft set data is usually performed by first estimating
incomplete values. In this paper, we analyze the decision-making problems of incomplete soft sets with
incomplete data without turning them into complete data. We define a soft incomplete discernibility matrix
and a soft parameter dominant incomplete discernibility matrix to solve the application of incomplete soft
sets in decision-making problems. We focus on the classification ability of the corresponding parameter for
a given incomplete soft set. The novel method maintains the original data state and successfully constructs a
decision-making approach that can be applied to incomplete soft sets. Finally, the weighted soft incomplete
discernibility matrix is defined for application in weighted parameter decision-making issues.

INDEX TERMS Incomplete soft sets, decision making, soft incomplete discernibility matrix.

I. INTRODUCTION
Decision making is a common activity in people’s daily work
and life. The decision-making process can be considered
as selecting the (possible) best alternatives or ranking
(possible) alternatives from the given data of complete or
incomplete information. Furthermore, in the process of col-
lecting and processing data, many real-life problems in
economics, medicine, engineering and other fields involve
incomplete, unknown, unclear or missing data from the
observed information system. Uncertain data frequently
appear in observed information systems. To satisfy the acqui-
sition of incomplete knowledge, we discuss the incomplete
soft set theory and its decision-making problems in this
work.

Uncertainty is widespread because objective data are
imprecise and complex, so the collection and modeling
of uncertain and complex information are of paramount
importance to the acquisition of optimization solutions in
decision-making problems. Increasingly many researchers
have focused on ‘‘uncertainty, imprecision and vagueness’’
useful information to describe uncertainty, such as the the-
ories of fuzzy sets [1], rough sets [2], probability and other
mathematical theories [3], [4]. Meanwhile, Molodtsov [5]
sponsored soft set research as a different theorem of math-
ematics to handle imprecise and uncertain environments.

This new theory has established a theoretical framework
that contains other theoretical problems of uncertainty. Many
scholars believe that soft sets are parametric tools, but we
believe that the importance of soft sets is reflected in the
parameterization and different functions of the mapping. Dif-
ferent function mapping forms can cause different uncertain
problems in research. For example, if the function mapping is
an equivalence class relation, the problem is transformed into
a rough set [6]. If the function is a membership relation study,
the problem is transformed into a fuzzy set of research [7].
The soft set theory is easy to apply in many different areas
such as operations research, game theory, and probability
theory [5], [8].

With many important application results, one of the most
important aspects is the application of (incomplete) soft sets
in decision making. Imprecise objects can be approximately
described in the (incomplete) soft set theory. There is no
restriction on the description of the object. Decision makers
can select their own form and parameterized set of values
according to their requirements. In fact, the set parameters are
not binding, which can greatly simplify the decision-making
process, and we can still make a valid decision with the lack
of partial information.

Soft set decision-making problems [9] can generally be
divided into two classes from the data source viewpoint:
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complete data decision issues and incomplete decision-
making problems.

Many scholars have studied the soft set theory with com-
plete data and its applications for decision-making issues.
Maji et al. [10] gave an application to decision-making
problems with soft set theory and defined a similar knowl-
edge reduction for soft sets from the point of rough sets.
Chen et al. [11] improved the parameter reduction and pre-
sented an application to the decision-making problem with
all possible optimal choices, but they did not consider prob-
lems with the suboptimal choice object. Fundamentally,
[10] and [11] are from the points of rough sets for the param-
eter knowledge reduction and decision making. Differently,
Kong et al. [12] defined the new concept of abnormal param-
eter reduction, which considered all optimal and suboptimal
object decisions. Using the new parameter reduction, all sub-
optimal levels are preserved. The new parameter reduction
approach has shown the significant and different capability
to reduce the dimensionality with rough sets. The authors
noted that the difference reductions between rough sets and
soft sets were essential. Ma et al. [13] improved the nor-
mal parameter reduction as an oriented parameter sum algo-
rithm. Numerical experiment results showed that the new
reduction algorithm had less computational complexity than
that in [12]. Han et al. [14] examined the normal parameter
reduction with a new 0-1 linear programming algorithm,
and the numerical experiment proved that the new effi-
cient algorithm had a shorter computational time than that
in [13]. Danjuma et al. [15] addressed the normal parameter
reduction using an alternative method and decision making.
Caǧman and Enginoǧlu [16] presented soft matrices, stud-
ied their operations and described the four products of soft
matrices and their properties. Then, the algorithm ofmax-min
matrices was applied to handle the decision-making problem.
Caǧman and Enginoǧlu [17] initiated a uni-int operation and
defined a uni-int decision function; then, they applied the uni-
int operations and decision function to the decision-making
problem.

In real-life application, we sometimes require incom-
plete data information to make decisions. Many papers
studied incomplete soft sets to solve decision-making prob-
lems. Zou and Xiao [18] initiated data analysis under incom-
plete information and defined incomplete soft sets for
decision-making problems. The incomplete information deci-
sion values were computed from the average value of all
possible choice values. Kong et al. [19] showed efficient
incomplete data filling following the simplified probability
approach for incomplete soft sets, and the numerical results
showed that the computations were less than those in [18].
Muhammad et al. [20] presented an alternative data-filling
method based on the reliability of association parameters
in incomplete soft sets. Alcantud and Santos-Garcia [21]
proposed two modified algorithms to analyze incomplete soft
sets and compared them with earlier solutions. Han et al. [22]
developed and compared several elicitation criteria in analyz-
ing incomplete soft-set-based decision making.

As far as we know, the main ideas of all papers to solve
incomplete soft set decision-making problems are data filling
the incomplete information from some reasonable aspects
and subsequent decisionmaking. The incomplete soft set data
filling fills the unknown parameter mapping values, which
have no or low effect on decision-making problems.

In this paper, we do not directly operate on and analyze
the incomplete soft set data. By establishing an incomplete
discernibility matrix and a soft parameter dominant incom-
plete discernibility matrix, we find the cardinality of the
soft parameter dominant incomplete discernibility matrix
and the order decision-making relation to find the optimal
objects.

The remainder of the paper is organized as follows.
Section 2 reviews the concepts of incomplete information
systems and incomplete soft sets. Section 3 introduces the soft
incomplete discernibility matrix and soft parameter dominant
incomplete discernibility matrix for incomplete soft sets and
discusses some properties of the soft incomplete discernibil-
ity matrix and soft parameter dominant incomplete discerni-
bility matrix. Finally, the cardinality of the soft parameter
dominant incomplete discernibilitymatrix is presented to find
the optimal objects. In section 4, the weighted incomplete
soft set is proposed and applied to decision-making problems.
In the final section, the conclusions and future works are
presented.

II. PRELIMINARIES
A. INFORMATION SYSTEM AND INCOMPLETE
INFORMATION SYSTEM
The definitions of information systems and incomplete infor-
mation systems are reviewed as follows.
Definition 1 [23]: A complete information system or a

complete information table system is defined as a 4-tuple
S=(U,A,V,f), where U = {xi|xi ∈ U} denotes a non-empty
finite set of objects, every xi ∈ U (i ≤ n) denotes one object
in the object universe, A =

{
aj|aj ∈ A

}
is the attributes

in a universe set, each aj ∈ A (j ≤ m) is an attribute, and
V = ∪a∈AVa, where Va is the value set of attribute a and
f : U × A→ V is a complete information function such that
f (x, a) ∈ Va for every x ∈ U , a ∈ A.
Definition 2 [24]: An incomplete information system indi-

cates that the attribute values of interest Va for some objects
are unknown, where U = {xi|xi ∈ U} is a non-empty finite
set of objects, A =

{
aj|aj ∈ A

}
is the attributes in a universe

set, and the special symbol ‘‘∗’’ is the unknown value. For
example, if f (a, x) = ∗, the value of attribute a and object x
is unknown.
Definition 3 [24]: A similar equivalence relation is defined

as SIM (A) over U; the classification of U, which is deter-
mined by a similar indiscernibility relation, is denoted by
SIM (A) = {(x, y) ∈ U × U |∀a ∈ A, f (a, x) =
f (a, y) or f (a, x) = ∗ or f (a, y) = ∗}, where the similar
indiscernibility relation is called the tolerance relation in
rough sets. The unknown value is equivalent to any domain
value with the corresponding object and attribute.
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The incomplete rough set is a special mathematical set to
address the incomplete information system.There are inter-
esting connections between the incomplete rough set and
the incomplete information system. We also note that the
incomplete information system and incomplete soft set are
closely related.

B. SOFT SETS AND INCOMPLETE SOFT SETS
We adopt the general statement of soft sets and incomplete
soft sets:
U is a nonempty initial universal set of objects; E is a set

of parameters related to the objects in U . As is well known,
soft sets can be represented in tabular form. The rows denote
the objects inU , and the columns denote the parameters in E .
Definition 4 [5]: Let U be the objects in a nonempty

universe and E be the parameters in a universal set. When
A ⊆ E, a pair (F,A) is a soft set over U, and F is a mapping
given by F : A→ P(U ), where P(U ) is the power sets of U
approximated by parameter e.

From definition 4, in the corresponding universe U ,
the pair (F,E) can be considered a parameterized family
of subsets in U . In the classical soft set theory, parameters
that structure into a particular object can separate objects
into two classes represented by 0 or 1. For each parameter
e ∈ A, subset F(e) ⊆ U may be considered the set of e or
e-approximate elements in the soft set.
Proposition 1 [13]: A pair (F,E) is a soft set; (F,E) can

be represented as a Boolean information system.
Let (F,E) be a soft set on universe U ; we define mapping

F = {f1, f2, . . . fn} ,where fi : U → Vi and fi(x) ={
1, x ∈ F(ai)
0, x /∈ F(ai)

. If the parameter set E may be considered

the attribute set A = E , the universe in (F,E) is considered
the same universe in information system V = Uei∈A, where
Vei = {0, 1}. Hence, the pair (F,E) may be represented as a
Boolean information system S = (U ,A,V , f ).

There are interesting relationships between soft sets and
Boolean information systems. We note that soft sets and
Boolean information systems are closely related. Then, can
we find the relation between incomplete soft sets and incom-
plete information systems? In the following part, we will
answer this question.
Definition 5 [22]: A pair (F,E) is defined as an incomplete

soft set over U. In this case, A is a subset of E and F : A→
{0, 1, ∗}U , where {0, 1, ∗}U is the mapping of parameters
from U to {0, 1, ∗}. In this paper, the ‘‘∗’’ symbol denotes
0 or 1 in the mapping (class) value of the incomplete soft sets.
Obviously, soft sets can be considered a special case

of incomplete soft sets. To some extent, every soft set
can be considered incomplete. In definition 5, the ‘‘∗’’
symbol captures uncertain information. The parameters e
belong or do not belong to one special object and are
unknown.
Proposition 2: A pair (F,E) is an incomplete soft set;

(F,E) can be represented as an incomplete Boolean infor-
mation system.

Proof: The pair (F,E) is a soft set in the universe U .
We define the mapping F = {f1, f2, . . . fn}, where

f1 : U → V1 and f1(x) =

{
1 or ∗, x ∈ F(e1)
0 or ∗, x /∈ F(e1)

f2 : U → V2 and f2(x) =

{
1 or ∗, x ∈ F(e2)
0 or ∗, x /∈ F(e2)

. . .

fn : U → Vn and fn(x) =

{
1 or ∗, x ∈ F(en)
0 or ∗, x /∈ F(en)

If the parameter set E may be considered the attribute set
A = E , the universe U in an incomplete soft set is con-
sidered the same universe in incomplete information system
V = Uei∈A, where Vei = {0, 1, ∗}. We can conclude that
an incomplete soft set may be represented as an incomplete
Boolean information system S = (U ,A,V , f ).
Ali [25], [26] constructed a soft binary relation for com-

plete soft sets. We expand this definition to incomplete soft
sets.
Definition 6: If F : A → {0, 1, ∗}U×U is a mapping

from a subset of parameters with A ⊆ E for all sub-
sets of U × U, then the incomplete soft set (F,E) over
U × U is defined as an incomplete soft binary relation
over U.
Definition 7: An incomplete soft binary relation over

(F,E) is defined as a similar equivalence relation over U
if A ⊆ E, F(α) 6= ∅ is a similar equivalence relation over U
for all α ∈ A.
Each similar equivalence relation on the incomplete soft

sets partitions the sets into different classes. Then, each
different class of the partitions constructs a similar equiva-
lence relation for incomplete soft sets. Therefore, a similar
equivalence relation provides us a parametrized collection of
partitions in incomplete soft sets.
Definition 8: Suppose that an incomplete soft set (F,E)

is defined as a similar soft equivalence relation over U
with A ⊆ E. For each equivalence relation F(e), e ∈ A,
the notion of a similar equivalence relation can be repre-
sented by SIM F(ei)|[x] = {y : (x, y) ∈ F(ei) or (x, ∗) ∈
F(ei) or (∗, y) ∈ F(ei), y ∈ U}.
Definition 9: Two incomplete soft set parameters α 6=

β are called an equivalent classification if SIM F(α) =
SIM F(β) for all x ∈ U.

From the above definition, we can find an indiscernibility
relation derived from the similar soft equivalence relation
of incomplete soft sets. The incomplete indiscernibility rela-
tion (IIR) can be defined as the intersection of all similar
equivalence relations, which is denoted by

IIR(F,E) = ∩ei∈ASIM F(ei)

Suppose that (F,E) is an incomplete soft set on U and
hi ∈ U (i = 1, 2, . . .m). From the similar indiscernibility
relation SIM (F,E), the classification ofU can be represented
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by U |IIR(F,E) , and

U |IIR(F,E) = {C1,C2,C3, . . .Ci} (i ≤ m)

where Ci =
{[
hj
]
IIR(F,E) : hj ∈ U

}
.

For decision-making problems in complete soft sets,
the decision value is di =

∑
j
hij, hij is the value for the ith

object corresponding to the jth parameter ej, and the optimal
choice is max(di). There is a significant relationship between
condition parameters and decision values in the classic soft
sets. The optimal objective is to select the object with the
maximum choice value in the complete soft set. However, for
decision making with incomplete soft sets,we cannot directly
make a decision with the optimal object by following the max
choice value approach.

III. SOFT INCOMPLETE DISCERNIBILITY MATRIX AND
DECISION MAKING
The discernibility matrix is applied for the attribute reduc-
tion and decision analysis based on rough sets [27]. The
advantages of the discernibility matrix are conciseness, ease
and convenience of understanding. The theory has also been
extended to attribute reduction and decision analysis in
incomplete rough sets [28], [29]. Meanwhile, each incom-
plete soft set can be represented as an incomplete Boolean
information system. Therefore, we want to define the soft
incomplete discernibility matrix to solve decision-making
problems.

A. THE INCOMPLETE DISCERNIBILITY RELATION
In this section, to solve decision-making problems of incom-
plete soft sets, we present the following definitions.
Definition 10: A pair (F,E) is an incomplete soft set

over U. U is a universe of objects, and E is a universal set of
parameters. Then, when A ⊆ E, F is a function from U × A
to V ; we construct F : U × A → V such that function
F (hi, el) ∈ V , V = {0, 1, ∗}, where U = {h1, h2, . . . , h|U |}
and A = {e1, e2, . . . , e|A|}. The ‘‘∗’’ symbol denotes 0 or 1.
Definition 11: The pair (F,E) is an incomplete soft set over

U. R
(
hi, hj

)
is defined as a covering discernibility relation to

(F,E), where

R
(
hi, hj

)
=
{
el ∈ A : F(hi, el) = (1, 0, ∗) 6= F(hj, el),

= (1, 0, ∗)hi, hj ∈ U
}

denotes the relation set of object parameters between hi
and hj. F(hi, el) represents the value of object hi correspond-
ing to parameter el . F(hj, el) represents the value of object hj
corresponding to parameter el .

From definition 11, there are several potential unequal rela-
tions between hi and hj. The asterisk ∗ corresponding param-
eters determined by F may be either 0 or 1. We can obtain an
identical decision classification that maps the objects to the
same covering discernibility relation by F . In other words,
they may have identical objects. Thus, for incomplete (F,E),
the discernibility relation based on covering classification can
reduce the dimension of the discernibility relation if we can

TABLE 1. Incomplete soft set in Example 1.

provide the concept of the classification discernibility relation
on the incomplete soft set (F,E).
Definition 12: A pair (F,E) is an incomplete soft set

over U, and A ⊆ E. Classification U |IIR (F,E) = {Ci :
i ≤ |U |}. R = R

(
Ci,Cj

)
is defined as the classification

discernibility relation on incomplete (F,E), where

R
(
Ci,Cj

)
= {el ∈ A : F (hi, el) = (1, 0, ∗) 6= F

(
hj, el

)
= (1, 0, ∗),∀hi ∈ Ci,∀hj ∈ Cj}

denotes the relation set of the classification discernibility
parameter between Ci and Cj, F(hi, el) denotes the value
of objects hi corresponding to parameter el , and F(hj, el)
denotes the value of objects hj corresponding to parameter el .
To elaborate this concept, we will give an example of

incomplete soft sets.
Example 1:A company recruits new employees, and 6 peo-

ple are applying for a job. Assume an incomplete soft set
(F,E) with the tabular representation shown in Table 1,
the universe of applications is U = {p1, p2, . . . , p6},
and E = {e1, e2, . . . , e7} are the candidate condition
parameters ‘‘management experience’’, ‘‘good communica-
tion skills’’, ‘‘good language skills’’, ‘‘get married’’, ‘‘salary
requirements’’, ‘‘corporate culture’’ and ‘‘team spirit’’ shown
in Table 1. According to the collected data, we construct the
covering discernibility relation associated with definition 11.

For F (e1), the covering equivalence classification is
{p1, p2, p6} , {p3, p4, p5}.
For F (e2), the covering equivalence classification is
{p1, p3} , {p2, p3, p4, p5, p6}.
For F (e3), the covering equivalence classification is
{p1, p2, p3, p4, p6} , {p2, p5, p6}.
For F (e4), the covering equivalence classification is
{p1, p2, p3, p4, p6} , {p5}.
For F (e5), the covering equivalence classification is
{p1, p2, p3, p6} , {p1, p3, p4, p5}.
For F (e6), the covering equivalence classification is
{p1, p4, p5} , {p2, p3, p6}.
For F (e7), the covering equivalence classification is
{p1, p2, p3, p4, p6} , {p5}.
We can obtain an indiscernibility relation by intersect-

ing all covering equivalence relations with parameters,
i.e., IIR (F,E) = ∩ei∈ESIMF (ei), so we can obtain
IIR(F,E) = {(p1, p1), (p2, p2), (p3, p3), (p4, p4), (p5, p5),
(p6, p6), (p2, p6), (p6, p2)}. Thus, the classification
determined by the indiscernibility relation is C1 =

{p1} ;C2 = {p2, p6} ;C3 = {p3} ;C4 = {p4} ;C5 = {p5}.
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TABLE 2. Incomplete classification-based discernibility matrix of Table 1.

The classification of U indiscernibility relation IIR (F,E)
over incomplete (F,E) divides U into five classes: C1 =

{p1} ;
C2 = {p2, p6} ;C3 = {p3} ;C4 = {p4} ;C5 = {p5}. Thus,
the incomplete discernibility matrix based on definition 12 is
shown in tabular form in Table 2.

For p2, p6, we find that the corresponding parameters have
identical covering classifications. Thus, we only need to
select one object for comparison with other classes.

As observed in the above definition, the incomplete cover-
ing and classification discernibility relation is similar to the
basic relation set of the discernibility matrix in information
systems. Then, can we use the incomplete covering and clas-
sification discernibility relation to construct the incomplete
discernibility matrix to solve the decision-making problem
under an incomplete soft set? We attempt to answer this
question in the remainder of this article.

In a complete soft set for decision making, the decision
value is determined by di =

∑
j
hij, where hij is the value

of corresponding parameters with values of 1, and the opti-
mal choice is determined by the object with the maximum
choice value max(di). In other words, the best object(s)
is(are) selected by the object(s) with the maximal sum value
of corresponding parameters with values of 1. However,
Table 2 shows that it is impossible to solve decision-making
problems using an incomplete soft set. We find that the value
of the corresponding parameter of incomplete soft sets is
decided not just by the corresponding parameters with value
‘‘1, 0’’ but also by the potential corresponding parameters
with unknown asterisk value ‘‘1, ∗’’, ‘‘∗, 0’’ and ‘‘∗, ∗’’. How
do we select the best object(s) with the corresponding param-
eter values of ‘‘1, 0’’ or the potential corresponding parameter
values of ‘‘1, ∗’’, ‘‘∗, 0’’ and ‘‘∗, ∗’’ in an incomplete soft
set? The values of known and unknown parameters should be
compared between all corresponding parameters of objects in
the discernibility relation of the incomplete soft set.

To fully use the discernibility relation of incomplete sets
to solve the problem of decision making, using the results
of pairwise comparisons, we establish a soft incomplete dis-
cernibility matrix by matching the comparison method as
follows.

B. INCOMPLETE DISCERNIBILITY MATRIX
Definition 13: A pair (F,E) is an incomplete soft set over
U when A ⊆ E. Classification U |IIR (F,A) = {Ci :
i ≤ |U |}. We define the soft incomplete discernibility matrix

D =
(
D
(
Ci,Cj

))
i,j≤|U |, where

D
(
Ci,Cj

)
= {E i ∪ E j : i, j ≤ |U | .}

= {E i(1) ∪ E i(∗) ∪ E j(1) ∪ E j(∗) ∪ E∗∗ : i, j ≤ |U | .}

is called the set of soft incomplete discernibility parameters
between Ci and Cj. For E i(1) = {e

i(1)
l : F (hi, el) =

1 and F
(
hj, el

)
= 0,∀hi ∈ Ci,∀hj ∈ Cj, el ∈ A},

E i(∗) = {ei(∗)l : F (hi, el) = 1 and F
(
hj, el

)
= ∗,

or F (hi, el) = ∗ and F
(
hj, el

)
= 0,∀hi ∈ Ci,∀hj ∈ Cj, el ∈

A}, E j(1) = {ej(1)l : F
(
hj, el

)
= 1 and F (hi, el) = 0,

∀hi ∈ Ci,∀hj ∈ Cj, el ∈ A}, E j(∗) = {ejl : F
(
hj, el

)
=

1 and F (hi, el) = ∗ or F
(
hj, el

)
= ∗ and F (hi, el) =

0,∀hi ∈ Ci,∀hj ∈ Cj, el ∈ A} and E∗∗ = {e∗∗l : F (hi, el) =
F
(
hj, el

)
= ∗,∀hi ∈ Ci,∀hj ∈ Cj, el ∈ A}.

The symbol E i(1)(orE j(1)) indicates the objects inCi(or Cj)
for parameter el with value 1, which make F (hi, el) >

F
(
hj, el

)
, and the symbol E i(∗)(orE j(∗)) indicates the objects

in Ci(or Cj) with the potential relation that F (hi, el) >

F
(
hj, el

)
for parameter el . The symbol E∗∗ indicates that the

objects in Ci(or Cj) have the uncertain value of 0 or 1 for
parameter el .

From definition 13, we find that the union set E i is deter-
mined by objects with (potential) value 1 in Ci and the cor-
responding objects with (potential) value 0 in Cj. Similarly,
the union set E j is determined by objects with (potential)
value 1 in Cj and the corresponding objects with (potential)
value 0 in Ci. If we can determine the cardinality of

∣∣E i∣∣
and

∣∣E j∣∣ in D(Ci,Cj), we can easily calculate the order rela-
tion between Ci and Cj of incomplete soft sets and decision
making.

Next, we will continue analyzing Example 1. From def-
inition 13, the soft incomplete discernibility matrix can be
expressed in the tabular form shown in Table 3.

Here, we only analyze D (C1,C2), and other soft incom-
plete discernibility parameter sets can be obtained using
the same method. In D (C1,C2), there is only one object
p1 ∈ C1 and two objectives p2, p6 ∈ C2. Then, from
Table 2, we have D (C1,C2) = {e2, e3, e5, e6}, and from
Table 1, we haveE i(1) = {F (p1, e6) = 1 and F (p2, e6) = 0}
and E i(∗) = {F (p1, e3) = 1 and F (p2, e3) = ∗}. Therefore,
E1
= {ei(∗)3 , ei(1)6 }. Moreover, E j(1) = {F(p2, e2) = 1

and F(p1, e2) = 0} and E j(∗) = {F(p2, e5) = 1
and F(p1, e5) = ∗}. Therefore, E2

= {ej(1)2 , ej(∗)5 }. Based
on definition 13, we can obtain D (C1,C2) = E1

∪ E2
={

ej(1)2 , ei(∗)3 , ej(∗)5 , ei(1)6

}
.
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TABLE 3. Soft incomplete discernibility matrix of Table 1.

TABLE 4. Soft parameter dominant incomplete discernibility matrix of Table 1.

To conveniently calculate the cardinality of the soft incom-
plete discernibility matrix to solve the decision-making issues
and to distinguish the element of the soft incomplete dis-
cernibility matrix, we establish a soft parameter dominant
incomplete discernibility matrix as follows.
Definition 14 (Soft Parameter Dominant Incomplete Dis-

cernibility Matrix): The pair (F,E) is a soft set over U when
A ⊆ E. Partition U |IIR (F,A) = {Ci : i ≤ |U |}. Then,
we can redefine the soft incomplete discernibility matrix as
D =

(
D
(
Ci,Cj

))
i,j≤|U |, where

D
(
Ci,Cj

)
=


D(Ci→ Cj) =

{
E i(1) ∪ E i∗ ∪ E∗∗

}
, i > j

D(Cj→ Ci) =
{
E j(1) ∪ E j∗ ∪ E∗∗

}
, i < j

D
(
Ci,Cj

)
= ∅, i = j

denotes the soft parameter dominant matrix between Ci
and Cj in an incomplete discernibility matrix.

Next, we continue to analyze Example 1. The soft incom-
plete discernibility matrix based on definition 14 can be
expressed in the tabular form shown in Table 4.
Property 1: The pair (F,E) is an incomplete soft set on

U , where hi ∈ U (i = 1, 2, . . . ,m). Some properties are
provided below for the soft incomplete discernibility matrix
over incomplete soft set (F,E):
(i) All main diagonal elements in the incomplete discerni-

bility matrix are empty sets, which can be expressed as
D (Ci,Ci) = ∅, where i = 1, 2, . . . ,m.
However, the following three properties are invalid:
(ii) Thematrix elements do not satisfy the commutative law

D(Ci,Cj) = D(Cj,Ci), where i, j = 1, 2, . . . ,m.
(iii) The matrix elements do not satisfy the inclusion rela-

tion. D(Ci,Cj) ⊆ D(Ci,Ck ) ∪ D(Ck ,Cj), where i, j, k =
1, 2, . . . ,m.
Definition 15 (Cardinality of the Soft Incomplete Dis-

cernibility Matrix): The pair (F,E) is an incomplete soft
set on U, where hi ∈ U (i = 1, 2, . . .m). We define

card(Ci → Cj) = |D(Ci → Cj)| = |E i| and card(Cj →
Ci) = |D(Cj → Ci)| = |E j|, where card(Ci → Cj) and
card(Cj → Ci) denote the cardinalities of D(Ci,Cj) and
D(Cj,Ci), and∣∣∣E i∣∣∣ = |E i(1) ∪ E i(∗) ∪ E∗∗| = |E i(1)| + |E i(∗)| + |E∗∗|,∣∣∣E j∣∣∣ = |E j(1) ∪ E j(∗) ∪ E∗∗| = |E j(1)| + |E j(∗)| + |E∗∗|.

The cardinality card(Ci,Cj) has the following properties:
(i) The cardinality of one to oneself is 0, which can be

expressed as card (Ci→ Ci) = 0, where i = 1, 2, . . . ,m.
However, the next two properties do not hold for the cardi-

nality of the soft incomplete discernibility matrix,
(ii) The cardinality does not satisfy the commutative law.

card(Ci→ Cj) = card(Cj→ Ci), where i, j = 1, 2, . . . ,m.
(iii) The cardinality does not satisfy the inclusion relation.

card(Ci → Cj) = card(Ci → Ck )+card(Ck → Cj), where
i, j, k = 1, 2, . . . ,m.
Remark 1: If card(Ci → Cj) = card(Cj → Ci), then

Ci and Cj must have identical classifications. If card(Ci →
Cj) 6= card(Cj → Ci), i.e., either card(Ci → Cj) >

card(Cj → Ci) or card(Ci → Cj) < card(Cj → Ci),
then there must be an order decision-making relation between
Ci and Cj. Thus, there is an order decision-making relation
that either Ci is superior to Cj or Cj is superior to Ci in the
incomplete soft sets, which can be applied to solve decision-
making issues.

We find that the cardinalities of
∣∣E i(1)∣∣ and ∣∣E j(1)∣∣ are easy

to calculate, but there is an uncertain value decision parameter
in
∣∣E i(∗)∣∣ , ∣∣E j(∗)∣∣. How can we estimate the unknown cardi-

nality value
∣∣E i(∗)∣∣ and ∣∣E j(∗)∣∣? We define

∣∣∣E i(∗)∣∣∣ = {1− p(1) ∣∣E i(1)∣∣− p(0) ∣∣E i(0)∣∣ , eil = 1, ejl = ∗,

p(1)
∣∣E i(1)∣∣+ p(0) ∣∣E i(0)∣∣ , eil = ∗, e

j
l = 0,
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TABLE 5. Cardinality of the soft parameter dominant incomplete discernibility matrix of Table 1.

∣∣∣E j(∗)∣∣∣ = {1− p(1) ∣∣E j(1)∣∣− p(0) ∣∣E j(0)∣∣ , ejl = 1, eil = ∗,

p(1)
∣∣E j(1)∣∣+ p(0) ∣∣E j(0)∣∣ , ejl = ∗, e

i
l = 0,

l < m, where p(1) and p(0) represent the probability of
an object belonging to and not belonging to F(e), with∣∣E i(1)∣∣ , ∣∣E j(1)∣∣ being the cardinality that a known parameter
value is in D(Ci,Cj) and

∣∣E i(0)∣∣ = ∣∣E j(0)∣∣ = 0, and are
defined [18] by p(1) = n1

n1+n0
and p(0) = n0

n1+n0
, e ∈ E ,

where n1 and n0 are the numbers of objects that belong to
and do not belong to F(e), respectively.
Next, we analyzeD (C1,C2) in Example 1. The soft incom-

plete discernibility matrix is D (C1,C2) = E1
∪ E2

={
ej(1)2 , ei(∗)3 , ej(∗)5 , ei(1)6

}
. Based on definition 15, the cardinal-

ity of D (C1,C2) can be expressed in the tabular form shown
in Table 5. card(C1 → C2) = |D(C1 → C2)| = |E i| =
|E i(1)| + |E i(∗)| = 1.25, card(C2→ C1) = |D(C2→ C1)| =
|E j| = |E j(1)|+ |E j(∗)| = 1.67. We can say that C2 is superior
to C1 in the incomplete soft sets. Furthermore, the cardinal-
ity of the soft parameter dominant incomplete discernibility
matrix can be computed using the same calculation method
and Table 5.

Through the analysis of Table 5, we can obtain the result
of the order decision-making relation

C2 � C1 � C4 � C3 � C5

The corresponding object relation is {p2, p6} � {p1} �
{p4} � {p3} � {p5}. Thus, we can select p2, p6 as one of the
best objects in the sense of incomplete soft sets with the best
candidate employee in Example 1.

C. ALGORITHM TO SOLVE DECISION-MAKING PROBLEMS
USING THE SOFT INCOMPLETE DISCERNIBILITY MATRIX
Most existing methods regarding incomplete soft sets mainly
involve filling in the unknown parameter data and subse-
quently selecting the optimal selection object according to
the sum value of the corresponding parameters. In this paper,
we focus on studying the classification ability of the known
and unknown corresponding parameters for a given incom-
plete soft set and solve decision-making problems by con-
structing the soft incomplete discernibility matrix and soft
parameter dominant incomplete discernibility matrix.

In an incomplete soft set over U , for every Ci and Cj
from the classification of U , the corresponding parameter
is determined by F with known value ‘‘1, 0’’ and unknown
value ‘‘∗’’ in D(Ci,Cj) if we can compare the values of
known and unknown corresponding parameters in the soft
incomplete discernibility matrix and do not need to directly

predict by filling in the unknown data. Meanwhile, by con-
structing the comparison results of the cardinality in the soft
parameter dominant incomplete discernibility matrix, we can
easily obtain an order decision-making relation from the
soft incomplete discernibility matrix. The result of the order
decision-making relation can form an order relationship to
select the object from the best choice to the subchoice.

Therefore, based on the above discussion and analysis,
a new algorithm of incomplete soft sets is applied to decision-
making problems as follows:
Algorithm 1: Soft incomplete discernibility matrix to solve

decision-making problems.
Input: Pair of incomplete soft sets (F,E) over U , where

hi ∈ U (i = 1, 2, . . . ,m).
Output: Form an order relation of the objects, and select

the best object(s).
Step 1: Construct the discernibility relation of U and

the soft incomplete discernibility matrix D = D(Ci,Cj), i,
j = 1, 2, . . . ,m.
Step 2: Compute the cardinality of the soft parame-

ter dominant incomplete discernibility matrix D(Ci →
Cj) =

{
E i(1) ∪ E i∗ ∪ E∗∗

}
, i > j, and D(Cj → Ci) ={

E j(1) ∪ E j∗ ∪ E∗∗
}
, i < j. Select the corresponding cardi-

nality
∣∣E i∣∣ and ∣∣E j∣∣ from the soft incomplete discernibility

matrix.
Step 3: For the elements in the soft parameter dominant

incomplete discernibility matrix D(Ci,Cj), we compare the
cardinality of card(Ci → Cj) and card(Cj → Ci), where
hi ∈ Ci and hj ∈ Cj. If the cardinality card(Ci → Cj) =
card(Cj→ Ci), then hi and hj must have identical classifica-
tions. Otherwise, if card(Ci → Cj) 6= card(Cj → Ci), there
must be an order decision-making relation between objects hi
and hj, i.e., we can obtain the result that either hi is superior
to hj or the object hj is superior to hi.
Step 4: Output the results of the order decision-making

relation with all objects.The maximum cardinality of objects
should be selected after the comparison of the cardinality of
the soft parameter dominant incomplete discernibility matrix.

We will continue to use Example 1 to explain the algorithm
and output the order decision-making relation to select the
best object(s).
Step 1: From Table 1, we can obtain that the covering

classes of U is {{p1} , {p2, p6} , {p3} , {p4} , {p5}}. We will
denote {h1} by {C1}, {p2, p6} by {C2}, {p3} by {C3}, {p4}
by {C4}, {p5} by {C5}, and the constructed soft incomplete
discernibility matrix is shown in Table 3.
Step 2: By constructing the cardinality of the soft

parameter dominant incomplete discernibility matrix from
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TABLE 6. A Comparative study of solutions in decision making based on incomplete soft set.

Table 4, we can obtain the cardinality between the objects
card(C1 → C2) = 1.75, card(C2 → C1) =

1.67, card(C1 → C3) = 2, card(C3 → C1) =
0.75, . . . , card(C4 → C5) = 2, card(C5 → C4) = 1. The
constructed soft parameter dominant incomplete discernibil-
ity matrix is shown in Table 4.
Step 3: Comparing the results of the cardinality in the

soft parameter dominant incomplete discernibility matrix in
step 2, we have card(C1 → C2) < card(C2 → C1),
card(C1 → C3) > d(C3 → C1), . . . , card(C4 → C5) >
card(C5 → C4). An order decision-making relation can be
obtained: C2 � C1, C1 � C3, C1 � C4, . . . ,C4 � C5.

Thus, we can select p2 or p6 as one of the best objects for
the decision-making problems.

D. COMPARISON WITH THE EXISTING SOLUTION FOR
INCOMPLETE SOFT SET
In this section, we compare our algorithm in decision making
with the other existing solution [20], [21] provided by the
literature. The summary of the comparison of three method
shown by table 6 from the ascepts of description, limitation,
complexity and result.

IV. WEIGHTED SOFT INCOMPLETE DISCERNIBILITY
MATRIX AND DECISION MAKING
‘‘Should a membership function be regarded as the only
characteristic function of a fuzzy set?’’ Lin [30] asked and
answered this fundamental problems. The author introduced
a new mathematical theory, which is called the weighted soft
sets, i.e., the ‘‘theory of W-soft sets’’. Maji et al. [10] used
Lin’s definition to introduce the weighted table of soft sets.
Not limited to only 0 and 1, the weighted table of soft sets
has entries dij = wij × hij, where wij is the weights of the
soft set parameter ej, and hij is the value for the ith object that
corresponds to the jth parameter ej of the soft set.
In association with the decision-making project, an incom-

plete soft set can now be easily expanded to the parameters
that have the form with an important weight.

Hence, the weighted parameter forms can be utilized
to replace the ordinary parameter forms related to the

application of the decision-making problems in the incom-
plete soft set. Next, we will discuss the problems of decision
making with the weighted parameters using the weighted soft
incomplete discernibility matrix in incomplete soft sets.

When the weights are applied to the soft incomplete dis-
cernibility matrix in definition 13, we can obtain the weighted
soft incomplete discernibilitymatrix. Therefore, the weighted
parameters of the soft incomplete discernibility matrix are
defined as follows:

D
(
Ci,Cj

)
= {E i ∪ E j : i, j ≤ |U | .}

= {E i(1) ∪ E i(∗) ∪ E j(1) ∪ E j(∗) ∪ E∗∗ : i, j ≤ |U | .}

where E i(∗) = {ei(∗)×wil : F (hi, el) = 1 and F
(
hj, el

)
=

∗, or F (hi, el) = ∗ and F
(
hj, el

)
= 0,∀hi ∈ Ci,∀hj ∈

Cj, el ∈ A} and F(hi, el) denote the objects value in Ci
associated with el , and e

i×wi
l denotes the value of parameters

with weight wi in Ci of the objects.
According to the discussion and analysis, a new algo-

rithm of incomplete soft set decision-making problems with
weighted parameters projected on the soft incomplete dis-
cernibility matrix is obtained as follows:
Algorithm 2: Weighted soft incomplete discernibility

matrix for decision-making problems.
Input: Pair of incomplete soft sets (F,E), where hi ∈

U (i = 1, 2, . . . ,m), and the set of weights is W =

{w1,w2,w3, . . . ,w|E|}.
Output: For all objects in incomplete soft sets, output the

order decision-making relation and select the best object(s).
Step 1:Construct the classification of U and the soft incom-

plete discernibility matrix D = D(Ci,Cj), i, j ≤ m.
Step 2: Compute the cardinality of the soft parame-

ter dominant incomplete discernibility matrix D(Ci →
Cj) =

{
E i(1) ∪ E i∗ ∪ E∗∗

}
, i > j, and D(Cj → Ci) ={

E j(1) ∪ E j∗ ∪ E∗∗
}
, i < j. Select the items

∣∣E i∣∣ × wi and∣∣E j∣∣×wj from the soft incomplete discernibilitymatrix, where
wi and wj are the weights.
Step 3: Compare the results of the weighted cardinality in

the soft parameter dominant incomplete discernibility matrix
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TABLE 7. Weighted soft parameter dominant incomplete discernibility matrix.

obtained in step 2, i.e., compare
∣∣E i∣∣ × wi with

∣∣E j∣∣ × wj,
where wi and wj are the weights.
Step 4: Combine the results of step 3. Output the order

decision-making relation of all objects.
By implementingweights on the parameter forms, the deci-

sion maker can use the above modified algorithm to select
his optimal object. As mention in Example 1 of incomplete
soft sets, if weights are assigned to the parameter forms,
the decision maker selects the objects considering his pref-
erence in all conditions. Suppose that the improved weights
of the choice parameters are as follows: ω1 = 0.1, ω2 =

0.2, ω3 = 0.4, ω4 = 0.7, ω5 = 0.8, ω6 = 0.9, ω7 =

0.9. Then, the weighted soft parameter dominant incomplete
discernibility matrix is as shown in Table 7.

Table 7 shows that in D(C1,C2), card(C1 → C2) =
|D(C1→ C2)| = |E i(1)×0.9|+|E i(∗)×0.4| = 1 and card(C2→

C1) = |D(C2 → C1)| = |E j(1)×0.2| + |E j(∗)×0.8| = 0.736.
Thus, the comparison result is that C1 superior to C2, i.e., the
order decision-making relation h1 is superior to h2 and h6.
Similarly, the new order decision-making relation among all
objects is C1 � C4 � C2 � C5 � C3. Therefore, the optimal
choice object is h1. The new order decision-making relation
and the new best choice change after improving the weight of
the parameters. In fact, people will have different preference
views when facing decision-making problems. Thus, this
weighted-based approach to the selection of parameters will
be useful for solving real-life problems.

V. CONCLUSION
The incomplete soft set theory has made some progress from
theory to practical applications, particularly in decision sup-
port analysis problems. In our paper, the definitions of the soft
incomplete discernibility matrix and soft parameter dominant
incomplete discernibility matrix are introduced. We focus on
the classification ability of the corresponding parameter for a
given incomplete soft set and solve the decision-making prob-
lems. An order decision-making relation among all objects
can be output by constructing the soft incomplete discerni-
bility matrix with this new algorithm. Finally, we define the
weighted soft incomplete discernibility matrix for application
in decision making.

In future research, we intend to study different function-
mapping forms of incomplete soft sets and the soft

incomplete discernibility matrix to reduce the parameters and
maintain the order of the relation.
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