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ABSTRACT Cervical cancer remains a significant cause of mortality in low-income countries. However,
it can often be cured by removing the affected tissues when detected in early stages. Therefore, it is
relevant to provide universal and efficient access to cervical screening programs, being digital colposcopy
an inexpensive technique with high potential of scalability. The development of computer-aided diagnosis
systems for the automated processing of digital colposcopies has gained the attention of the computer
vision and machine learning communities in the last decade, giving origin to a wide diversity of tasks
and computational solutions. However, there is a lack of a unified framework to discuss the main tasks
and to assess their performance. Thus, in this paper, we studied the core research lines surrounding the
automated analysis of digital colposcopies and built a topology of problems and techniques, including their
key properties, advantages, and limitations. Also, we discussed the open challenges in the area and released
a database that serves as a common basis to evaluate such systems.

INDEX TERMS Cervical cancer, digital colposcopy, computer aided diagnosis, machine learning, computer
vision.

I. INTRODUCTION
Cervical cancer remains a significant cause of mortality in
low-income countries [54]. Despite the possibility of preven-
tion with regular cytological screening, cervical cancer is the
cause of more than 500,000 cases per year, and kills more
than 250,000 patients in the same period, on world basis [21].
Cervical cancer can be prevented by means of the human
papillomavirus infection (HPV) vaccine, and regular low-cost
screening programs (e.g., cytology, digital colposcopy) [28].
Furthermore, cervical cancer can often be cured by removing
the affected tissues when identified in early stages [21], [28].
The development of cervical cancer is usually slow and pre-
ceded by changes in the cervix (dysplasia). Despite the pres-
ence of symptoms on its later stages (e.g., postcoital bleeding,
bleeding between periods, increased vaginal discharge, and
pelvic pain), the absence of early-stage symptoms might
incur in carelessness prevention. Additionally, in developing

countries, resources to perform screening programs with
universal access are scarce and insufficient. Also, patients
usually have poor adherence to routine screening due to low
problem awareness.

While improving the resection of lesions in the first
visits has a direct impact on patients that attend the
screening programs, the most vulnerable populations have
difficult access to such programs’ information and med-
ical centers. Consequently, the individual risk estimation
has a key role in this context to optimize the efficacy
of these programs. Identifying patients with the high-
est risk of developing cervical cancer can improve the
targeting efficacy of cervical cancer screening programs.
Thus, recent attempts to address the predictive analysis of
this problem have been proposed [22], including a com-
petition sponsored by Genentech and Symphony Health
Solutions [50].
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FIGURE 1. Samples of cytological screening [98]. Left: conventional
cytology. Right: liquid based cytology.

FIGURE 2. Modalities of the colposcopy examination. From left to right:
Hinselmann, Green-filter, Schiller.

During the cervical cancer examination, cervical cancer
screening programs cover the following stages:

• Cytology, either conventional or liquid (see Figure 1).
• Colposcopy, covering several modalities (see Figure 2).
• Biopsy.

These stages are often done in a cascade fashion, by mov-
ing towards the succeeding steps with the discovery of rel-
evant indicators on the preliminary ones. Both cytology and
colposcopy are image-based screening processes. The former
focuses on the examination of vaginal and cervical cells under
the microscope and the latter on themacroscopic examination
with the naked eye (or with a magnifier lens).

The conventional cytological screening involves manual
smearing and staining [10]. The complexity of the acquisition
process for conventional cytology requires mobilizing expert
teams to the field. Even when the acquisition is properly
done, the uneven distribution of cells may induce dense
regions where light cannot penetrate and empty regions of
the slide [10]. Other artifacts such as blood may harm the
effectiveness of this screening modality. In order to overcome
these difficulties, liquid-based cytology (LBC) preparations
have been delved. Liquid preparations help to uniformize the
distribution of cells and to dilute the presence of external
factors. Some common techniques for the preparation of LBC
can be found in [84] and [104]. However, the increase of
costs (e.g., about 5 to 10 times higher [10]) and technical diffi-
culties to make these equipment available in remote locations
appease the use of this technique in low-income countries.

On the other hand, digital colposcopy is a low-cost technol-
ogy that complements cytology during screening and triage.
Nowadays, portable andmobile devices have been introduced
in the market as an alternative to traditional colpos-
copes [59], [60], [78], facilitating its scalability and porta-
bility to locations with vulnerable populations. The main
drawback of the digital colposcopy is the high sensitivity
variability when carried out by experts with different levels
of expertise. Plenty efforts have been devoted in the last two

decades to automate the analysis of colposcopy images to
support the medical decision process and to provide a data-
driven channel for communication of findings. These efforts
aim to objectify the analysis of this modality.

FIGURE 3. Number of papers reported by Google Scholar for the query
(‘computer vision‘ OR ‘image processing‘ OR ‘machine
learning‘) AND (‘colposcopy‘ OR ‘cervigram‘), not including
patents nor citations.

The automated analysis of digital colposcopies using
Machine Learning and Computer Vision techniques has
grown over the last years. Figure 3 shows the number of pub-
lished papers per year reported byGoogle Scholar in this area.
In addition to the aforementioned competition on the analysis
of vulnerable population, Intel and MobileODT organized a
competition for the automatic analysis of digital colposcopies
in 2017 [51]. This increasing interest has resulted in a stable
community with well identified problems that range, from the
quality assessment [22] and enhancement [37], [68] of digital
colposcopies, to the segmentation of the anatomical parts of
the cervix [13], [69], to the final diagnosis [93], [114], [115].
While the vast majority of databases that were used in the
development of these papers are closed, as a result of these
competitions, new public databases of considerable size and
with new challenges were released [44], [51]. We are facing a
possible turning point in the area, with the driving interest of
governments and companies involved in the area, and the new
advent of deep learning techniques that has been permeating
all the areas of computer vision.

Therefore, it is relevant at this point to formalize the basis
of the area, providing a comparative analysis of the main
tasks involved in the area and the solutions that have been
proposed in the last years. In this paper, we aim to provide
such foundations. Also, we release a database that will be
continuously updated with transverse annotations. Finally,
we enumerate the open problems and challenges in the area.

The rest of the paper is organized as follows. Section II
defines backgroundmedical concepts involved in the analysis
of digital colposcopies. Section III describes the main tasks
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FIGURE 4. Relevant parts of the Cervix Anatomy and external objects (in bold).

involved in colposcopic image processing and the solutions
that have been proposed in the literature to tackle each one of
them. Section V describes the available databases and chal-
lenges associated to each one of them. Section VI describes
the database and annotations provided in this work. Finally,
section VII concludes the work and discuss the main open
challenges in the area.

II. PRELIMINARY CONCEPTS
A. CERVIX ANATOMY
The main regions of interest in the analysis of colposcopy
images include the external orifice (external os), the area of
ectopy, the squamocolumnar junction (SCJ), the transforma-
tion zone and the area of squamous epithelium (exocervix).
Figure 4 identifies the location of these regions.
Overall, the epithelium are the superficial cells of the

cervix. The low environmental aggression in the internal
orifice of the cervix makes the cells in that region of columnar
type. Thereby, it is relatively easy to observe the vascularity
in this region. Conversely, the aggressive environment in the
external region, caused by external factors such as the acid pH
levels and trauma during intercourse, makes the external cells
are of the squamous type. In some cases, the columnar epithe-
lium extends outside the external orifice and gets exposed.
Being exposed to external stimuli, columnar epithelium turns
into squamous epithelium, giving origin to the transformation
zone (see Figure 4). The intersection of these two regions is
the SCJ.

B. COLPOSCOPY EXAMINATION
The observation of the cervix following the recommended
protocol for digital colposcopies covers fourmain stages [95].

First, observation of the squamous and columnar epithe-
lium with a magnifier lens is performed after application
of a normal saline solution. During this step, the squamous
epithelium is observed to define landmarks of the transfor-
mation zone. The squamous epithelium is typically smooth

with a pink tone. The main landmarks of interest consti-
tute crypt openings and nabothian follicles. These artifacts
define the external boundary of the transformation zone. The
SQJ defines the inner border. The entire observation of the
regions of interest is often unachievable from a single image
since the SQJ may recede into the canal as the woman ages.
Also, the columnar epithelium is observed at this stage. The
common appearance of the columnar epithelium is dark red
with complex patterns such as grape-like or sea-anemone
tentacles-like or villous appearance [95].

To improve the visualization of the vasculature, a green
filter is used on the colposcope to enhance the contrast of the
vessels. The two most common vascular patterns observed
in the squamous epithelium are reticular and hairpin-shaped
capillaries [95]. These patterns are typically found on specific
regions of the cervix.

The third stage of the colposcopy examination consists in
the observation of the cervix tissues after application of 5%
acetic acid solution. This step is known as Hinselmann. In this
step, squamous and columnar epithelium should be observed
again. The change of appearance of these tissues after the
application of acetic acid improves the discriminability of
these regions by a human expert. Precancerous lesions can
be observed in this phase.

Finally, the physician applies Lugol’s iodine solution to
the cervix, a step that is known as the Schiller’s test. The
normal vaginal and cervical squamous epithelium stain and
become mahogany brown or black [95], the immature squa-
mous metaplastic epithelium does not stain or partially stain.
Some abnormal patterns such as cervical polyps do not stain
with iodine [95]. Thereby, the Schiller’s test improves the
discriminability of normal and abnormal regions in the trans-
formation zone.

Cervical cancer is characterized by the abnormal growth of
cells on the cervix. The wide spectrum of abnormal features
associated with cervical intraepithelial neoplasia (CIN) may
difficult the labor of a medical examiner. The high variance of
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appearance betweenwomenmay difficult an objective assess-
ment from unskilled examiners. Thereby, the characterization
of these patterns and the identification of abnormal features
in each part of the cervix anatomy have a direct impact on the
expert decision.

III. MAIN TASKS
The applications surrounding the development of Computer-
aided Diagnosis (CAD) systems for digital colposcopies
cover a wide spectrum of tasks, from the analysis of the
image quality, to the semantic segmentation of the image on
its constituents parts, to the final diagnosis of the patients.
Thus, computer vision andmachine learning researchers have
gathered around these tasks in the last decades.

The main source of data for this analysis comes from static
color images directly captured from digital colposcopes.
However, given that in some cases it is not possible to observe
all the structures of the cervix in a single frame as well as
its response to the acetic acid solution, some lines of work
focused on the analysis ofmultiple views and even continuous
videos.

In this section, we organize the literature into five main
areas:
• Quality assessment and enhancement of digital colpo-
scopies (section III-A).

• Segmentation of cervix tissues (section III-B).
• Image Registration (section III-C).
• Detection and characterization of abnormal tissues
(section III-D).

• Classification of patient traits (section III-E).

FIGURE 5. Pipeline of the main steps in the development of CAD systems
for the automation of digital colposcopy analysis.

These tasks are typically applied in a cascade fashion as
illustrated in Figure 5. However, some methods may ignore
parts of the pipeline or even include additional dependencies
between them. For instance, techniques focusing on static

data would ignore the image registration step, and some
strategies to address the image quality require to segment the
cervix tissues. Thus, this pipeline serves as a general overview
of the main tasks but can be adapted to the intrinsic properties
of each automation strategy.

In the rest of this section, we do a comparative analysis
of the main methodologies that have been applied to each
problem, and we discuss their advantages and limitations.

A. QUALITY ASSESSMENT AND ENHANCEMENT
The concept of quality has attained a significant interest in the
computer vision research community. Traditional method-
ologies focus on a low-level notion of quality, measuring
distortions of the image at a signal level [29], [53]. In medical
imaging, the idea of quality goes beyond low-level aspects
of the images to semantic concepts such as visibility of the
anatomical body parts, patient’s pose, the absence of artifacts,
among others.

Therefore, methodologies to address the assessment and
enhancement of medical image quality are often application-
specific and require extensive domain knowledge. In this
section, we cover the main lines of research in this area for
colposcopic image processing.

1) QUALITY ASSESSMENT
In the area of quality assessment (QA), Gu and Li [39]
proposed a framework to validate the quality of uterine cer-
vical imagery in an online scenario, so the physician may
perform corrections to improve the acquisition of data in
real time. In [39], the QA problem is modeled as a binary
task where the program is required to decide if the image is
good enough or not. Six types of issues were handled: zoom,
position, foreign objects, contrast, blur, and contamination.
These traits were quantified using different models and, using
a thresholding operator, it is decided if there are features with
low quality. The main disadvantage of this approach is the
simplicity of the quality decision model (i.e., thresholding
operators). Also, no quantitative assessment of the method-
ology is presented.

Fernandes et al. [22] proposed a learning methodology to
tackle this problem. First, several features related to the image
quality are extracted, including the area of the main parts of
the cervix, the presence of specular reflections, observability
of the entire cervix, and color statistics. Then a Support
Vector Machine is used to learn the quality decision model
on a set of images, covering several modalities (e.g., Hinsel-
mann, Green light, and Schiller) and inter-expert annotations.
Fernandes et al. proposed a transfer learning approach to
improve the robustness of the learning process, where the
knowledge acquired from the other modalities and experts is
reused when a model for a newmodality/physician is learned.

2) QUALITY ENHANCEMENT
Several works have been proposed in the area of quality
enhancement of colposcopic images [12], [13], [37], [58],
[62], [66], [68], [92], most of them focusing on the removal
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FIGURE 6. Illustration of the results for specular reflection removal proposed in [13], [37], and [62]. Top: original images.
Bottom: corrected images. (a) Lange et al. [62]. (b) Das et al. [12], [13]. (c) Gordon et al. [37].

of specular reflections (SR) [12], [13], [37], [58], [62], [66].
The remaining works, proposed by Li et al. [68] and
Rouhbakhsh et al. [92] focused on the enhancement of images
by means of color and contrast normalization. It is relevant
to highlight that image enhancement can be done with two
goals in mind, which may lead to different techniques and
evaluation settings. First, this process may be done to boost
the performance of automatic image processing algorithms.
Second, image enhancement can be done for human visual-
ization purposes. This can be done by several means, such
as: highlighting relevant patterns of the image that are indis-
tinguishable by the human eye, recovering damaged regions
of the image, among others. All the aforementioned papers
focused on the improvement for further automatic image
analysis.

a: REMOVAL OF SPECULAR REFLECTIONS
Specular reflections or glares raise challenging problems in
medical image analysis, as it degrades (partially or entirely)
the information in the affected pixels [62]. Moreover, it can
introduce artifacts in feature extraction algorithms [62] . The
acquisition conditions and involved tissues in the colposcopic
assessment are prone to generate this phenomenon.

Lange [62] proposed a method to remove this type
of reflection using the green channel of the RGB color
space, which classifies the types of glares that can be
found in these images in two categories: large saturated
regions (detected with adaptive thresholds), and small high
contrast regions (detected with morphological operators and
thresholding). Once these regions are identified, missing
information is filled using interpolation using Laplace’s
equation and modifying the intensity component of the
HSI color space in the transformed image. The method is
validated using qualitative subjective inspection. Similarly,
Das et al. [12], [13] proposed a similar approach to manage
SR. First, the affected regions are detected using the inter-
section of a thresholding operator on the three RGB channels
independently. Then, Laplace’s equation is used to select the
smoothest possible interpolant.

Gordon et al. [37] proposed a different approach in both,
detection and removal of SR. In the detection subtask, fixed

thresholds are used to detect high brightness and low color
saturation areas. Then, pixels located in neighborhoods with
high gradients are selected as SR candidates. These pixels are
mapped to the Saturation-Value space from the HSV color
space, and a mixture of two Gaussians is fitted. In the results,
one of the Gaussians represent pixels with color information
and the other contains merely white pixels. The pixels that
belong to the second Gaussian are considered as damaged
and are removed from the original image. To fill the damaged
regions, a simple inpainting technique that propagates the
color of the surrounding pixels is executed. This process is
done under the assumption that the color underneath the SR
regions is almost constant and similar to the neighboring
pixels.

Although none of the aforementioned papers show objec-
tive assessment of their methods, visual inspection suggests
similar results in all of them. Figure 6 shows sample images
presented by each author. The methodology proposed by Das
et al. shows some undercorrected areas, where residual spec-
ular reflections are observable. Also, despite the additional
number of manually-defined parameters, the unsupervised
learning stage proposed by Gordon et al. makes it more
adaptable to new settings and datasets.

b: IMAGE NORMALIZATION
Li et al. [68] propose a color calibration system to map
the color appearance of different colposcopes into one stan-
dard color space with normalized illumination. The process
involves a preliminary calibration systemwhere the physician
presents a target color palette to the colposcope. The main
disadvantage of this method is that it should be done before
the acquisition of the images, which limits its applicability
to already acquired datasets. Also, with the advent of mobile
colposcopes, the acquisition conditions can change quickly,
requiring continuous calibration.

Other attempts, such as the one proposed by Rouhbakhsh
et al. [92], perform simple normalization using brightness and
contrast equalization.

The actual impact of this step in the final pipeline will
depend on the type of assumptions made by the follow-
ing steps of the automatic analysis. The types of invariance
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(e.g., pose, illumination, etc.) that can be ensured at this stage
will facilitate the job of the following methods. However,
as we introduce additional constraints, the applicability of
automatic methodologies for the analysis of digital colpo-
scopies will be confined, especially on remote settings with
inexperienced staff. In counterpart, a new trend in deep learn-
ing to induce robust models is augmenting the data by intro-
ducing simulated perturbations (e.g., rotations, flips, contrast
stretching, etc.).

B. SEMANTIC IMAGE SEGMENTATION
Most efforts on the line of semantic image segmentation
focused on the Hinselmann stage of the colposcopy proto-
col. Also, it is assumed that specular reflections have been
removed from the image either during acquisition or as a
preprocessing step.

The main trend in segmentation of the different regions
of the cervix focus on the segmentation of the cervix from
the outer parts (i.e., vaginal walls and speculum) and the
segmentation of the acetowhite regions. Typical method-
ologies on this line belong to the class of unsupervised
methods (e.g., clustering). The most common models are
K-means [12], [38], [80], [83], [86], [105], [116], Gaussian
MixtureModels [37], [38], [66], [74], [86], [90], [100], [116],
[117], [122], and Mean shift [66]. Regarding the feature
space, most methodologies use raw color information on dif-
ferent color spaces, being the Lab color space themost widely
used [12], [37], [38], [45], [58], [86], [90], [100], [116], [117],
[122], [122], followed by RGB [74], [83], CIE Luv [66]
and K-L color spaces [66]). Some additional features such
as color ratios [83], texture information [37], [74], [122],
and spatial information (i.e., distance to the image
center) [86], [90], [100], [116], [117], [122] are used.

Clustering algorithms at a pixelwise level do not guarantee
spacial consistency of the segmented regions, even when
spatial features are considered. Thereby, post-processing step
was carried out in these works to decide the final segments
that represent the areas of interest. Das et al. [12], [13] and
Traversi et al. [105] use the largest contour as the cervix
representative, Gordon et al. [37] select the cluster with the
lowest mean distance to the image center and highest mean
redness level as the cervix region, using size to solve ties.
Gu and Li [39] used morphological operators to fill small
holes in the final segmentation.

Since the core cervix structures have smooth and almost
indistinguishable contours, the performance of these method-
ologies is limited, not being able to differentiate the cervix
from other structures such as the vaginal walls. For instance,
Figure 7 shows the results of the method proposed by
Das et al., where an oversegmentation of the cervix is done.

In order to counteract oversegmentations of the vagi-
nal walls, some authors applied domain knowledge on the
expected shape of the cervix. For instance, some works used
active contours [38], [71], [88], [122] solely or as a post-
processing technique. Lotenberg et al. [71] include shape-
priors (e.g., circles and ellipses) to encourage this behavior.

FIGURE 7. Das et al. [12] - input images (left), cervix segmentation (right).

VanRaad andBradley [88] applied iterativemulti-scale active
contours by sequentially using the previous contour to reduce
the initialization impact.

For the segmentation of other regions, such as the columnar
epithelium, Gordon et al. [37] used a cascade of GMM,where
the first level segments the cervix from the background using
the redness level of the Lab color space, and the second
level segments the columnar epithelium from the rest of the
cervix using texture and contrast features. Li et al. [66] used
a cascade of GMM on the K-L color space and Mean shift on
CIE-Luv to segment the cervix from the background and the
external orifice from the cervix respectively.

A different unsupervised approach was proposed by
Lange [61] based on the watershed algorithm. First, cervix
and vagina are segmented using a hue color classifier. Then,
the watershed algorithm is applied to detect the low-intensity
border around the cervix. Finally, they extract a feature
related to the acetowhite response consisting in the product of
the green channel in the RGB color space and the saturation
value in the HSI color space. The watershed algorithm is
applied iteratively on the gradient of the acetowhite feature to
segment the cervix into a disjoint subset of coherent regions
in terms of acetowhite response. This step addresses the
separation of columnar en squamous epithelium, such that
the columnar epithelium is identified as the resulting regions
from the acetowhite watershed segmentation that have lower
feature values than the surrounding regions (i.e., valleys). The
same idea is applied over the gradient of the red channel to
detect the external orifice by identifying the valleys. Figure 8
shows segmentations obtained by the methodology proposed
by Lange [61]. While the core regions of the cervix are
properly identified, some artifacts are observed such as the
recognition of external objects as acetowhite regions and the
disconnected appearance of the external orifice (external os).

Some authors refine the segmentation task by detecting the
external orifice [38], [69], [117], [122]. This process is done
by gradient analysis in order to find the largest concave region
in the image.

In general, these works do not present any objective assess-
ment of the attained performance in terms of segmentation

VOLUME 6, 2018 33915



K. Fernandes et al.: Automated Methods for the Decision Support of Cervical Cancer Screening

FIGURE 8. Lange and Ferris [61], [64] - cervix segmentation.

quality, providing in some cases a subjective notion of expert
satisfaction [12], [13], [37], [39], [61], [64], [66].

The main drawback of these unsupervised strategies is
the low semantic level at the decision process, working at
a pixel or neighborhood level. Thereby, spatial coherence
is unattained in most cases. Moreover, the lack of contours
difficult the separability of the main regions without a global
image representation. A common assumption of these tech-
niques is that the cervix covers a significant portion of the
image and that external objects (e.g., colposcope, gloves,
swabs, etc.) are not present. Thereby, their robustness to
unconstrained settings is limited.

To overcome the limitations of the unsupervised segmenta-
tion algorithms several supervised methodologies have been
proposed using traditional segmentation-by-classification
pipelines consisting of feature extraction and modeling with
Support Vector Machines [47], [69], [117]. These techniques
rely on color [47], [117] and texture information [117].
Huang et al. performed the recognition on superpixels result-
ing of a preliminary unsupervised clustering step [47]. Then,
they use a one-vs-one SVM to classify the regions as
acetowhite, columnar epithelium and squamous epithelium.
While they present results for the pixelwise classification
accuracy of cervix and non-cervix tissues, they do not show
any quantitative results of the final multiclass segmentation.

Recent advances in semantic segmentation of digital
colposcopies using deep learning techniques can be found in
[19], [20], and [24]. The work of Fernandes and Cardoso [19]
tackles the joint segmentation of several objects(i.e., col-
poscope, vaginal walls, cervix, transformation zone, and
external orifice) in digital colposcopies. The proposed
methodology extends the U-net deep architecture to improve
the spatial ordinal consistency between objects. Namely, they
induce segmentations where the objects of interest appear
nested one inside the other. They validated the performance
of their model on two databases covering all the colposcopy
modalities and achieved a macro-average Dice’s coefficient
of 51.24% and 66.98% on the databases [22] and [51] respec-
tively. Besides the capability of segmenting the entire set
of objects in a global fashion, using deep neural networks
enables segmentations with higher semantic level, where the
segmentation of cervix tissues without edges is achieved by
considering feature spaces with a high level of abstraction.

C. IMAGE REGISTRATION
According to Shapiro and Stockman [96], image registra-
tion defines the process whereby locations of two images
from similar viewpoints of essentially the same scene are
geometrically transformed in such a way that correspond-
ing points of the two images have the same coordinates
after transformation. The definition of Shapiro and Stockman
might be relaxed when considering multimodal image regis-
tration by accepting a broad definition of similar viewpoints
of essentially the same scene. Medical image registration
is a challenging process, the intrinsic properties of each
modality may distort the visual aspect of the objects in the
image. We can think about medical image registration even
in extreme cases where the images to align represent the
external (e.g., RGB or depth image of the body) and internal
structures (e.g., X-rays, ultrasound, etc.). The registration of
body parts is complex, given the elastic deformations that
occur in the body. For instance, the cervix is distorted in
a non-rigid manner due to the patient breathing, muscular
movements, etc. Even more, the modalities involved in the
colposcopy may reveal and hide structures. For instance,
the green light enhances vascularities, Hinselmann shows
acetowhite regions and Schiller’s test strongly dichotomizes
the cervix into normal and abnormal areas.

In the literature, there are several works that have
targeted the registration of colposcopies [1], [4], [5], [9],
[30]–[33], [42], [43], [63], [65], [69], [76], [77], [82]. Three
main lines of work have been proposed: global (either
rigid or elastic), landmark-based and segmentation-based
registration.

Since most of these works dealt with images from the
same phase (typically Hinselmann), they were able to use
standard (normalized) cross-correlation techniques [1], [4],
[42], [43], commonly used when images belong to the same
modality. In order to overcome the natural variations of the
cervix, some works refine the rigid registration using local
elastic registration techniques [31], [33], [63], [65].

Acosta-Mesa and his collaborators have a line of work in
this area [1]–[5], [42], [43], either as the core focus of their
work or as a preliminary step for the final classification of
patients. Thus, Acosta-Mesa et al. [5] proposed a two-stage
method to deal with local deformations. First, a phase cor-
relation is applied in order to remove global translation
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difference between images. This method has some advan-
tages when dealing with different contrast and brightness
and with some simple intra-modal changes (i.e., acetowhite
response), as can be observed in the acetowhite response [5].
Then, local deformations are removed using locally nor-
malized cross-correlation. To accelerate the registration pro-
cess, they proposed a method to register cervical images
in grayscale [77], which performs a search of small local
regions of the image in consecutive frames. The main chal-
lenge of colposcopy registration is the lack of distinctive
landmarks in almost the entire cervix anatomy. In this sense,
Acosta-Mesa et al. [1] proposed to use a manual stain land-
mark (at acquisition time) using Lugol solution and to use
this landmark to simplify the registration process. While it
is true that using such landmarks reduces the complexity of
automatic methods for image registration, it adds complexity
to the physician labor and could occlude relevant regions of
the image with abnormal tissues.

Garcia-Arteaga et al. [31]–[33] proposed several methods
for colposcopic image registration. In [33], an elastic regis-
tration algorithm was proposed, representing the problem as
an optimization over a set of continuous deformation vector
fields. Regularizationwasmodeled by describing equilibrium
in an elastic material using a linearized 2D elasticity operator
(also used by Li et al. in [65]). The registrationmethod is done
in a multiscale fashion to speed up the process. No objective
results are provided, but a mere visual inspection. Similarly
to the two-stage approach used by Acosta-Mesa et al.,
Garcia-Arteaga and collaborators [31] applied rigid
registration with cross-correlation followed by elastic
registration.

Given the challenges involved in global registration tech-
niques, several attempts to address the problem as a land-
mark detection have been proposed [9], [27], [30], [69], [76].
These techniques take advantage of interest points such as
Harris corner detector [9], [27], [76] that can be used to
register images over time. Then, local descriptors such as
SIFT [76], cross-correlation and distance [9] are used to iden-
tify matches. In posterior work, Garcia-Arteaga et al. [30]
introduce geometric information about feasible deformations
to remove false positives.

An alternative line of work use pre-segmented regions of
the cervix to conduct registration [69], [82]. This kind of
segmentation produces very coarse results, especially when
the reference objects are of limited size such as the external
orifice [82].

D. ABNORMAL TISSUE DETECTION AND
CHARACTERIZATION
In the area of abnormal tissue detection and characterization,
several methods have been proposed, some of them included
hyper-spectral imaging [17], [25], [26], [40], [41], [108].
Since the current challenge in digital colposcopy is the scala-
bility to remote healthcare centers with low resources, wewill
discuss methods that are able to work with traditional digital
colposcopy that can be ported to current mobile devices.

Namely, we focus on image processing techniques that handle
RGB color images (and video).

In this section, we discuss works that tackled the localized
recognition of these abnormalities. This could be considered
as a midpoint between the previous section that addressed
the pixelwise segmentation of the anatomic part and the next
section that will cover the detection of relevant traits at a
patient level (i.e., medical records, demographic data, etc.).
In this sense, the following strategies address the problem
of identifying and characterizing abnormal tissues at specific
regions of the cervix. The main assumption of the works in
this area is that the image constitutes the cervix regions (either
by detection and cropping or by constrained acquisition)
and that relevant anatomic parts have been segmented in a
previous stage. Also, most works assume specular reflections
(see III-A.2.a) have been removed. This last assumption is
especially relevant since these artifacts could be easily recog-
nized as positive acetowhite (AW) lesions.We can study these
works from three different perspectives: lesion of interest,
learning paradigm and type of data. Table 1 presents the main
alternatives in these lines.

TABLE 1. Summary of the main categories of work on the detection of
abnormal tissues.

Two main types of abnormal traits have been addressed
in the literature: acetowhite lesions and abnormal vascular-
ities/mosaicism.

For the detection of vascularities and mosaicism, most
works relied on simple image processing techniques on
static images. The main lines of research involve morpho-
logical operators and template matching [15], [48], [67],
[100]–[102], [106], being the former of unsupervised nature
and the latter of supervised nature with lazy learning
(i.e., neighbor-based). Thereby, these techniques are highly
sensitive to changes to the image resolution, scaling and
illumination. This area is almost unexplored and has space
for more robust techniques, able to cope with complex vessel
patterns and with unconstrained settings.

As for segmentation, several works in the detection
of acetowhite lesions applied unsupervised techniques,
ranging from K-means [46], [68], Gaussian Mixture mod-
els [14], [16], [36], [37], [66], [100], [103], [107], [107],
Mean Shift [65] and Watershed analysis [34], [35], [62],
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[66], [110] to adaptive thresholding [11], [103]. The goal of
watershed analysis techniques was mainly to over-segment
the cervix according to the acetowhite response of the fea-
tures [35]. Also, some works used deterministic anneal-
ing [106] and active contours [18] to detect lesions. The most
widely used features for static images include color [34],
[36], [37], [46], [62], [65], [66], [68], [87], [100], [101] tex-
ture [36], [68], edges [79] and spatial information [46], [100],
also used by other supervised methods that will be explained
below. The main limitation of unsupervised strategies is
their low discriminative power to differentiate abnormal ace-
towhite regions from squamous epithelium since they have
similar colors [37]. Other problems such as a high number of
false negatives in regions with shadows and false positives on
the vaginal walls are also typical [37]. In Figure 9, Gordon
et al. illustrate these problems in the resulting images. This
effect is present in general for methods that make predictions
using local information (i.e., pixelwise data) without consid-
ering a global representation of the image.

FIGURE 9. Gordon et al. [37] - AW detected regions (green), manual
annotations contours(white).

Then, several methods addressed the problem from a super-
vised learning perspective. In general, this was done by
extracting features from individual pixels, overlapping and
non-overlapping tiles or by super-pixels obtained by seg-
mentation techniques and applying a learning mechanism
on the corresponding space. For classification, the most
used method was KNN [1], [2], [4], [56], [72], [75], [85],
[86], [89], [91], [92], [113], followed by Support Vector
Machines [8], [56], [69], [85], [113], naive Bayes [1], [5],
[85], [90] and multi layer perceptrons [92], [97], [113].
Other authors used Adaboost [112], [113], Conditional
Random Fields [74], [83], among others [82], [92], [94],
[113], [119]. The most common features for static images
were color histograms at different scales [56], [69], [75],
[85], [89], [113], oriented color gradients [56], [92], [112],
[113], other color-based features [8], [75], [82], [83],
[90], [92], [112], [119], [121], edges and texture [56],
[69], [112], [113], [118], discrete wavelet transform [72],
[86], [91], [118], and the amount of punctuation and ves-
sels [74], [81], [83]. For sequence-based recognition, the fea-
tures involve changes on the temporal acetowhite response
either in a two image sequence (i.e., before and after applica-
tion of acetic acid) [31], [31], [32], [65], [70], [81], [82] or at
a fine-grained resolution level [1]–[5], [42], [94].

While these efforts addressed the problem from a pixel-
wise perspective, Alush et al. [6], [7] modeled the problem
from a boundary-based approach, by classifying edges of
superpixels as lesion or not. In this sense, a more global
concept of the image is built. Superpixels are built using
the watershed algorithm. The classification is performed by
learning a dictionary of visual words and the problem is
modeled using Markov Random Field (MRF), where each
superpixel corresponds to a binary random variable indicating
whether the region is part of the lesion. The final detection
is done using belief propagation. Another dictionary-based
algorithm was proposed by Zhang et al. [120], who used the
K-Singular Value Decomposition method (K-SVD) to create
positive and negative dictionaries of sparse representations.
Finally, reconstructive errors of the sparse coefficients from
the test images are calculated and compared for classification
purposes.

A recent trend in the lesion detection combines different
modalities for improving the final performance. In this sense,
we have the work of Xu et al. [111] that combines text and
image features in a late fusion and the work of Song et al. [99]
that combines results from several modalities (e.g., cytology,
HPV, colposcopy) and demographics (e.g., age) to train their
model. Results on this direction seem promising.

Van Raad and her collaborators [109] proposed an
automatic characterization of the lesions borders. After seg-
menting acetowhite regions usingGMM, contours are charac-
terized by detecting smoothness and irregularities. This type
of characterization is relevant for medical teams as a way to
introduce explanatory predictions for the decision support.
Figure 10 shows the detected AW regions and the segment
characterized as smooth (green) and irregular (black).

FIGURE 10. Van Raad et al. [109] - yellow segments are characterized as
smooth contours and black segments as irregular.

For multi-image – temporal – approaches, where a
sequence of images is presented to the model, the main
lines of work were presented by the teams of Li et al. [65],
Park et al. [82], Liu et al. [70], Acosta-Mesa [1], [4], [5],
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and Garcia-Arteaga [31], [32]. In these cases, the change in
color before and after the application of acetic acid is used.
The works conducted by Li et al. [65], Liu et al. [70], and
Park et al. [82] focused on pairs of images (i.e., pre-acetic and
post-acetic). The first two approaches used Mean Shift clus-
tering and level sets respectively. The last approach, proposed
by Park et al. [82] validated the performance of ensembles of
supervised classification algorithms.

Acosta-Mesa and his team worked at a more fine-grained
level [1], [4], [5] by extracting information from continu-
ous frames at a pixelwise level to measure the acetowhite
response. Their preliminary approach modeled the response
using a parabola, which parameters are then used as fea-
tures to classify the tissues using the naïve Bayes classifier.
In successive works [1], [4], they explored discretization
schemes to encode time series information, being able to
surpass the human-level performance by 3% in terms of
accuracy at a dataset with about 50 patients (76% and 73%
respectively). This study was replicated for the assessment
under green light in [42] and [43]. In a more recent work [73],
they studied the performance of several classifiers on tem-
poral data, achieving the best results with neural networks
(89% of accuracy). Active contours were used as a post-
processing step to identify suitable candidates for biopsy
in [73] and [89].

Finally, Garcia-Arteaga et al. [31], [32] also consid-
ered time series analysis on the acetowhite response of the
pixels. They focused on differentiating abnormal from nor-
mal tissues as a first task, achieving considerable perfor-
mance (79.3% accuracy and 85% ROC AUC). Also, they
present results for the classification of low-grade and high-
grade lesion classification, achieving an accuracy of 92%
and ROC AUC of 87%. While these results are satisfactory,
the datasets are very limited in terms of the number of
patients (3 and 10).

As a side application, Fernandes et al. [20] tackled the
detection and characterization of lesions on the vagina using
deep neural networks. While the images of study are from
digital colposcopies, the application of interest is the forensic
evaluation of sexual assault.

E. CLASSIFICATION OF GLOBAL TRAITS
IN COLPOSCOPIES
Typical CAD systems involve the detection of global traits
observed at images, from low-level tasks such as the
modality recognition [21] to more semantic tasks like the
identification of the cervix type [52], [55] and cancer
detection [93], [114], [115].

Fernandes et al. [21] proposed a framework to recog-
nize the acquisition modality of each frame in a video
sequence. They propose a supervised learning scheme using
color information and K-Nearest Neighbors. Global con-
sistency between the predicted modalities and the col-
poscopy protocol is enforced using weighted finite automata.
Also, a preprocessing step to filter noisy frames where the
physician manipulates the cervix region is proposed.

Several works have addressed the problem of classify-
ing a cervigram as cancer or non-cancer, being the line of
research proposed by Huang and her team the most promi-
nent [56], [99], [111]–[113], [115]. The standard scale to
grade Cervical Intraepithelial Neoplasia (CIN) consists of
three ordinal grades [115]: CIN1 (mild), CIN2 (moderate),
and CIN3(severe). However, most works address the predic-
tive task as a binary classification one by considering the clas-
sification of CIN1 from CIN2/3 or cancer (CIN2/3+) [115].
An alternative binary task is two classify the lesions as
low-grade and high-grade squamous intraepithelial lesion,
generally corresponding to CIN1 and CIN2/3+ respectively.
After some preprocessing steps that cover removal of spec-
ular reflections and identification of the region of interest
containing the cervix, these works extracted image features
in a pyramidal fashion, including color histograms
(typically on the Lab color space) [112], [113], [115], his-
togram of gradients [112], [113], [115], and Local Binary
Patterns (LBP) [113], [115]. Several classifiers were used,
including tree ensembles (Random Forest, Gradient Boost-
ing, AdaBoost), neural networks, Logistic Regression, Sup-
port Vector Machines and K-Nearest Neighbors. Random
Forests achieved a top performance of 84% ROC AUC in
a dataset collected by the NCI (National Cancer Institute) in
the Guanacaste project [44] with +1000 patients. In a more
recent work, Xu et al. [115] compared the performance of
deep features and the aforementioned pipeline based on tradi-
tionalmethodologies. In this sense, they extracted the features
from the last dense layers from CaffeNet [49] trained on
ImageNet and fine-tuned the last layer. While they achieved
higher performance by using handcrafted features, further
gains may be observed by training the network end-to-end
instead of the final layer.

Xu et al. [114] proposed a multimodal approach to predict
cervical cancer by merging deep features from AlexNet [57]
and high-level information from medical records (e.g., age,
HPV status, etc.). They were able to improve the per-
formance obtained with image data from 88.77% ROC
AUC to 94%.

Sato et al. [93] used Convolutional Neural Networks
trained from scratch to predict cervical cancer on colpo-
scopies with Hinselmann and Green filter modalities. As in
the works mentioned above [114], [115], the architecture is
considerably shallow, with three groups of convolutional-
pooling layers and a couple of densely connected layers. They
trained the architecture on a dataset with 485 images achiev-
ing 50% accuracy in recognizing three balanced classes.
Further investigation of state-of-the-art architectures and reg-
ularization techniques (e.g., transfer learning, data augmen-
tation) should be conducted in order to assess the actual
capabilities of deep methodologies in this area.

In a recent competition about the categorization of cervix
based on their transformation zones, deep learning method-
ologies achieved the best performance. The task was to
characterize the cervix into three types depending on the
transformation zone tissues type and observability [51].
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FIGURE 11. Summary of the main research topics and selected works in the area.

The database consists of more than 1800 images from several
modalities (Green, Hinselmann, and Schiller). The acqui-
sition setting was unconstrained, having images with bad
quality and images where the cervix was considerably small.
Main pipelines to solve this problem involve the segmentation
of the cervix and its transformation zone using the U-net
architecture [55] and an ensemble of deep architectures to
classify the images [52].

IV. SUMMARY
The research ecosystem on machine learning and com-
puter vision techniques for the decision support of digital
colposcopies has reached a sound point, with well-identified
problems and paradigms to tackle them. Here, we will

summarize the main traits of the aforementioned tasks and
solutions. Figure 11 gathers the main features and works in
each of these areas.

In the area of quality enhancement, the removal of specular
reflections and the standardization of the color space are the
main tasks of interest. The former has been tackled by a
detection-inpainting scheme while the second one has been
solved using camera calibration and simple image process-
ing techniques. For quality assessment, the main features of
interest are the complete observability of the cervix and the
absence of disturbing artifacts such as specular reflections,
bleeding, and external objects.

The semantic segmentation of the cervix tissues has been
one of the areas that perceived more attention from the
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TABLE 2. Summary of the datasets available databases.

research community. The vast majority of works addressed
the problem using unsupervised clustering techniques.
However, the hard assumptions on these works and the
smooth boundaries between the cervix tissues demand more
expressive models with high semantic power. Therefore,
some supervised methodologies have appeared, including
traditional machine learning and deep learning pipelines.

The registration of colposcopies was studied for unimodal
settings. On the one hand, global image registration tech-
niques that attempt to find a good global alignment of
the images have been proposed. These techniques typically
involve a rigid alignment of the main structures of the cervix,
followed by an elastic registration to address eventual defor-
mations of the body parts. On the other hand, landmark-based
registration aims to detect and track points of interest.

For the spatial location and characterization of lesions,
basic image processing techniques were used to detect ves-
sels and mosaicism, including morphology operators and
template matching. The recognition of acetowhite lesions
received more attention, with methods covering both unsu-
pervised and supervised techniques, and static and continuous
acquisitions.

The final step of any CAD system is the diagnosis support.
Therefore, providing a global decision per patient has been
widely studied using machine learning techniques. Tradi-
tional methodologies include color and texture information
while novel methods attempt to learn relevant features using
deep methodologies. Some works have addressed the aggre-
gation of multimodal data (e.g., medical records) achieving
the best results in the literature.

V. DATABASES
As important as the methods delved to solve the aforemen-
tioned tasks are the databases used to validate their findings.
Thus, the actual impact of any data-driven system relies
on the similarity between the test database and the organic
data acquired on a daily basis on medical facilities. Also,
the diversity of acquisition settings and abnormalities is rel-
evant. In this sense, we summarize the main aspects of the
available datasets in the area (see Table 2).

A. Acosta-Mesa et al.
Acosta-Mesa and his team made available 10 videos with
digital colposcopies of 10 patients after application of acetic
acid [2]. The database does not contain manual annotations
and the acquisition was very controlled. The duration of
the sequences is 30 seconds (311 frames). The images have

high quality and allow to study small patterns with high
temporal and spatial resolution. This dataset can be used
to validate (elastic) registration techniques and detection of
acetowhite regions.

We made available as part of this project, manual annota-
tions of 10 landmarks per video to validate the performance
of image registration techniques.1

B. Fernandes et al.
The dataset was acquired by Fernandes et al. [22] in col-
laboration with Hospital Universitario de Caracas from
Venezuela. The number of images is 287, including three
modalities (Green light, Hinselmann, and Schiller). Several
features were extracted from the dataset for the quality assess-
ment task. The original subjective quality annotations were
performed by six experts. The dataset also contains manual
segmentation masks of the colposcope, vaginal walls, cervix,
external orifice, and artifacts. It can be used to validate
the performance of quality assessment methodologies and
semantic image segmentation algorithms. The dataset can be
accessed in the UCI Machine Learning repository.2

C. GUANACASTE PROJECT (NCI/NIH)
The dataset is made available by the National Cancer Insti-
tute (NCI)/National Institute of Health (NIH). The NCI col-
lected the dataset in the Guanacaste project [44]. It consists of
data from 10,000 anonymized women [115]. Technical works
that use this database extract a subset of about 1,112 patient
visits (767 visits in the CIN1 category and 345 visits in the
CIN2/3+ category) [112], [113], [115]. The dataset contains
multiple visits per patient, including multimodal information
such as the age of the patient, HPV test, histology results, etc.
The patients are annotated with the corresponding CIN pro-
gression level (i.e., normal, CIN1, CIN2, CIN3, and cancer).
The presence of multiple images per patient in combination
with other sources of data encourages the development of
multi-view and multi-modal algorithms. Some precomputed
visual features can be found in [113] and [115].

The dataset contains global information about the patient.
Therefore, the dataset can be directly used to evaluate auto-
matic methods for the detection of cervical intraepithelial
neoplasia and cancer. It is also sensible to be used for

1https://github.com/kelwinfc/cervical-cancer-screening
2https://archive.ics.uci.edu/ml/datasets/Quality+Assessment+of+

Digital+Colposcopies

VOLUME 6, 2018 33921



K. Fernandes et al.: Automated Methods for the Decision Support of Cervical Cancer Screening

FIGURE 12. Sample images from the DCDB database. (a) Hinselmann. (b) Green filter. (c) Schiller. (d) Noisy frames where the
physician manipulates the colposcope and the cervix region.
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assessment of semantic segmentation and registration tech-
niques but it would require further annotations.

D. INTEL & MobileODT
Intel and MobileODT made available a database with about
2000 static images, covering themainmodalities of the digital
colposcopy. The dataset was released under the scope of a
competition to identify the type of cervix among three types
according to the location of the transformation zone [51]:

1) Type I: completely ectocervical, fully visible,
small or large.

2) Type II: has endocervical component, fully visi-
ble, may have ectocervical component which may be
small or large.

3) Type III: has endocervical component, is not fully
visible, may have ectocervical component which may
be small or large.

The dataset contains 1481 training imageswith annotations
about the cervix type. The images distribution is unbalanced
with 17%, 53%, and 30% respectively. All the cervix images
in this dataset are considered normal (not cancerous) but the
identification of the cervix type may require further test-
ing [51]. The dataset has a large number of images that have
not been curated but that can be used for the development of
semi-supervised approaches.

As part of this project, we provide manual segmentation
masks for this database, including the cervix region, transfor-
mation zone and external orifice.

VI. DCDB: DIGITAL COLPOSCOPY DATABASE
As was discussed in the previous section, several datasets
have been acquired and made available by the research
community. However, given the lack of a dataset that can
be used on the assessment of all the aforementioned tasks,
we collected a databasewith 129 digital colposcopies in video
format. The videos were acquired between 2013 and 2015 at
Hospital Universitario de Caracas in Caracas, Venezuela.
The dataset covers the entire examination, including the main
modalities of the colposcopy examination and intervals where
the physician manipulates the cervix region. Thus, the dataset
raises several challenges, from the multimodal and time-
based integration of the decision to the identification of the
proper frames to apply the models. In this sense, this dataset
is close to a real-life scenario for the assessment of auto-
mated techniques. Figure 12 shows sample images from the
database. Figure 13 summarizes some statistics about the
videos.

Also, we make available the following annotations:

• Modality Detection: temporal annotations for the
videos of the start and ending points of the modalities
per frame. Also, we include annotations of the transition
and noisy frames.

• Quality Assessment: annotations from 6 experts in
an ordinal scale (i.e., poor, fair, good, excellent) for
287 images.

FIGURE 13. Summary of the database statistics and distribution of the
video durations.

• Semantic Segmentation: annotations for 287 images of
the colposcope, vaginal walls, cervix, external orifice,
and artifacts.

• Image Registration: landmark annotations for image
registration, including five points per video annotated
every ten frames.

• Abnormalities: annotations about the lesions and
abnormalities present in the image.

The videos and annotations will be continuously updated
and improved. The database can be accessed online in [23].3

Further details about the dataset, training/test partitions can
be found in the project website.

VII. CONCLUSIONS AND CHALLENGES
The automated analysis of digital colposcopies has attained
significant attention from the machine learning and computer
vision research communities. We studied in this paper the
main lines of research that have been conducted in this field
and built a topology of tasks and approaches that encompass
the area. While the area reached a certain level of maturity,
the recent investment of companies and governments in the
area and the recent publication of large databases open the
possibility to include more advanced techniques in the devel-
opment of CAD systems for digital colposcopies.

The main contributions of this work can be summarized as
follows:
• We performed a review of the literature in the area.
• We established a common ground for the analysis of
CAD systems for digital colposcopies.

3https://github.com/kelwinfc/cervical-cancer-screening If you find any
problem with the source, please send an email to the corresponding authors
of this paper.
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• We released a video database with partial annotations
that covers the main areas that were identified.

• We provide annotations for databases from third parties.
• We released source code and benchmarks for compari-
son on these databases.

Finally, despite the huge efforts that have been devoted
to this area, several open challenges were identified. Below,
we enumerate the main open problems in the area.

QUALITY ASSESSMENT AND ENHANCEMENT:
The notion of quality is a very subjective concept. Therefore,
using a binary scale (i.e., bad, good) to define the quality
of a digital colposcopy is too reductionist. Thus, a fully
automated system should be able to identify, for each expert,
the expected image quality in order to 1) suggest improve-
ments during acquisition in real-time, and 2) retrieve the
best frame to the human expert in order to maximize the
confidence of his decision. While there is space on the nor-
malization and enhancement of images without constrained
acquisition settings, the appearance of deep learning methods
that are robust to such variability may reduce the impact of
these techniques.

SEGMENTATION OF CERVIX TISSUES:
In the area of semantic segmentation, the main limitation of
the current strategies is the lack of adaptability to uncon-
strained settings. Due to the low semantic level of the tech-
niques proposed in the literature, they are not able to seg-
ment objects with smooth transitions such as the cervix and
the vaginal walls or the squamocolumnar junction. Thus,
most of the published works focused on the segmentation
of three entities: background, cervix and the external orifice.
Moreover, current techniques are not able to cope with sev-
eral modalities. Also, it is relevant to explore techniques to
promote spatial consistency among the detected objects.

The development of deep learning architectures for seman-
tic segmentation may be able to circumvent these problems,
being able to represent global semantic properties of the
image.

IMAGE REGISTRATION:
The main open challenge on the registration of digital colpo-
scopies lies in the elastic registration of several modalities.
Given the different signal statistics and disjoint observability
of certain structures on the modalities, traditional registration
techniques would not be able to cope with multimodal regis-
tration. Using segmented regions identified on each modality
may drive a coarse alignment of the main cervix structures.
However, a deformable alignment of the inner structures of
the cervix would require additional complexity.

LESION DETECTION AND CHARACTERIZATION:

Besides themultimodal and temporal analysis that is intrin-
sic in all tasks, learning to detect and characterize lesions
with cost-effective ways of annotations is a relevant problem.

Traditional methodologies require a significant amount of
manual labeling, including spatial localization of the lesions
at an image level. Learning to detect lesions from weakly
supervised annotations, where the expert identifies the pres-
ence of lesions in the videowithout explicitly identifying their
boundaries, would directly impact the scalability of these
frameworks.

CLASSIFICATION OF GLOBAL TRAITS:
Being the final stage of any CAD system, the amount of open
problems in this area is prominent. We should look towards
holistic frameworks able to extract knowledge from each
modality (image and non-image data). Also, the inclusion of
information from multiple visits from the same patient over
the years should be addressed to identify long-term changes
in the cervix.

While current strategies have simplified the prediction task
to binary settings, developing predictive systems that can
identify the progression of the lesions following the CIN ordi-
nal scale would accelerate the acceptance of these systems.

Current systems work on a disjoint fashion by applying
the aforementioned tasks in a cascade fashion. In this sense,
the knowledge acquired from one task such as segmentation
is not used when learning to solve another task such as quality
assessment or cancer prediction. Thus, it is relevant to study
transfer learning and multitask learning approaches to induce
more robust and holistic decisions.

The final challenge–which is ubiquitous in all machine
learning tasks for medicine– is the construction of inter-
pretable and explanatory models. The proper support to the
human expert must go beyond a simple categorical label.
In order to facilitate and improve the work of the physicians
and in order to have a tangible impact in the fight against
the disease, CAD systems should be able to illustrate the
human expert with similar examples from the past, to identify
the factors that influenced the decision, to suggest treatment
options with potential pros/cons for each case, among others.
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