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ABSTRACTThe development of wireless communication technologies will lead to an increase of rapid-time-
variants featured occasions and physical occasions of small-data-size communication in network, and the
modulation system diversification resulting from social group densification. Though traditional blind signal
detection approaches have been improved by reducing their excessive reliance on data size, they still have
the defects of various postulated conditions in new settings, complicated computation, unstable detection
effect and high error rate. This paper aims to explore a communication blind signal detection method in the
setting of cyber-physical-social systems in the field of back-propagation (BP) neural network. First, a BP
neural network is used as the equalizer, an error function is redefined, and the back-propagation algorithm
is used to train and adjust blind signal data deviation and to update network weight rules for adaptation to
network settings with rapid time-variants. Second, a double-sigmoid BP neural network excitation function
is constructed to improve poor multiple information processing and network performances resulting from
social group densification. Third, self-adaptive variable step size for physical devices’ power is constructed
to adjust the conflict between convergence rate and steady-state error caused by different powers with the
increase of small-data-size communication. Finally, an output vector is made to be closest to an expected
vector; thereby, blind signal detection rate of social groups’ communication using physical devices in the
cyber environment can be improved. The experiments show that the communication blind signal detection
method proposed in the paper improves signal detection precision, and reduces omission rate (below 2%).
Besides, the method is characterized by minor error, removes deficiencies of traditional methods for blind
signal extraction, and can effectively accomplish blind signal detection.

INDEX TERMS BP neural network, activation function, blind signal detection, cyber-physical-social
systems.

I. INTRODUCTION
In the field of network information technologies, a cyber
system is composed of nodes and lines representing various
objects and their interrelations. In mathematics, a cyber
system is a map, generally a weighted graph; and it also has
a physical connotation–a model abstracted from a specific
type of practical problems. Physical device is a generic term
for different tools in network (incl. node devices, commu-
nication devices, terminal devices, storage devices, power
systems, etc.) and other hardware devices for their service.

A social group is a form of social organization integrated
by specific relations for common activities, a network with
mutual relations, and one of the basic units constituting a
society. With the progress of science and technologies as
well as a rapid development of wireless communication tech-
nologies, it is in urgent need to develop a modern and high-
efficiency communication network used by all social groups
in the world, and higher standards are raised for real-time
performance and precision of network communication. In the
communication process of social groups using network,
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the communication system receives and detects blind signals
as communication data. Without any prior knowledge other
than source signals and transmission channels, blind detec-
tion of communication signals is a process in which the
existence and regularity of signals are identified and judged
merely based on the received signals. Therefore, researches
on blind detection of communication signals are of vital
practical significance.

Urkowitz H firstly presented a blind signal detection
algorithm [1], and published a paper about signal detection.
In different scientific fields, especially those associated with
signals (such as voice signal separation and identification,
wireless communication system, and processing of biological
signals), blind signal detection algorithms have been substan-
tially and thoroughly studied. In recent years, researchers
both in China and abroad have extensively and system-
atically studied signal detection algorithms, including the
delay multiplication detection method [2], power spectrum
reprocessing method [3], period spectrum method [4], etc.
However, most of the signal detection methods requires
priori information (such as spreading code parameters and
carrier frequency of received signal), and are not blind
detection (called codeless detection in some literatures)
in the strict sense. For blind signal detection, main detec-
tion methods in researches include energy method [5], least
square method [6], square method [7], etc. So far, various
practical application problems remain to be solved, including
poor disturbance resistance, inaccuracy of detection data, etc.
Blind signal in network communication is a non-stationary
random signal, while traditional detection algorithm cannot
effectively extract impulse response features of signals and
show relatively low detection accuracy.

For blind signal processing, y(n) = Ax(n), it is assumed
that an unknown signal source utilizing sensor linear aliasing
method releases detection signal, and Rm×n is an unknown
hybrid matrix. s(t) ∈ Rn is a n-dimension blind signal;
y(t) ∈ Rm is a detected signal; A is an equalizer. Based on
traditional methods, composite signals cannot be completely
separated, since there is little known information about blind
signals. Blind signal processing has been repeatedly reported
in many literatures. Methods in literatures [7] and [8] are
based on assumed conditions for blind signal detection, and
are inconsistent with actual conditions; though algorithms
in literatures [9]–[11] can be used to detect blind signal
in a voice communication system in a relatively precise
way, the complicated operation procedures make them less
applicable for actual practice. With the methods presented
in literatures [12], [13], the final detection results show
low accuracy, and fail to realize the purpose of effectively
detecting blind signal. Therefore, to avoid the deficiencies
(high operation complexity, inaccurate detection result, etc.)
of traditional methods, the paper proposes a BP neural
network-based blind signal detection method with cyber-
physical-social systems. Cyber, physical, and social systems
are fused to systematically and comprehensively detect blind
signal in communication, and simulation experiments are

conducted to verify the effectiveness and accurateness of this
method in identifying and detecting blind signal.

Specially, themain contributions of the BPNNCBSD-CPSS
scheme include the following:

(1). Under network environment, blind signals gener-
ated by intelligent communication devices used by social
groups are tasked as data sample and input the cyber-
physical-social systems-integrated BP neural network model;
back-propagation algorithm is used to train and adjust data
deviation and network weight of blind signal and to make
output vectors possibly much closer to expected vectors.
As cyber, physical and social systems are fused, problems of
a pure BP neural network algorithm, including a high possi-
bility of local minimum and slow algorithm convergence, are
solved.

(2). Experiments are conducted to verify the proposed
blind signal detection method, which improves the signal
detection precision, reduces the omission rate, and can effec-
tively complete achieve blind signal detection. The detec-
tion method is characterized by a high precision (reaching
91%), a small error rate (below 0.1) and a low omission rate
(below 2%).

The remainder of the paper is organized as follows.
In Section II, we described relevant work, constructing
a cyber-physical-social systems-fused BP neural network
model, and utilized the model for detection of blind signal.
In Section III, we conducted several experiments, analyzed
the four groups of experiments, and obtained experimental
results shown in figures. Finally, we draw a conclusion,
summarize the paper, and present the orientation for future
work in Section IV.

II. A BP NEURAL NETWORK-BASED COMMUNICATION
BLIND SIGNAL DETECTION MODEL WITH
CYBER-PHYSICAL-SOCIAL SYSTEMS
A. PRINCIPLE OF BP NEURAL NETWORK-BASED
COMMUNICATION BLIND SIGNAL DETECTION
Connecting multiple neurons to each other can construct an
artificial neural network, which effectively processes signals
and outputs signal units after connecting different neural
units assigned with different weights [14]–[17]; in different
artificial neural networks, a back-propagation network (abbr.
BP network) is the neural network model most frequently
used. BP network is a feed-forward hierarchical network,
which is formed by full connection of three hierarchical
structures, an input layer, an output layer, and a hidden layer.
Motivation-model unit outputs of every originating node in an
input layer make up input signals of the second layer of
neurons, while the motivation-model unit outputs of nodes
in a second layer make up the input models of a third layer;
the same way applies to other layers. Every neuron layer
only contains output signals of the former layer as its inputs.
Output signals of output layer neurons are full response to
motivation models generated by originating nodes of an input
layer [18]–[21].
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A BP neural network structure applying for communica-
tion blind signal detection is described below. Meanwhile,
to facilitate explanation, network sending signals are written
in plural form.

x(n− i) = xR(n− i)+ ixI (n− i) (1)

It is assumed that an input layer inputs n signals, namely n
neurons. The amount of neurons in a hidden layer is q1; the
excitation function is ϕ1, the input is sq1(n), and the output
is bq1(n). An output layer has q2 neurons; the excitation
function is ϕ2, and the input and output are cq2(n) and yq2(n)
respectively. The connection weight between the input layer
and the hidden layer is wmi(n), while that between the hidden
layer and the output layer is vij(n); and the expected output
is ỹq2(n).

The weight from the input layer to the hidden layer is
expressed as

wmi(n) = wRmi(n)+ j · w
I
mi(n) (2)

The weight from the hidden layer to the output layer is
expressed as

vij(n) = vRij(n)+ j · v
I
ij(n) (3)

According to the forward propagation of input signals,
the formulas are as below.

The input vector of the hidden layer neurons is

sq1(n) =
∑
i

wmix(n− i) (4)

The output vector of the hidden layer neurons is

bq1(n) = ϕ1(sq1(n)) = ϕ1(sRq1 (n))+ j · ϕ1(s
I
q1
(n)) (5)

The input vector of the output layer neurons is

cq2(n) =
∑

vij(n)bq1(n) (6)

The output vector of the output layer neurons is

yq2(n) = ϕ2(cq2(n)) (7)

According to the traditional CMA algorithm, the error
function is defined as

J (n) =
1
2

[
|y(n)|2 − R2

]2
, where R2 =

E
[
|ã(n)|4

]
E
[
|ã(n)|2

] (8)

With the steepest gradient descent method, weights are
adjusted layer by layer according to network back transmis-
sion of signals. Based on the signal transmission manner,
the iterative formulas adjusting connection weight of every
layer are 

w(n+ 1) = w(n)− η1
∂J (n)
∂w(n)

v(n+ 1) = v(n)− η2
∂J (n)
∂v(n)

(9)

where η1 and η2 are iterative step sizes of the network connec-
tion weights.

∂J (n)
∂w(n)

= 2 · [
∣∣yq2(n)∣∣2 − R2] · ∣∣yq2(n)∣∣

·[
∂
∣∣yq2(n)∣∣
∂wR(n)

+ j
∂
∣∣yq2(n)∣∣
∂wI (n)

]

∂J (n)
∂v(n)

= 2 · [
∣∣yq2(n)∣∣2 − R2]

·
∣∣yq2(n)∣∣ · [∂ ∣∣yq2(n)∣∣

∂vR(n)
+ j
∂
∣∣yq2(n)∣∣
∂vI (n)

]

(10)

Based on the above formulas, it can be found that a BP
neural network applies to both real number and complex
number categories, while the main application difference for
the two is to distinguish real parts and imaginary parts when
processing data. The final results are usually satisfactory [22].

As sent sequences are plural, and the variation of the
excitation function for the whole system shall fall in the
scope of complex number correspondingly. The following
part introduces connection weight iteration of a hidden layer
of a BP neural network within the scope of complex number.

(1). The iteration of connection weight from an input layer
to a hidden layer is

∂J (n)
∂w(n)

= 2 · [
∣∣yq2(n)∣∣2 − R2] · ∣∣yq2(n)∣∣ · [∂ ∣∣yq2(n)∣∣

∂w(n)
] (11)

It can be known from the above formulas that, to obtain
∂J (n)
∂wmi(n)

, only the solution of ∂|yq2(n)|
∂wmi(n)

is required. Since the
weight falls in the scope of complex number, both real parts
and imaginary parts shall be iterated when iterating connec-
tion weights. Gathering up the threads, we can obtain the
following formulas

∂
∣∣yq2(n)∣∣
∂wmi(n)

=
∂
∣∣yq2(n)∣∣
∂wRmi(n)

+ j
∂
∣∣yq2(n)∣∣
∂wImi(n)

(12)∣∣yq2(n)∣∣ = √yq2(n)y∗q2(n) (13)

where y∗q2(n) is the conjugate of yq2(n).
Then, we can obtain
∂
∣∣yq2(n)∣∣
∂wRmi(n)

=

∂
√
yq2(n)y∗q2(n)

∂wRmi(n)
=

1

2
∣∣yq2(n)∣∣ ∂[yq2(n)y

∗

q2(n)]

∂wRmi(n)

∂
∣∣yq2(n)∣∣
∂wImi(n)

=

∂
√
yq2(n)y∗q2(n)

∂wImi(n)
=

1

2
∣∣yq2(n)∣∣ ∂[yq2(n)y

∗

q2(n)]

∂wImi(n)
(14)

(2). The iteration formula for the connection weight from
a hidden layer to an output layer is as below.

The method to solve the connection weight from an input
layer to a hidden layer is same as above.

∂J (n)
∂v(n)

= 2 · [
∣∣yq2(n)∣∣2 − R2] · ∣∣yq2(n)∣∣ · [∂ ∣∣yq2(n)∣∣

∂v(n)
]

∂
∣∣yq2(n)∣∣
∂vij(n)

=
∂
∣∣yq2(n)∣∣
∂vRij(n)

+ j
∂
∣∣yq2(n)∣∣
∂vIij(n)

(15)
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Then, we can obtain
∂
∣∣yq2(n)∣∣
∂vRij(n)

=

∂
√
yq2(n)y∗q2(n)

∂vRij(n)
=

1

2
∣∣yq2(n)∣∣ ∂[yq2(n)y

∗

q2(n)]

∂vRij(n)

∂
∣∣yq2(n)∣∣
∂vIij(n)

=

∂
√
yq2(n)y∗q2(n)

∂vIij(n)
=

1

2
∣∣yq2(n)∣∣ ∂[yq2(n)y

∗

q2(n)]

∂vIij(n)

(16)

B. ‘‘CYBER-PHYSICAL-SOCIAL SYSTEMS’’ COMBINED BP
NEURAL NETWORK DETECTION MODEL OF BLIND
COMMUNICATION SIGNAL
The communication blind signal detection model with cyber-
physical-social systems adopts a three-layer BP neural
system, which is constructed by an input layer, a hidden layer,
and an output layer. When seeking for input signals, the BP
neural network can be taken as an equalizer; the power of
the physical entity is used to determine weight, while the
excitation function is determined according to the density of
social groups [23]–[25]. The sketch of a 3-layer BP network
is shown in Fig. 1.

FIGURE 1. Structure drawing of a 3-layer BP neural network with
cyber-physical-social systems.

The input layer is assumed to input n signals (n neurons),
which are expressed as m = 1, 2, . . . , n. The hidden layer
has q1 neurons, which were expressed as i = 1, 2, . . . , q1;
the excitation function is ϕ1, the input is sq1(n), and the
output result after excitation is bq1(n). The output layer
has q2 neurons; the excitation function is ϕ2, every neuron
is expressed as j = 1, 2, . . . , q2, the input of the output
layer is cq2(n), and the output of the output layer is yq2(n).
The connection weights between the input layer and the
hidden layer and between the hidden layer and the output
layer are wmi(n) and vij(n) respectively, while the expected
output is ỹq2(n).

1) BP NEURAL NETWORK-BASED ERROR FUNCTION
Based on the traditional constant modulus algorithm (CMA)
and BP algorithm, a new network error function is redefined.

J (n) =
1
2

[
ln(|y(n)|2

/
R2)
]2

(17)

A BP neural network and CMA share a same definition for
R2 of communication blind signal.

R2 =
E
[
|y(n)|4

]
E
[
|y(n)|2

] (18)

2) BP NEURAL NETWORK-BASED WEIGHT UPDATE RULES
The formula for the serial forward transmission of input
signal under QPSK system is as follow.

The formula for input signal is

x(n− m+ 1) = xR(n− m+ 1)+ jxI (n− m+ 1) (19)

Formulas for weights of the BP neural network-based
layers are {

wmi(n) = wmi,R(n)+ jwmi,I (n)
vij(n) = vij,R(n)+ jvij,I (n)

(20)

The input vector of the hidden layer neurons is

sq1(n)

=

p∑
m=1

wmi(n) · x(n− m+ 1)

=

p∑
m=1

[
wRmi(n)xR(n− m+ 1)− wImi(n)xI (n− m+ 1)

]
+ j

p∑
m=1

[
wRmi(n)xI (n−m+1)+ w

I
mi(n)xR(n−m+1)

]
(21)

The output vector of the hidden layer neurons is

bq1(n) = ϕ1(sq1(n)) = ϕ1(sRq1(n))+ jϕ1(s
I
q1(n))

= ϕ1

{ p∑
m=1

[
wRmi(n)xR(n− m+ 1)− wImi(n)

× xI (n− m+ 1)
]}

+ jϕ1

{ p∑
m=1

[
wRmi(n)xI (n− m+ 1)+ wImi(n)

× xR(n− m+ 1)
]}

(22)

The input vector of the output layer neurons is

cq2 (n) =
q1∑
i=1

vij(n)bq1(n) =
q1∑
i=1

[vRij(n)b
R
q1(n)− v

I
ij(n)b

I
q1(n)]

+ j ·
q1∑
i=1

[vRij(n)b
I
q1(n)+ v

I
ij(n)b

R
q1(n)] (23)

The output vector of the output layer neurons is

yq2(n) = ϕ2(cq2(n)) = ϕ2(cRq2(n))+ jϕ2(c
I
q2(n)) (24)
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Similarly, with the steepest gradient descent method, weights
are adjusted layer by layer according to network back trans-
mission. The formulas are

w(n+ 1) = w(n)− η1
∂J (n)
∂w(n)

v(n+ 1) = v(n)− η2
∂J (n)
∂v(n)

(25)

where η1 and η2 are iterative step sizes of the network connec-
tion weights.

∂J (n)
∂w(n)

= 2 ·
[
ln(
∣∣yq2(n)∣∣2/R2)] · ∣∣yq2(n)∣∣

· [
∂
∣∣yq2(n)∣∣
∂wR(n)

+ j
∂
∣∣yq2(n)∣∣
∂wI (n)

]

∂J (n)
∂v(n)

= 2 ·
[
ln(
∣∣yq2(n)∣∣2/R2)] · ∣∣yq2(n)∣∣

· [
∂
∣∣yq2(n)∣∣
∂vR(n)

+ j
∂
∣∣yq2(n)∣∣
∂vI (n)

]

(1). Iteration of the Connection Weight from the Input
Layer to the Hidden Layer

∂J (n)
∂wmi(n)

= 2 ·
[
ln(
∣∣yq2(n)∣∣2/R2)] · ∣∣yq2(n)∣∣ · [∂ ∣∣yq2(n)∣∣

∂wmi(n)
]

It can be known from the above formulas that, to obtain
∂J (n)
∂wmi(n)

, only the solution of ∂|yq2(n)|
∂wmi(n)

is required.
Since the weight falls in the scope of complex number, both

real parts and imaginary parts shall be iterated when iterating
connection weights. Gathering up the threads, we can obtain
the following formulas

∂
∣∣yq2(n)∣∣
∂wmi(n)

=
∂
∣∣yq2(n)∣∣
∂wRmi(n)

+ j
∂
∣∣yq2(n)∣∣
∂wImi(n)

(26)∣∣yq2(n)∣∣ = √yq2(n)y∗q2(n) (27)

In the formulas, y∗q2(n) is the conjugate of yq2(n).
Then, we can obtain

∂
∣∣yq2(n)∣∣
∂wRmi(n)

=

∂
√
yq2(n)y∗q2(n)

∂wRmi(n)

=
1

2
∣∣yq2(n)∣∣ ∂[yq2(n)y

∗

q2(n)]

∂wRmi(n)

=
1∣∣yq2(n)∣∣ · [ϕ(cRq2(n))ϕ′(cRq2(n)) ∂c

R
q2(n)

∂wRmi(n)

+ϕ(cIq2(n))ϕ
′(cIq2(n))

∂cIq2(n)

∂wRmi(n)

∂
∣∣yq2(n)∣∣
∂wImi(n)

=
1∣∣yq2(n)∣∣ · [ϕ(cRq2(n))ϕ′(cRq2(n)) ∂c

R
q2(n)

∂wImi(n)

+ϕ(cIq2(n))ϕ
′(cIq2(n))

∂cIq2(n)

∂wImi(n)
(28)

In the formulas,

∂cRq2(n)

∂wRmi(n)
=
∂[vRij(n)b

R
q1(n)− v

I
ij(n)b

I
q1(n)]

∂wRmi(n)
= vRij(n)ϕ

′(sRq1(n))

×
∂sRq1(n)

∂wRmi(n)
− vIij(n)ϕ

′(sIq1(n))
∂sIq1(n)

∂wRmi(n)

= vRij(n)ϕ
′(sRq1(n))x

R(n− m+ 1)− vIij(n)ϕ
′

× (sIq1(n))x
I (n− m+ 1) (29)

In a similar way, we can obtain

∂cIq2(n)

∂wRmi(n)
= vRij(n)ϕ

′(cIq2(n))x
I (n− m+ 1)

− vIij(n)ϕ
′(cRq2(n))x

R(n− m+ 1) (30)

∂cRq2(n)

∂wImi(n)
= −vRij(n)ϕ

′(cRq2(n))x
I (n− m+ 1)

− vIij(n)ϕ
′(cIq2(n))x

R(n− m+ 1) (31)

∂cIq2(n)

∂wImi(n)
= vRij(n)ϕ

′(sIq1(n))x
R(n− m+ 1)

− vIij(n)ϕ
′(sRq1(n))x

I (n− m+ 1) (32)

Based on above formulas, we can obtain

∂
∣∣yq2(n)∣∣
∂wmi(n)

=
∂
∣∣yq2(n)∣∣
∂wRmi(n)

+ j
∂
∣∣yq2(n)∣∣
∂wImi(n)

=
1∣∣yq2(n)∣∣ [ϕ(cRq2(n))ϕ′(cRq2(n))ϕ′(sRq1(n))vRij(n)xR(n−m+1)

−ϕ(cRq2(n))ϕ
′(cRq2(n))ϕ

′(sIq1(n))v
I
ij(n)x

I (n− m+ 1)

+ϕ(cIq2(n))ϕ
′(cIq2(n))ϕ

′(sIq1(n))v
R
ij(n)x

I (n− m+ 1)

+ϕ(cIq2(n))ϕ
′(cIq2(n))ϕ

′(sRq1(n))v
I
ij(n)x

R(n− m+ 1)

+ j ·
1∣∣yq2(n)∣∣ · [−ϕ(cRq2(n))ϕ′(cRq2(n))ϕ′(sRq1(n))

× vRij(n)x
R(n− m+ 1)

−ϕ(cRq2(n))ϕ
′(cRq2(n))ϕ

′(sIq1(n))v
I
ij(n)x

R(n− m+ 1)

+ϕ(cIq2(n))ϕ
′(cIq2(n))ϕ

′(sIq1(n))v
R
ij(n)x

R(n− m+ 1)

−ϕ(cIq2(n))ϕ
′(cIq2(n))ϕ

′(sIq1(n))v
I
ij(n)x

I (n−m+1). (33)

(2). Iteration of the Connection Weight from the Hidden
Layer to the Output Layer

Similarly, the iterative formula shall be used to solve the
inter-layer connection weight.

∂
∣∣yq2(n)∣∣
∂vij(n)

=
∂
∣∣yq2(n)∣∣
∂vRij(n)

+ j
∂
∣∣yq2(n)∣∣
∂vIij(n)

(34)
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In the formula,

∂
∣∣yq2(n)∣∣
∂vRij(n)

=

∂
√
yq2(n)y∗q2(n)

∂vRij(n)
=

1

2
∣∣yq2(n)∣∣ ∂[yq2(n)y

∗

q2(n)]

∂vRij(n)

=
1∣∣yq2(n)∣∣ · [ϕ(cRq2(n))ϕ′(cRq2(n))bRq1(n)

+ϕ(cIq2(n))ϕ
′(cIq2(n))b

I
q1(n)] (35)

Similarly,

∂
∣∣yq2(n)∣∣
∂vRij(n)

=
1∣∣yq2(n)∣∣ · [−ϕ(cRq2(n))ϕ′(cRq2(n))bIq1(n)

+ϕ(cIq2(n))ϕ
′(cIq2(n))b

R
q1(n)] (36)

Then, we obtain

∂
∣∣yq2(n)∣∣
∂vij(n)

=
∂
∣∣yq2(n)∣∣
∂vRij(n)

+ j
∂
∣∣yq2(n)∣∣
∂vIij(n)

=
1∣∣yq2(n)∣∣ · [ϕ(cRq2(n))ϕ′(cRq2(n))bRq1(n)

+ϕ(cIq2(n))ϕ
′(cIq2(n))b

I
q1(n)]

+
1∣∣yq2(n)∣∣ · [−ϕ(cRq2(n))ϕ′(cRq2(n))bIq1(n)

+ϕ(cIq2(n))ϕ
′(cIq2(n))b

R
q1(n)] =

1∣∣yq2(n)∣∣
· [ϕ(cRq2(n))ϕ

′(cRq2(n))+jϕ(c
I
q2(n))ϕ

′(cIq2(n))]b
∗

q1(n). (37)

3) CONSTRUCT A DOUBLE-SIGMOID BP NEURAL
NETWORK-BASED EXCITATION FUNCTION UNDER
INTENSIVE SOCIAL GROUP
Multi-signal blind detection of dense social group communi-
cation is a complex problem featured by information-richness
and dynamic noise, since different connection structures exist
for neurons in different layers [26]–[28]. If different sigmoid
functions are added to neurons in different layers, all neurons
of the three layers form a new BP neural system-based blind
detection system, which is a double-sigmoid system. Multi-
threshold sigmoid (EXP) excitation function is used to solve
the capacity of processing rich information with only a few
neurons, while the improved sigmoid (TANH) excitation
function is utilized to solve poor network performance caused
by noise error. In this way, challenges brought by social
group densification can well be solved, time loss caused by
improved anti-noise capacity of a BP neural network can
be supplemented, and the convergence efficiency of blind
detection network can be effectively improved [29].

In the BP neural network,ϕ1(·) is the first sigmoid function,
while ϕ2(·) is the second one.

In a traditional continuous neural network, a two-value
activation function ϕ(x) is generally selected as the sigmoid
function in the form of continuous differentiable single
node. Since a neural network is composed of many neurons,
it directly determines the network scale, complexity, and
robustness [30]. As multi-threshold neurons have multiple
excitation states, the application in specific engineering plays
a role of uniting neurons of multiple excitatory states. In this
way, neuron efficiency is largely improved, and the informa-
tion processing ability can be accelerated during transmission
of circuit signals.

This paper is enlightened by the multiple-valued sigmoid
function presented by J.M. Zurada; derivation is based on the
two-value sigmoid function ϕ1(x) = 2ϕs(x)− 1 (a hyperbola
tangent function); and ϕs(x) = (1+ e−λx)−1 is a uni-polarity
function. The EXP excitation function is expressed as

ϕ1(x, n) = [
n∑
j=1

2σ

1+ e−λ(x+θj)
]− nσ (38)

In the formula, θj is the horizontal axis of the center of
accumulatedmeta-functions, n is the total amount of accumu-
lated items, and nσ is related with the character set to which
signals belong. λ is the attenuation coefficient for function of
every accumulated item, and λ > 0; the value is related with
the inflection point amount of an excitation function. 2σ is
the phase difference of any two adjacent constellation points
of ideal MPSK signals.

A multi-threshold function is characterized by the
following three features.

(1). When x → +∞, f (x, nσ ) has an absolute maximum
nσ ; when x →−∞, f (x, nσ ) has an absoluteminimum−nσ ,
and the function output is bounded.

(2). When n > 1, the excitation function has no inverse
function with analytical expression.

(3). The function is monotone increasing. Namely, it satis-
fies ϕ′(x, nσ ) > 0, [ϕ−1(x, nσ )]′ > 0.
The value range of λ and the relation between λ and inflec-

tion point are discussed below. The second-order derived
function of the function shall firstly be obtained.

ϕ1(·) = [
n∑
j=1

2σ

1+ e−λ(x+θj)
]− nσ = 2

n∑
j=1

κs − nσ

κs(x + θj) = [1+ e−λ(x+θj)]−1

κ ′s(x + θj) = λκ
2
s (x + θj) · e

−λ(x+θj)

κ ′′s (x + θj) = λ
2κ3s (x + θj) · e

−λ(x+θj) · [e−λ(x+θj) − 1]

κ ′′′s (x + θj) = λ2κ4s (x + θj) · e
−λ(x+θj)

· {e−2λ(x+θj) − 4e−λ(x+θj) + 1} (39)

ϕ′1(·) = {[2σ
n∑
j=1

κs(x + θj)]− nσ }′

= 2σ
n∑
j=1

κ ′s(x+θj)=2σ
n∑
j=1

λκ2s (x+θj) · e
−λ(x+θj)

(40)
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ϕ′′1 (·) = 2σ
n∑
j=1

κ ′′s (x + θj)

= 2σ
n∑
j=1

{λ2κ3s (x + θj) · e
−2λ(x+θj)

− λ2κ2s (x + θj) · e
−λ(x+θj)} (41)

ϕ′′′1 (·) = 2σ
n∑
j=1

κ ′′′s (x + θj)

= 2σ
n∑
j=1

λ3κ4s (x + θj) · e
−λ(x+θj) · {e−2λ(x+θj)

− 4e−λ(x+θj) + 1} (42)

The relationship between λ value and reflection point is
jointly determined by ϕ′′(·) = 0 and ϕ′′′(·) 6= 0. However,
the second derivative obtained above is a highly non-linear
equation. Based on graphical method, ϕ′′′1 (·) 6= 0 is combined
to determine the relationship.

By visualization, for π/4-QPSK signals, the phase position
of the constellation point is {±π/4,±3π/4}, θ1 = −π/2,
θ2 = 0, θ3 = π/2, σ = π/4, m = 3. The expression of the
excitation function is expanded as

ϕ1(x, 3π
/
4)

=
π
/
2

1+e−λ(x+π/2)
+

π
/
2

1+e−λx
+

π
/
2

1+e−λ(x−π/2)
− 3π

/
4 (43)

Draw the γ = d2ϕ1
dx2

(λ, x) curve surface and equipotential
line with λ and x as the independent variables, and draw
partial reference plan of γ = 0. See the following Fig. 2.

FIGURE 2. ϕ1(x,3π/4) Second-order derived function surface and
equipotential line plane graph.

Taking π/4-QPSK signals and continuous EXP excitation
function as the example, continuous EXP excitation functions
with different λ value are shown in Fig. 3. When the λ value
is large, the image presents sharp-t- flat stepped variation; if
the λ value is too small, the image of the excitation function

FIGURE 3. π/4-QPSK signal, continuous phase multi-thresholds EXP
excitation function.

will not present steps, and the signal screening function of the
excitation function is lost.

In a multi-threshold sigmoid excitation function, when x
is near the 0 point, ϕ′(x) > 0 is located at the maximum.
When input values are near 0 point, it will be sensitive,
and ϕ(x) will show obvious variation for a tiny change of
input value. The absolute value of input value is negatively
correlated with noise sensitivity, and is related with poorer
self-organizing and self-learning abilities of the neurons.
Besides, a BP neural network is a feed-forward network.
Deviation of output signals will be extended along with loop
iterations, and adversely affects the network performance
in the end.

To avoid the above problems, adverse influences caused
by a multi-threshold sigmoid excitation function shall be
eliminated, and the second sigmoid function ϕ2(·), is supple-
mented in the paper as a new improved excitation function.
Specifically, the TANH excitation function is expressed as

ϕ2(x) =


tanh(ξx0)+ (1+ tanh(ξx − x0))

1+ tanh(ξx0)
λ(x) (x ≥ 0)

1
2 (1+ tanh(ξ (x + x0))

1+ tanh(ξx0)
λ(−x) (x < 0)

(44)

In the formula, ξ is the amplification factor of the above
function, and represents the gradient of the function: a larger
ξ implies a larger angle of the function curve. x0 is a positive
real number, and represents the limit value of neuron input
signal. Only when the absolute value of neuron input is larger
than x0 will the angle of the curvilinear figure of the excitation
function ϕ2(x) enlarge. λ is the attenuation coefficient for
function of every accumulated item, and λ > 0.
Via Matlab simulation and the fixed parameter ξ = 50,

the graph of ϕ2(x) variation with x0 is obtained and shown
in Fig. 4.
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FIGURE 4. Comparison between ϕ2(x) different parameters and a classic
excitation function.

According to the above figure, there is no large difference
of state between ϕ2(x) and the multi-threshold sigmoid exci-
tation function; when x changes, ϕ2(x) shows same change
towards a same direction. Besides, it can be observed from
the above figure that the parameter x0 shows a variation
rule like ϕ2(x), but the sensitivity of network input value is
different if it is located at left or right of the original point.
Therefore, selecting a proper x0 value can weaken sensitivity
of the excitation function to network input value near the
0 point and then effectively improve the performance of
noise resistance. In addition, when the neuron input value
is large, it guarantees an improved and accelerated rate of
convergence. In conclusion, the TANH excitation function
applies to a BP neural network.

4) CONSTRUCT SELF-ADAPTIVE VARIABLE STEP SIZE ON
THE BASIS OF PHYSICAL POWER
The BP neural network-based algorithm well overcomes
deficiencies of traditional blind detection techniques, and
presents outstanding performances. However, simple opti-
mization with gradient descent algorithm is inclined to be
trapped by local minimum and sometimes cannot reach a
globally optimal solution [31], [32]. To solve this problem,
traditional BP neural network model is integrated with the
idea of variable step size to create a BP neural network-
based variable step size model, wherein close values occurred
during self- adaptation process are used to adjust step size
and therefore to obtain the feature of self-adaptation. Take
the self-adaptive variable step size of the connection weight
iteration formula for three layers of a BP neural network
as the example. A fixed step size value is changed into
dynamic changing variable sizes by learning; by this way,
physical power size can be effectively adjusted to solve the
conflict between algorithm convergence sate and steady-state
deviation and to overcome deficiencies of BP neural network-
based traditional detection methods [33]. Themodel structure
is shown as Fig. 5.

FIGURE 5. Self-adaptation variable Step BP neural network blind
equalization algorithm.

In the figure, u(n) is a signaling sequence, l(n) is an
unknown channel, z(n) is a noise sequence, and x(n) is
received signal sequence. ỹ(n) is the signal restored from the
received signal sequence after passing an equalizer, while
ŷ(n) is the signal obtained after judgment. The equalizer in the
figure is modified and superior to a traditional one. It can be
applied in abovementioned new BP neural networks.

For the BP neural network-based communication blind
signal detection model under QPSK system, we have
obtained expressions of the connection weight iteration for
the layers. In the expressions, η1(n) and η2(n) are also named
variable step sizes. Step size value can be automatically
adjusted along with the course of convergence.

η1(n) = η2(n) = β[
1

1− exp(−α |e(n)|2)
− 0.5] (45)

e(n) = ŷ(n)− ỹ(n) (46)

The Adaptive Learning-based Step Size Formula

0 ≤ 1− exp(−α |e(n)|2) ≤ 1

0 ≤
1

1− exp(−α |e(n)|2)
− 0.5 ≤

1
2

0 ≤ η1(n) = η2(n) ≤
1
2
β

During early algorithm convergence, |e(n)| is relatively
large, and so are η1(n) and η2(n) values. When conver-
gence occurs, |e(n)| value decreases continuously, and 1 −
exp(−α |e(n)|) declines as well; namely, values of step sizes
η1(n) and η2(n) decrease as well. It can be known that the vari-
ation trend of |e(n)| is close to those of η1(n) and η2(n). Under
such variation rule, rate and precision of convergence can
both be effectively controlled during such variation course.
A large step size value can be obtained from early algorithm
and accelerate convergence rate; after convergence, the preci-
sion will be improved.

To realize the above plan of algorithm convergence,
the step size shall meet the requirements of following
formulas.

0 ≤ η1(n) = η2(n) ≤
2
3
tr(R)

Namely, β ≤
4
3
tr(R) (47)

In the formula, R is the autocorrelation matrix of input
signal, and tr(R) is the trace of the autocorrelation matrix.
Refer to above the formula to determine β value.

In the formula, when the value of β is relatively large,
the step sizes η1(n) and η2(n) are relatively large, and the
convergence rate of the algorithm is faster than a small

VOLUME 6, 2018 43927



X. Liu et al.: BP Neural Network-Based Communication Blind Signal Detection Method

β value case. However, the convergence precision of the
algorithm is improved when the β value becomes smaller.
It can be found that a faster convergence rate corresponds to a
largerβ value, while the requirement of a precise convergence
course corresponds to a smaller β value.

Generally, selection of α and β values shall refer
to algorithm convergence and step size variation trend.
Computer simulation is used to select α and β values.
On a MATLAB simulation platform, QPSK sending signal
is adopted as the input signal; the signal to noise ratio (SNR)
is 20dB; and proper α and β values are selected under two
different channel environments. Parameters used in the exper-
iments were selected one by one via simulation, and the
selected groups of α and β values effectively indicate how
parameters affect algorithm.

Under the channel 1 state, proper α and β values are
selected. β = 0.006 is firstly selected, as it determines
algorithm convergence. The β is fixed, while the α varies
from α = 0.0001 to α = 0.1 and α = 1 under a dynamic
changing course. The α is fixed as α = 1, while β varies
from β = 0.001 to β = 0.002 and β = 0.006 under a
dynamic changing course. Selection of α and β values are
shown in Fig. 6 and Fig. 7.

FIGURE 6. Selection of α in the self-adaption variable step BP neural
network algorithm under channel 1.

As indicated in Fig. 6, α is less likely to correlate with
the algorithm, and the algorithm convergence is better when
α = 1. It is indicated by Fig. 7 that the model completes
algorithm convergence most effectively when β = 0.006.
When β ≥ 0.006, the convergence is unstable. Consequently,
the channel 1 is selected as the sending platform, and α = 1
and β = 0.006 are determined under the QPSK modulation
system.

Under the channel 1 state, fixedα andβ values are selected.
Based on the simulation platform, let β = 0.002 at first
to facilitate smooth algorithm convergence. The β is fixed,
while the α varies from α = 1 to α = 3 and α = 6 under a
dynamic changing course. The α is fixed as α = 6, while β

FIGURE 7. Selection of β in the self-adaption variable step BP neural
network algorithm under channel 1.

varies from β = 0.0008 to β = 0.001 and β = 0.02 under
a dynamic changing course. Selection of α and β values is
shown in Fig. 8 and Fig. 9.

FIGURE 8. Selection of α in the self-adaption variable step BP neural
network algorithm under channel 2.

According to Fig. 8 and Fig. 9, the model presents optimal
performances when α = 6 and β = 0.002. Consequently,
when the channel 1 is the sending platform, and α = 6
and β = 0.002 are selected as the channel 2 condition-based
variable step sizes under the QPSK modulation system.

To sum up, steady-state deviation will increase slightly
with the acceleration of BP-IVS convergence rate. Since the
descent of convergence rate leads to obvious effect, we select
the parameters when the convergence rate is high.

A BP neural network model is constructed and then the
back-propagation algorithm andBP neural network algorithm
are applied and integrated for training blind signal sample
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FIGURE 9. Selection of β in the self-adaption variable step BP neural
network algorithm under channel 2.

data and adjusting the deviation and network weights, thereby
completing the detection and identification of blind signal.

III. EXPERIMENTAL RESULT AND ANALYSIS
Simulation experiments of blind signal detection are
conducted to verify the effectiveness of the method presented
in this paper, and the platform for the simulation exper-
iments are shown in Fig. 10(a). For the experiments,
the hardware environment is Red Hat Enterprise Linux AS
4.0 computer core, and the software environment is Matlab 7.
The weight coefficient of the frequency band sampling deci-
sion filter is 0.001; the initial value is θ1 = −0.3π ; the code
element transmission bandwidth for network communica-
tion is 200ms; the time interval of network communication
outage is 100ms, the disturbance signal to noise ratio (SNR)
is −15dB; the transmission signal for network real-time
communication is described as s(n) and the frequency
is 350Hz; and the sequence bandwidth of information trans-
mitted in network real-time communication by social popu-
lation is 10KHz ∼ 20KHz.

After detecting sound source blind signal, it is further
processed. Fig. 10(b) is the computer interface for final
processing. The system mainly contains three top modules—
a voice frequency load module, a blind signal detection and
processing module and a result display module, each of
which can be divided into many small functional blocks.
Fig. 10(b) can also be called a graphical user interface, as it
is the final interface used by researchers to study detec-
tion and processing of sound source blind signal and real-
izes researchers’ any conceptions about system functions.
It supports not only .fig-files, but also mostly backstage
.m-files, which include user input interfaces, output inter-
faces, relevant widget callback functions required by some
computational programming and executing procedures, and
completely debugged and separately compiled files. Relevant
widget callback functions required by some computational

FIGURE 10. (a) Simulation experiment platform. (b) Blind signal detection
and processing system.

programming and executing procedures are saved in m-files;
the filenames are same as the names of the user interfaces,
and the two present extremely close relevance. A .fig-file is
the background operational program executed by an .m-file.
During normal operation of the blind signal detection system,
all files are processed as a whole.

The operand for time-frequency transformation of signal
is directly affected by the amount of sampling point, and
the former increases with the latter. As a result, when the
amount of sampling point is increased, the effective informa-
tion from signal detection will also increase, and extracted
information features will be more comprehensive and precise
with improved information classification precision. However,
the method presents certain deficiency—when the amount
of sampling point increases to a certain degree, effective
information as well as its features will not increase and there
will be huge operands, resulting in system crash. To verify the
effectiveness of the BP neural network algorithm-based blind
signal detection method presented in the paper, the amounts
of sampling points in the experiments are set as 256.
The dimensionality of extracted signal feature vector is sensi-
tive to the length of Kalser window; the larger the Kalser
window length is, the higher the dimensionality of extracted
signal feature vector is and the better the signal feature clas-
sification effect is. In a similar way, the increase of the Kalser
window length will result in a dramatic increase of operand
and network load. Therefore, in the paper, the lengths of the
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Kalser window are set to 25 and 37, and the obtained nonzero
singular value is (37 + l)/2 = 19. During the procedure of
signal time-frequency transformation, cross term inhibitory
effect is more obviously affected by transformation parame-
ters W and N of GRD. Therefore, the two parameters shall
be properly set for effective inhibition of the cross term
during the time-frequency transformation procedure. To gain
favorable effects, in the simulation experiments of the paper,
the two parameters are set to WieM/N = 1/5 and rs = 36;
the dimensionality of signal feature vector is affected by the
amount of BP neural network node, which is set to 19; the
amount of BP neural network output node is set as that of the
signal classification; the amount of BP neural network inter-
mediate node is closely related with website complexity and
computation performance; the higher the amount of interme-
diate node is, and the better the network performance is, but
the network operand and complexity increase as well. So, the
relations of the three shall be well weighted. In this paper,
the amount of BP neural network intermediate node is 25, and
the training error threshold is set to 0.02. An operation keys
in ‘‘ICA’’ and carriage return in theMATLAB command line,
and the system runs immediately and shows the system final
interface as Fig. 10(b).

A. SIMULATION EXPERIMENT 1
Detect a group of original signal sources. The sampling
frequency is 11025 Hz; the hybrid matrix is a random matrix;
and the data length is N = 15000.

As shown in Fig. 11, the preprocessed signal source
is detected for blind signal with the method mentioned
in the paper. The BP neural network model goes through
3520 learning times before training stop, and the error
between expected output signal and actual output signal
is 0.053. It can be viewed from Fig. 11and Fig. 12 that the
result based on the method shows one-to-one correspondence
for the signal detection peak pattern as well as basically same
peak intensities. It can be demonstrated that the method of the

FIGURE 11. Original signal source.

FIGURE 12. Signal detection result.

paper presents relatively high precision for detection signal.
Under the precision, the optimal extracted result is shown as
Fig. 13, in which the dotted line is the signal extraction result
while the solid line is the expected output signal.

FIGURE 13. Comparison of signal detection extraction.

From Fig. 13, it can be seen that the output signal of the
extracted result basically fits the expected signal, and that the
basic features of the extracted signal present signal fitting in a
point-to-point pattern from the thickest dimension. The final
approximation errors of different dimensions are reflected
in Tab. 1.

The simulation data shows that the method proposed in the
paper is characterized with high precision for blind signal
detection fitting and has few errors. For the influencing factor
of sensor amount, the paper does not particularly explore
the impacts of sensor amount on blind signal detection and
processing, because under same conditions the application
of more prediction sensors generally leads to more superior
global detection or identification performance. For example,
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TABLE 1. Learning amount and error approximation for different sizes.

to identify, detect or separate n signals, the comprehensive
effect of applying n + 1 sensors will be obviously superior
to application of n sensors. However, in actual operation,
there is no need to input the variable, because regardless
of actual sensor amount, sound signals from different sound
sources will be fused and transmitted to different sensors;
every sensor receives fused signal, and a computer is used
to collect and analyzed the mixed signals. If the signals are
stored with MATLAB, the data will be stored in the form
of .mat-files, actually a column vector. All column vectors
obtained by all sensors compose a mixed signal x(l), a M ∗N
matrix—M indicates data length of every signal (collection
point amount) and N suggests the amount of sensor. When a
random hybrid matrix is generated subsequently, the matrix
row amount is determined by the figure, and the amount of
sensor must be input. The ‘‘number of sensors’’ is Static Text
displaying single-line comment without callback function.
The later input box Edit Text has a callback function, which
converts character string into bout-precision floating-point
format and saves data (the amount of sensor) input by an
experimenter.

The method from the Literature [10] and the BP neural
network-based blind signal detection method proposed in the
paper are respectively used to test 500 groups signal data.
The test precision rates and omission rates are shown
in Tab. 2. The method from the Literature [10] suggests a
detection precision rate of only 73%, while the BP neural
network-based blind signal detection proposed in the paper
makes the tested signal precision be close to the original
values with the repeatedly adjusted and trained sample and
realizes a precision rate of 91% for output sample detec-
tion, a significantly improved detection precision rate. As to
omission rate, the method from the Literature [10] suggests
a relatively higher omission rate of 9%, while the BP neural
network-based method reduces the omission rate.

TABLE 2. Comparison of simulation detection test indexes.

Fig. 14 compares the blind signal detection precision rate
and the omission rate between the traditional method and the
method proposed in the paper. As suggested by the figure,
the BP neural network-based algorithms with cyber-physical-
social systems proposed in the paper has a significantly better
detection precision rate than that of the method from the
Literature [4] (91% vs. 75%). Besides, it is also suggested
by Fig. 14 that, compared with the blind signal omission
rate associated with the method from the Literature [4]
(about 9%), the algorithm proposed in the paper is more
excellent for its omission rate (2%, below one quarter of
that associated with the Literature [4] method). It is further
demonstrated by Fig. 14a and 14b that the method proposed
in the paper has a higher detection precision rate, a higher
accuracy and a lower omission rate than traditional methods.

FIGURE 14. (a) Comparison of detection precision rate. (b) Comparison of
omission rate.

The experiment compares a traditional method and the
method proposed in the paper in terms of a main performance
index—error rate, and compares the error rate associated with
communication signal detection.

The learning conditions of the two algorithms are shown
as Fig.15 and Fig.16. The x-coordinates suggest the amounts
of training, while the y-coordinates indicate average error
of training. Fig.15 suggests the blind signal detection errors
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FIGURE 15. Error of the method from literature 9.

FIGURE 16. Error of the algorithm provided in the paper.

associated with the condition of applying the Literature [9]
method, while Fig.16 indicates that associated with the
algorithm proposed in the paper. By comparing the two
figures, it is clear that the traditional algorithm of the
Literature [9] tends to converge after 2000 learning iteration,
but the convergence effect is poor, the error rate is unstable,
and the value of final error is larger than that of the algorithm
proposed in the paper. As for the algorithm proposed in the
paper, the curve obviously converge after 30 iterations, there
is no great fluctuation, and the final error rate is only 2%.

To sum up, compared with the traditional methods from
Literature [10], Literature [4], and Literature [9], the method
proposed in the paper is characterized with the advantages
of a low omission rate, a low error rate, and high detection
precision and accuracy. It can be concluded that the BP neural
network-based algorithm with cyber-physical-social systems
proposed in the paper is superior to the traditional algorithms
in reducing blind signal detection error.

The experiment demonstrates that the BP neural network-
based blind signal detection method with cyber-physical-
social systems improves detection precision rate while
reducing omission rate, and complete blind signal detec-
tion in a relatively more effective way. The method
proposed in the paper, on the basis of BP neural network

algorithm, introduces cyber-physical-social systems, avoids
local optimum, and realizes global optimal detection of
communication blind signal. It is significantly superior to
the traditional methods for its detection performances, which
demonstrate high reliability and practical value.

B. SIMULATION EXPERIMENT 2
Agroup of original signal sources are tested, and the sampling
frequency is 11025 Hz. The hybrid matrix is assumed to be

A =
[
1 0.2 0.5
1 0.4 1

]
As shown in Fig. 17 and Fig. 18, the algorithm proposed

in the paper is used to detect blind signal in the preprocessed
signal source.

FIGURE 17. (a) The 1st signal of the blind signal source; (b) the 2nd signal
of the blind signal source.

According to the simulation data, the result of the blind
signal detection using the method proposed in the paper is
more precise and less prone to errors; and the results are
consistent with those of the Experiment 1.

C. SIMULATION EXPERIMENT 3
In the simulation experiment, the sampling frequency is
11025Hz; the amount of algorithm iteration is 200; the source
signal is sawtooth waves and square waves; and the hybrid
matrix with n = 4 and m = 3 is as follow.

A =


1 0.7 0.6
0.5 1 0.8
0.7 0.8 1
0.5 0.5 0.6


The detection result is shown in Fig. 19.
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FIGURE 18. (c) The 1st detected signal; (d) the 2nd detected signal.

FIGURE 19. Signal detection result of the simulation experiment 3 (The
left is the source signal, and the right is the detected signal).

From Fig. 19, it can be seen that the algorithm proposed
in the paper effectively detects frequency domain distribution
of blind signal, and the detection result is almost identical
with the source signal (continuous signal without hopping),
verifying that the method effectively detects communication
blind signal with a relatively high detection precision and a
strong reliability.

D. SIMULATION EXPERIMENT 4
In the simulation experiment, the sampling frequency is
11025 Hz; the source signal is voice signal recorded by the
author; the maximal iteration amount is set as 30; and the

hybrid matrix is:

A =
[
0.31 0.02
0.20 0.75

]
The source signal is shown as Fig. 20, while the test result

is presented in Fig. 21.

FIGURE 20. Original sources S1 and S2 used in the simulation
experiment 4.

FIGURE 21. Tested signals X1 and X2.

The simulation experiments show that the blind signal
detection method proposed in the paper effectively achieves
signal detection with a high precision, few errors, a low
omission rate and other merits. It overcomes the deficiencies
of traditional methods for detection and extraction of blind
signal.

IV. CONCLUSION
A BP neural network-based blind signal detection method
with cyber-physical-social systems is proposed in the paper.
With integrated cyber-physical-social systems, a BP neural
network model is constructed for blind signal detection; in a
network environment, blind signal obtained from communi-
cation devices that are used by social groups, is taken as the
data sample and input into the BP neural network model;
back-propagation algorithm is used to train and adjust blind
signal data derivation and network weight, making output
vectors possibly close to expected vectors; the common BP
neural network algorithm is integrated with cyber-physical-
social systems to avoid problems frequently encountered in a
pure BP neural network algorithm, including local minimum
and slow algorithm convergence. Experiments are conducted
to verify the proposed blind signal detection method, which
improves the signal detection precision, reduces the omis-
sion rate, and can effectively complete achieve blind signal
detection. The detection method is characterized by a high
precision (reaching 91%), a small error rate (below 0.1) and
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a low omission rate (below 2%), overcomes the deficiencies
of traditional methods for detection and extraction of blind
signal, and provides a new perspective for precise detection
of blind signal. In future work, we will evaluate our proposed
model in some realistic scenarios, consider stronger fusion
model, and design new solutions under new model.
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