
Received March 9, 2018, accepted May 6, 2018, date of publication May 21, 2018, date of current version June 19, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2837654

Integrating Feature Selection and Feature
Extraction Methods With Deep Learning to
Predict Clinical Outcome of Breast Cancer
DEJUN ZHANG 1, LU ZOU 1, XIONGHUI ZHOU2, AND FAZHI HE 3, 4
1College of Information and Engineering, Sichuan Agricultural University, Yaan 0086-625014, China
2College of Informatics, Huazhong Agricultural University, Wuhan 0086-430070, China
3School of Computer, Wuhan University, Wuhan 0086-430072, China
4State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 0086-430074, China

Corresponding author: Dejun Zhang (djz@sicau.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61702350 and Grant 61472289 and in
part by the Open Project Program of the State Key Laboratory of Digital Manufacturing Equipment and Technology, HUST,
under Grant DMETKF2017016.

ABSTRACT In many microarray studies, classifiers have been constructed based on gene signatures
to predict clinical outcomes for various cancer sufferers. However, signatures originating from different
studies often suffer from poor robustness when used in the classification of data sets independent from
which they were generated from. In this paper, we present an unsupervised feature learning framework by
integrating a principal component analysis algorithm and autoencoder neural network to identify different
characteristics from gene expression profiles. As the foundation for the obtained features, an ensemble
classifier based on the AdaBoost algorithm (PCA-AE-Ada) was constructed to predict clinical outcomes
in breast cancer. During the experiments, we established an additional classifier with the same classifier
learning strategy (PCA-Ada) in order to perform as a baseline to the proposed method, where the only
difference is the training inputs. The area under the receiver operating characteristic curve index, Matthews
correlation coefficient index, accuracy, and other evaluation parameters of the proposed method were tested
on several independent breast cancer data sets and compared with representative gene signature-based
algorithms including the baseline method. Experimental results demonstrate that the proposed method using
deep learning techniques performs better than others.

INDEX TERMS Cancer prognosis, ensemble classifier, principal component analysis, deep learning.

I. INTRODUCTION
Identifying small feature sets which effectively characterize
different disease states is an important application of genome-
wide expression data analysis [1]. In breast cancer, patients
with the same disease status can have obviously different
treatment responses and overall outcomes. The strongest
predictors like histological grade and lymph node status
for metastasis still fail to accurately identify breast tumors
according to their clinical manifestations. It is reported that
the risk of distant metastases can be reduced by chemother-
apy or hormonal therapy; however, more than 70% of patients
receiving this treatment would have survived without this
treatment in any case, and none of the currently reported
methods allow for patient-tailored therapy strategies [2].

Recently, many methods have been proposed to classify
cancer sub-phenotypes into different risk groups in order to
ensure cancer sufferers receive befitting therapy. Most of

the classifiers perform feature space reduction by deriving
compact features via the selection or extraction of features
in a supervised or unsupervised manner [2]–[5]. However,
the performance of these classifiers is generally not scalable
and usually declines sharply when used on datasets distinct
to those used for classifier construction. For instance, two
recent large scale gene expression profile studies respectively
picked out a signature consisting of 70 genes [2] and another
signature consisting of 76 genes [5] for predicting distant
metastasis in breast cancer sufferers. Both of these stud-
ies achieved classification accuracy of 0.7 [6] on their own
patient cohorts. However, when each method was applied to
the other’s dataset, they performed poorly, with accuracy of
less than 0.55 [1].

We argue that there are two fundamental reasons why
classifiers based on chosen gene signatures are so unstable
and study-independent. Firstly, due to heterogeneity of gene
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expression data, the detected gene signatures in prognosis
features play role as ‘‘passengers’’ instead of ‘‘drivers’’ of the
phenotypic differences, resulting in a large number of passen-
ger signals being involved in the expression profiles of tumor
cells [1], [7]. Secondly, the proper performance of conven-
tional classifiers relies heavily on handcrafted features, and
identifying the most appropriate features for the given task
remains difficult.

Recently, deep learning for many challenging machine
learning problems have achieved great performance with
respect to learning hierarchical nonlinear patterns from large
scale datasets [8]–[10]. In general, the term ‘‘deep learning’’
is used in reference to learning a hierarchical representation
of the data through multiple layers of abstraction (e.g. multi-
layer feed-forward neural networks). Nowadays, quite a few
new techniques have been developed in deep learning, such
as the deployment of general-purpose computing on graph-
ics processing units [11], [12], and new training method-
ologies [13], [14]. With these advances, deep learning has
demonstrated state-of-the-art performance in a wide range
of applications, both in traditional machine learning tasks
such as computer vision [15], speech recognition [16] and
natural language processing [17], and in natural science appli-
cations such as RNA binding site prediction [18], protein
secondary structure prediction [19] and pathogenic variants
annotation [20]. While neural networks (e.g. the stacked
autoencoder (SAE), the deep belief network (DBN), and the
multi-layer perceptron (MLP)) have been successfully used in
bioinformatics [18], [21]–[26], to the best of our knowledge,
deep learning has not been employed for predicting clinical
outcomes for cancer sufferers.

The goal of this paper is to enhance the performance in
cancer prognosis prediction and develop a more generalized
outcome classifier. To achieve this, (i) we propose a more
general way of learning features by integrating feature selec-
tion and feature extraction methods [27] with several deep
learning techniques [28], [29]. (ii) We construct an ensemble
classifier with a boosting algorithm [30] to strongly predict
distant metastasis in breast cancer. (iii) Compared with pre-
vious classifier learning approaches, the method proposed in
this paper demonstrates an unsupervised feature learning and
supervised classifier learning mechanism.

The rest of this paper is organized in the following manner.
Section II briefly reviews the feature learning methods we
employed in this paper, including principal component analy-
sis algorithm and the autoencoder neural network. Section III
outlines the overall framework of our method for predicting
cancer outcomes. In Section IV, we give out some imple-
mentation details such as parameter learning methods and
classifier training skills. In Section V, we discuss the eval-
uation results and compare them with those of representative
classifiers.

II. BACKGROUND
Many different feature selection and feature extraction meth-
ods exist and are beingwidely used to perform dimensionality

reduction for high-dimensional microarray data [31], [32].
Intuitively, all these methods consider to eliminate redun-
dant and irrelevant information so that the classification of
novel test cases will be more accurate [33]. In this section,
we briefly review principal component analysis (PCA) algo-
rithm and the autoencoder neural network used for dimen-
sionality reduction (also called feature learning) in this paper.

A. PRINCIPAL COMPONENT ANALYSIS
PCA or Karhunen Love transform, is a multivariate technique
which is said to be one of the most popular methods for
linear dimensionality reduction [27]. Using the covariance
matrix and its eigenvalues and eigenvectors, PCA finds the
principal components in data which are uncorrelated eigen-
vectors, each representing some proportion of variance in the
data [34].

Let X = {xi}mi=1 denote a set of training data. xi repre-
sents a variable with dimensionality D, which stands for the
gene expression profiles in this paper. The aims of PCA are
summarized as: (a) to extract the most important information
from xm; and (b) to compress the dimensionality of X by
keeping the important information only. PCA is regarded as
an orthogonal projection of the original D-dimensional data
onto a new k-dimensional space (k < D), the objective to be
minimized is the variance of the projected data as illustrated
in Fig. 1.

FIGURE 1. The process of orthogonal projection. PCA searches a space
with smaller dimensionality, denoted as the principal subspace and
indicated by the magenta line. Thus the orthogonal projection of the
original data points (red dots) onto this subspace maximizes the variance
of the projected points (green dots). An alternative definition of PCA is
based on minimizing the sum-of-squares errors mapping the original
points to the projected ones, as indicated by the blue lines.

Assume the direction of the projection space using a vec-
tor u1 (with dimensionality of D). Then each data point xi
is projected onto a scalar value defined by uT1 xi. Next, let

the mean of the projected data be equal to uT1 X , where X
denotes the mean of sample set given by X = 1

m

∑m
i=1 xi.

Finally, the variance of the projected data will be given by:
1
m

∑m
i=1(u

T
1 xi−u

T
1 X )

2
= uT1 Su1, where S denotes a common

covariance matrix for all samples: S = 1
m

∑m
i=1(xi − X )

(xi − X )T . Now, the objective of PCA is to maximize the
projected variance uT1 Su1 with respect to u1. See more details
in the literature [27].
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B. AUTOENCODER NEURAL NETWORK
In this section we give a brief description about the autoen-
coder neural network, which is a nonlinear dimensionality
reduction method and is famous for feature extraction.

FIGURE 2. General architecture of an autoencoder, mapping the input xi
to the output ri (called reconstruction) through a code or hidden
representation hi . The autoencoder has two components: the encoder f
(mapping xi to hi ) and the decoder g (mapping hi to ri ).

As illustrated in Fig. 2, an autoencoder is a feed-forward
neural network which is often trained to learn representa-
tions or effective encoding of the original data X = {xi}mi=1.
In this way, it learns a function g

(
f (xi)

)
≈ ri that approxi-

mately represents the input data constructed from a limited
number of feature activations and represented by the hidden
units of the network.

Min et al. [35] compared stacked autoencoder with PCA
and Gaussian SVM over 13 gene expression datasets, their
results declared that the autoencoder performs better for the
majority of the datasets, which also motivates us in this
work. As per the literature [36], the general architecture of an
autoencoder is divided into the following parts: (1) the input
units xi; (2) a encoder function f ; (3) a ‘‘code’’ or hidden
representation hi = f (xi); (4) a decoder function g; (5) the
output units also called ‘‘reconstruction’’ ri = g(hi) =
g
(
f (xi)

)
; and (6) a loss function L(xi, ri) computing a scalar

‖xi − ri‖2 which measures how good the reconstruction ri
is of the original input xi. The optimization objective of the
autoencoder is to minimize the expected values of L over the
training examples X .

During each training iteration, the difference between
input and output is measured using square error, and back-
propagation will be performed through the neural network to
perform the weight updates to different layers. If the number
of hidden layer is greater than one, the autoencoder is consid-
ered to be deep, and the encoder function implements non-
linear dimensionality reduction. When the dimensionality of
the hidden layer is less than the dimensionality of the inputs,
the autoencoder is trained to find the best feature compression
of the inputs on the hidden layers. Otherwise, the autoencoder
is trained to map the feature to a higher-dimensional space.

III. METHODS
In this section, we introduce the proposed method in this
work. First, we describe five gene expression datasets
we used and perform some preprocessing on them. Then,
we present our approach for the given problem.

A. GENE EXPRESSION DATASETS AND PREPROCESSING
The gene expression data were downloaded from the
publicly available NCBI GEO database. Each sample
comprises of 129,158 gene expression profiles from the
Affymetrix microarray platform and each profile consists
of 22,268 probes, with respect to 978 landmark genes and
the 21,290 target genes. Specifically, we obtained five differ-
ent breast cancer datasets from the LINCS Cloud1 to evalu-
ate the feasibility and applicability of the proposed method.
All the five datasets were normalized by its original authors
using algorithm MAS5.0, except for GSE4922, which was
normalized using algorithm RMA. Table 1 shows the infor-
mation in detail.

TABLE 1. Breast cancer datasets. Samples were removed if patients had
been censored within 5-year or had received adjuvant treatment.

For the five datasets, patients perform different immune
and pathological parameters in order to influence the out-
come prognosis. For example, the patients in GSE6532 are
all ER-positive, while other datasets contain both patients
with ER-positive and ER-negative. Datasets GSE4922 and
GSE6532 contain both patients with lymph node-positive
and lymph node-negative, while there are only lymph node-
negative patients in the other datasets.

Considering the given classification task, we performed
two-step preprocessing with the five datasets: Firstly, we fol-
low the dataset partitioning scheme in [37], all cancer patients
were divided into poor prognosis (set label as 1) and good
prognosis groups (set label as 0) according to whether distant
metastasis had occurred within 5-year or not. The follow-
up information of patients who had been censored within
5-year or had received adjuvant treatment were removed from
consideration. Secondly, since the gene expression values of
the microarray platform were measured with different algo-
rithms (MAS 5.0 or RMA), we quantiled normalized the five
datasets with the algorithmMAS 5.0, and all the probes were
mapped into Entrez Gene ID and averaged.

B. OVERALL APPROACH
In this paper, we aim to combine both feature selection and
feature extraction methods with deep learning techniques to
learn more representative characteristics from gene expres-
sion profiles, and construct a more powerful classifier for
cancer prognosis prediction. Fig. 3 illustrates the flowchart
of our approach.

1http://www.lincscloud.org/http://www.lincscloud.org/
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FIGURE 3. The flowchart of the proposed method. Our classification task is composed of two phases: (a) unsupervised feature learning,
(b) supervised classifier learning. In the unsupervised feature learning phase, PCA algorithm and deep neural network are applied to learn
concise features from gene expression profiles, while in the classifier learning phase, an ensemble classifier is constructed according to the
features learned before. Note that the last encoding layer and the first decoding layer are sharing with the same parameters.

1) UNSUPERVISED FEATURE LEARNING
Motivated by the feature learning strategy demonstrated
in [25], our feature learning approach is composed of two
phases.
• PCA. Since the dimensionality of gene expression data
is extremely high, and these contain redundant and noisy
data, we employ PCA (as described in Section II-A) to
act as the feature selection method to reduce the dimen-
sionality of the gene expression profiles. PCA performs
a linear approximation of the original data, and retains
significant information in the meanwhile.

• Autoencoder. The resulting features after applying PCA
are simply a linear function of the original data. There-
fore, in order to also capture non-linear associations
among expressions of different genes, an augmented
form of the PCA features in addition to raw features are
subsequently fed into a feature extraction architecture to
learn high-level and complex features for use in the fol-
lowing classification approach. We employ an autoen-
coder neural network for the feature extraction purpose,
and the configuration details are shown in Sections II-B)

Asmentioned before, both of the two phases for feature learn-
ing are independent of data labels, which shows unsupervised
feature learning.

2) SUPERVISED CLASSIFIER LEARNING
In order to perform the task of predicting clinical outcome
for cancer patients, the features generated from the proposed
two-phase unsupervised feature learning approach are subse-
quently appended with a set of labels for classifier learning.
In this paper, we take a variant of AdaBoost algorithm [30]
which demonstrates excellent performance in the classifica-
tion tasks, as the learning approach for the classifier. We
name this classifier in terms of the PCA-AE-Ada (see details
for classifier construction in Section IV). The procedure of

classifier learning is dependent on sample labels, which
shows supervised classifier learning.

The main components of our proposed method for predict-
ing clinical outcome of breast cancer patients are shown as
follows.
• Firstly, given a set of gene expression profiles
X = {xi}mi=1;

• Secondly, principal component analysis is employed to
learn compressed feature sets X̂ = {x̂i}mi=1, with respect
to 1

m

∑m
i=1(u

T
1 xi − u

T
1 X )

2
= uT1 Su1;

• Thirdly, raw gene expression data X and compressed
features X̂ are merged into X̃ , where X̃ = {x̃i|x̃i =
(x̂i, xi)}mi=1. And X̃ are taken as the inputs of autoencoder
neural network in order to learn more complex represen-
tation h(2) using deep learning techniques.

• Finally, the compressed features X̂ and deep repre-
sentations h(2) are concatenated to a comprehensive
manner X ′ that is used for training an ensemble
classifier.

Additionally, as a comparison in the evaluation experi-
ments executed in this paper, a baseline classifier named
PCA-Ada using PCA compressed results as input features
is constructed to contrast with the classifier constructed
with features generated from the two-step feature learning
framework.

IV. IMPLEMENTATION DETAILS
A. DATA ALIGNMENT
On the one hand, when the PCA algorithm is applied to gene
expression data for dimensionality reduction, we can obtain
compressed feature vectors with different dimensions due to
the fact that the size of each dataset is different, and this is
incompatible with the input size of the feature extraction neu-
ral network. For sake of adapting the model we constructed
to data with different dimensions, we padded all the feature
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vectors with values of zero to force the feature sets in the same
dimension without causing performance damage.

On the other hand, our PCA-AE-Ada model contains fea-
ture dimensionality of (m− 1)+32, while the baseline model
PCA-Ada contains a different feature dimensionality ofm−1,
which implicitly indicates these two methods are faced with
different hyperparameter configurations. Therefore, in order
to perform a fairer comparison, we randomly added 32 raw
gene expression data features to the input of the PCA-Ada,
which forces these two methods to a more comparative con-
figurations without increasing redundant information.

B. OBJECTIVE FUNCTION FOR FEATURE EXTRACTION
For the second phase of the proposed feature learning
approach, we utilized the stacked autoencoder2 to create a
deep neural network by stacking multiple autoencoders hier-
achically.

1) NON-LINEAR TRANSFORMATION
Taking the merged representations of the original data X̃
as input, the encoder and decoder parts of the autoencoder
consist of several non-linear transformation layers as follows:

h(1) = σ (ω(1)X̃ + b(1)),

h(j) = σ (ω(j)h(j−1) + b(j)), j = 2, . . . , n. (1)

Here, n denotes the number of layers and σ denotes the
activation function. h(j),ω(j) and b(j) denote the hidden vector,
weight matrix and bias vector in the j-th layer respectively.

2) RECONSTRUCTION LOSS
Autoencoder aims to minimize the distance between inputs X̃
and the reconstructed outputs h(n). Since the number of
parameters in neural network is exponential, and the avail-
ability of training samples is tightly restricted, training deep
neural network is challenged by the risk of overfitting.
To mitigate this problem, we imposed some sparsity penalties
to the hidden layers, thus, the reconstruction loss is shown as:

Lrec = ||X̃ − h(n)||22 + η
n∑
j=1

||b(j)||22. (2)

Here, h(n) represents the reconstruction outputs and η is a
hyper-parameter to balance the bias of different parts. In this
work, the network is heuristically set up as one input layer,
three hidden layers, and one output layer. The dimension-
ality of each layer is set as 13698+(m − 1), 64, 32, 64,
and 13698+(m− 1), respectively.

C. ACTIVATION FUNCTION IN AUTOENCODER
We employed ELU (Exponential Linear Unit) [28], which
speeds up training in deep neural networks and leads to higher
classification accuracy, as the activation function σ :

σ (h(j)) =

{
h(j) if h(j) > 0
α(exp(h(j))− 1) if h(j) ≤ 0

(3)

2https://blog.keras.io/https://blog.keras.io/

σ ′(h(j)) =

{
1 if h(j) > 0
σ (h(j))+ α if h(j) ≤ 0

(4)

Here, the ELU hyperparameter α (set α = 1.0 ) controls
the value to which an ELU saturates for negative net inputs.

D. OPTIMIZATION WITH ADAM
We utilize a stochastic gradient-based optimization method:
Adam (adaptive moment estimation) [29] to train the autoen-
coder neural network by minimizing the squared reconstruc-
tion loss with a sparsity penalty. As far as we know, it is
the best technique to accelerate gradient-based optimization.
In each training iteration, Adam requires first-order gradients
with a small memory consumption. In this case, it computes
adaptive learning rates separately for different parameters
from estimates of first and second moments of the gradients,
combining the advantages of AdaGrad [38] (which works
well with sparse gradients) and RMSProp [39] (which works
well in on-line and non-stationary settings). The parameter
settings in this work are batch size is 64, iteration times is 10k,
learning rate is 0.001. Other parameters are set as default.

E. NORMALIZED INITIALIZATION
During training of the neural network, we initialized the
biases as 0 and the weight matrix ω(j) at each layer
with a commonly used uniform distribution, as defined
in [40] and [41]:

ω(j)
∼ U [−

1
√
k
,

1
√
k
] (5)

where U [−a, a] is the uniform distribution in the interval
(−1×10−4, 1×10−4) and k is the size of the hidden layer
(the number of columns of ω).

F. ADABOOST ALGORITHM FOR CLASSIFIER LEARNING
In the classifier learning phase of our proposed method,
the AdaBoost [42] algorithm is employed to train the clas-
sifier, which is a supervised learning algorithm designed to
calculate a binary classifier that best separates the positive
and negative instances.

Given a set of training examples {(x ′i , yi)}
m
i=1, where x

′
i

denotes the training samples and yi is a Boolean value allo-
cated according to the clinical information of cancer suffer-
ers during the dataset pre-processing stage. AdaBoost is an
effective procedure which boosts the classification accuracy
of a simple learning algorithm by combining a collection of
weak classifiers {gj(x ′)} into a stronger classifier g(x ′). In this
work, we adopt decision stump as the weak classifier learning
algorithm. The output of g(x ′) is 1, if x ′ is classified as a
positive instance and 0 otherwise.

Here, we employ a variant of the AdaBoost algorithm
proposed by [30]. This variant restricts weak classifier to
depending on a single feature fj only. As a result, each weak
classifier consists of a single feature fj, a threshold θj, and a
parity pj which is either−1 or 1, thus indicating the direction
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of the inequality.

gj(x ′) =

{
1 if pjfj(x ′) < pjθj
0 otherwise.

(6)

The boosting algorithm calculates the optimal values for θj
and pj for each weak classifier gj(x ′), such that the number of
misclassified training samples is minimized. To achieve this,
it considers all possible combinations of both pj and θj, for
which the number is limited since only an infinite number of
training example are given:

(pj, θj) = argmin
(θk ,pk )

m∑
i=1

|gk (x ′i )− yi| (7)

The resulting algorithm is given in Algorithm 1.

Algorithm 1 The AdaBoost Algorithm
Require:
A set of examples {(x ′i , yi)}

m
i=1, where yi = 0, 1 for

negative and positive samples respectively.
Initialization:
Let l and l ′ be the number of negatives and positives

respectively, initialize weights w1,i =
1
2l ,

1
2l′ according

to the value of yi.
for t = 1, ...,T do

Normalize the weights wt,i, according to∑m
i=1 wt,i = 1.

For each feature fj, train a weak classifier gj.
For error εj of a classifier gj is evaluated with respect
to the weights wt,1, ...,wt,m:

εj =
∑m

i=1 wt,i|gj(x
′
i )− yi|.

Choose the classifier gj with the lowest error εj and
set (gt , εt ) = (gj, εj).
Update the weights wt+1,i = wt,iβ

1−ei
t , where

βt =
εt

1−εt
and ei = 0 while example x ′i is correctly

classified by gt and 1, otherwise.
return The strong classifier is:

g(x ′) =


1 if

T∑
t=1

log
1
βt
gt (x ′) ≥

1
2

T∑
t=1

log
1
βt

0 otherwise.

V. RESULTS AND DISCUSSIONS
A. EXPERIMENTAL SETTINGS
1) REPRESENTATIVE CLASSIFIERS FOR
COMPARISON PURPOSE
In order to evaluate our ensemble classifier, four typical
methods for distant metastasis prediction were analyzed: the
70-gene classifier [2], the 76-gene classifier [5], and two
versions of gene set statistics classifier [37]: set-median and
set centroid. The 70-gene and 76-gene classifiers are the most
famous gene signature based methods used to predict cancer
outcome, while the gene set statistics classifiers have been

proven to have the comparable performancewhile beingmore
stable than the previous classifiers [37].

In the 70-gene classifier [2], a total of 70 genes were
selected as gene signatures. The average vectors of the
70 genes’ expression levels were calculated as the patterns
of the two outcome groups (good outcome and bad out-
come), and the samples were assigned to the more correlated
groups using Person’s correlation coefficients. In the 76-gene
classifier [5], a total of 76 genes were selected as 76 gene
signatures. Based on the 76 genes, a relapse score for each
sample was calculated by using the weighted linear combi-
nation of the 76 genes’ expression values, then each sample
was assigned to one of the two outcome groups according to
whether the relapse score is higher than a threshold. In the
gene set statistics classifier [37], it first downloaded the
pre-specified gene sets from the database of MSigDB [10],
then the statistical value was calculated to select the optimal
feature set which was derived from the gene sets and being
used to construct the centroid classifier. There are several
statistics methods used to evaluate the gene sets [37], includ-
ing set-centroid, set-median, PCA, and t-test. We choose the
set-centroid and set-median statistics methods as they are
reported to perform better than others [37].

Furthermore, we construct a baseline classifier using the
same strategy of our proposed method for a comparison
between the classifier using deep learning and the classifier
not using deep learning.

2) PERFORMANCE MEASURE METRICS
There is a serious imbalance between the number of patients
with good outcomes and those with poor outcomes in the
cancer datasets. For example, compared against 154 good
outcome patients, there are only 28 poor outcome patients
in dataset GSE11121. In this scenario, the MCC (Matthews
correlation coefficient, shown as Eq. (8)), and the AUC
(the area under the receiver operating characteristic curve)
which are reported to be the most reliable measure crite-
rions when the distribution of the dataset is highly unbal-
anced [43], were applied as the two main evaluation
metrics.

MCC =
t+t− − f +f −√

(t+ + f +)(t+ + f −)(t− + f +)(t− + f −)
(8)

Here, t+ represents true positive, t− represents true neg-
ative, f + represents false positive and f − represents false
negative. In addition, accuracy (ACC), specificity (SP) , and
sensitivity (SN) were also included in this section, described
as follows.

ACC =
t+ + t−

t+ + t− + f + + f −
(9)

SN =
t+

t+ + f −
(10)

SP =
t−

t− + f +
(11)
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B. PERFORMANCES OF OUR ENSEMBLE CLASSIFIERS
In our study, we used GSE2034 as the joint training-
evaluation dataset to learn features from gene expression
profiles and construct classifiers. Specifically, we performed
10 times five-fold cross validation on GSE2034. For each
time, the whole dataset was randomly divided into five
groups, four of them were used for training the model, and
the rest was used for evaluating the presented method. We
averaged all the results and reported the final score as the eval-
uation performance. During test experiments, we additionally
performed independent tests on the other four GEO datasets
mentioned in Section III-A. All the results for the proposed
two methods were shown in Table 2 and 3, respectively.

TABLE 2. The performance of the PCA-AE-Ada classifier.

TABLE 3. The performance of the PCA-Ada classifier.

From Table 2, it can be concluded that our proposed
PCA-AE-Ada classifier performs well, and it behaves in an
stable manner on both the training-validation set and the inde-
pendent test sets. It achieves fairly good AUC scores (almost
above 0.70) and ACC rates (almost above 0.8) and demon-
strates superior performances on detecting either positive
instances or negative instances (with fairly good SN and SP).

Comparing the performance of the PCA-AE-Ada clas-
sifier with that of PCA-Ada classifier, we can find that
PCA-AE-Ada with deep learning techniques works better
than PCA-Ada, which is constructed with compressed fea-
tures from PCA for all the evaluation metrics. Interestingly,
from the SN and SP rates, it can be seen that PCA-AE-Ada
demonstrates better performance for detecting both positive
instances and negative instances, while PCA-Ada works well
for positive instances only. This means that deep learning can
effectively alleviate the problem of unbalanced distribution
of training datasets, and enhance the generalization ability of
the classifiers.

C. COMPARING THE RESULTS WITH
REPRESENTATIVE METHODS
The AUC and MCC scores resulted from our method and
the other four classifiers on the five datasets are shown
in Fig. 4 and 5, respectively. Note that the details of the other
four methods are not shown.

FIGURE 4. The AUC scores of the five classifiers on the five datasets.

FIGURE 5. The MCC scores of the five classifiers on the five datasets.

From Fig. 4, our ensemble classifier achieves the best AUC
performance on most datasets, albeit it does not perform as
well as the two gene set based methods (set-median and set-
centroid) on GSE11121. Then is the gene set based methods,
and these two methods achieve better AUC performances
than the two gene signature classifiers. The similar phe-
nomenon can be found through the scores of MCC.

From Fig. 5, four representative classifiers (especially
the gene signature based classifiers) except for ours per-
form worse on GSE4922 and GSE6532 than on the other
three datasets. We explain this for the fact that these two
datasets contain both lymph node-negative and lymph node-
positive patients, while the other datasets contain lymph
node-negative patients only. Surprisingly, our ensemble clas-
sifier shows a robust performance with respect to GSE4922:
it reaches MCC of 0.21 (AUC of 0.68), which significantly
outperforms the others.

With the aforementioned observation, it can be seen that
the proposed method is less sensitive to unbalanced datasets
and is actually more stable, in contrast to the other four
classifiers show dramatic variations with respect to the
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FIGURE 6. The overall performance of our classifier and other four
representative classifiers over the five NCBI datasets.

different datasets. However, our classifier still fails to work
on dataset GSE6532; it may be caused by an implicit drive
towards the way to go precisely because these are the
harder cases in the clinical setting requiring proper treatment
planning.

Furthermore, to demonstrate the performance of our
method in a more comprehensive manner, the AUCs and
MCCs of our method against other four methods were aver-
aged over the five public NCBI datasets, and Fig. 6 reported
the final results.

Comprehensive analysis shows that our classifier reaches
an AUC of over 0.714, while the two gene set classifiers
have a significantly worse result about 0.55. Nevertheless,
the two gene signature classifiers can only reach an AUC of
smaller than 0.6. The similar phenomenon can be seen from
the indexes of the MCC.

In conclusion, our ensemble classifier based on PCA and
autoencoder features is superior to other published methods,
it achieves better classification accuracy as well as better
generalization ability with respect to the different datasets.

VI. CONCLUSION
In this paper, we present a new method to predict the clin-
ical outcomes of cancer patients with using deep learning.
In the feature learning phase, principal component analysis
and an autoencoder neural network are combined with the
exportation of deep learning techniques for the purpose of
learning more representative features from gene expression
data. In the classifier learning phase, we utilize the AdaBoost
algorithm to construct an ensemble classifier for the final
prediction task. As the evaluation test results demonstrated,
our proposedmethod showsmore powerful prediction ability,
and the classifier constructed with deep learning techniques
performs better than the others. Through our analysis and
discussion, the features which extracted automatically by
the neural network showed an excellent ability for rapid
generalization and explicitly improved the performance of
outcome prediction.

However, there are still some drawbacks to our classi-
fier. Firstly, the model constructed is not easy to analyze—
this is a common problem in neural networks. In addition,

identifying which features are most important to the predic-
tion task is difficult. Secondly, due to the complex structure
of the deep learning model, the amount of data is less prone to
over-fitting. Although our model has achieved good results,
the generalization capacity needs to be further improved with
more publicly available datasets.
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