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ABSTRACT We report a new class of textiles with electrochemical functions which, when moistened by a
conductive liquid (saline solution, sweat, and wound fluid), generate dc voltage and current levels capable
of powering wearable electronics on the go. Contrary to previously reported power generation techniques,
the proposed fabrics are fully flexible, feel and behave like regular clothing, do not include any rigid
components, and provide dc power via moistening by readily available liquids. Our approach entails printed
battery cells that are composed of silver and zinc electrodes deposited onto a polyester fabric to generate
power in the microwatt range. Electrochemical characterization of the discharge of a single printed battery
cell in a 10 M sodium hydroxide (NaOH) electrolyte shows reproducible results with a sustained power level
of ∼80 µW for over 3 h. Scalable dc power may also be achieved by connecting multiple battery cells in
series via flexible and conductive E-threads. Indeed, a series connection of two battery cells is demonstrated
to boost the generated voltage from 1.4 to 2.5 V. Notably, this in-series printed battery arrangement is shown
to successfully power a digital thermometer under 10MNaOH, a 0.5M sodium chloride solution (mimicking
human sweat), and Dulbecco’s phosphate-buffered saline solution (mimicking bodily fluid electrolytes).
Overall, the proposed technology is expected to be of utmost significance for healthcare, sports, military,
and consumer applications, among others.

INDEX TERMS Conductive threads, electrochemical devices, energy storage, flexible electronics, power
generation, wearable sensors.

I. INTRODUCTION
Wearable electronics are becoming increasingly popular for
consumer, sports, and healthcare applications [1]–[3]. In fact,
the International Data Corporation (IDC) predicts ship-
ment of over 240 million wearable devices (smart watches,
bracelets, socks, shirts, etc.) by 2021 [4]. As is well known,
one of the biggest challenges associated with these wearable
devices relates to the way of powering them [5], [6]. Conven-
tional batteries are typically employed, but they are bulky and
rigid, and, thus, obtrusive for wearable applications.

Alternate power-generating technologies are recently
being explored, but they exhibit several drawbacks. For exam-
ple, solar energy harvesters occupy large surfaces, require
bulky/rigid energy-collecting panels, and only collect energy
at certain times of the day [7]. Another popular method,
namely Radio-Frequency (RF) power harvesting, requires an
RF source within close proximity of the wearer, exhibits low

efficiency, and requires bulky/rigid circuitry to perform the
AC-to-DC conversion [8]. Wearable biomechanical energy
harvesting technologies have also been reported [9], [10].
These harvesters capture energy from human motion (foot
strike, limb motion, or joint motion) and typically rely on
nano-triboelectric [11] or piezoelectric [12] actuation, con-
verting naturally available mechanical energy to electrical
energy directly. Nevertheless, these solutions still require
bulky components that inhibit the flexibility of the wearable’s
they power.

In this work, we introduce a new path to unobtrusively
poweringwearable electronics by integrating electrochemical
functions onto textiles [13]. The proposed method involves
printing silver- and zinc-based electrodes (cathodes and
anodes) on fabrics to generate DC power when moistened
by a conductive liquid (saline solution, sweat, wound fluid,
etc.) [14]–[16]. The conductive liquid serves as an electrolyte,
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enabling ion flow between the anode and cathode. Flexible
inter-connections between several of the printed battery cells
allow one to connect them in series or parallel to achieve
desired voltages and current, per the application require-
ments. Such inter-connections may be ubiquitously realized
on the fabric via conductive E-threads [17], [18]. To our
knowledge, this is the first time that fully-flexible batteries
are implemented directly on fabric and activated via readily
available bodily fluids (saline solution, sweat, wound fluid,
etc.). Example applications include T-shirts and leggings that
power up sensors while the wearer is exercising and sweating
(accelerometers, gyroscopes, heart rate sensors, etc.) [19],
epidermal pads that trigger an alarm when the underlying
wound opens up [20], [21], or smart diapers that assist in toilet
training for kids with autism [22], [23].

The rest of the paper is organized as follows. Section II
describes the operating principle of the proposed electro-
chemical fabrics. Section III discusses fabrication of these
electrochemical-storage-integrated fabrics. Section IV pro-
vides measurement results, including discharge experiments,
feasibility of DC power scalability, and a proof-of-concept
demonstration of powering a digital thermometer. The paper
concludes in Section V.

II. OPERATION PRINCIPLE
The operation principle of the proposed fabric with inte-
grated electrochemical functions is summarized in Fig. 1. The
main element of this approach is a printed battery cell (see
Fig. 1(a)) that is composed of two electrodes deposited onto a
fabric. Inspired by our previous work [14]–[16], the electrode
materials used to realize the anode and cathode are selected
as zinc (Zn) and silver oxide (Ag2O), respectively. When the
electrochemical fabric comes into contact with an ionic con-
ducting liquid, the latter acts as an electrolyte. Thismeans that
the Ag2O cathode will undergo a reduction process, while the
Zn anode will be oxidized. In turn, ionic current will flow
through the electrolyte to balance the charges at the anode
and cathode. The circuit will close when flexible conduc-
tive E-threads [17], [18] (marked as ‘‘electrical connections’’
in Fig. 1) are used to connect a sensor or other device to the
battery’s electrodes. In this particular case, electrons will flow

FIGURE 1. Operation principle of the proposed electrochemical fabrics
with power generation capabilities: (a) Realization of a single printed
battery cell. (b) Example series connection of two printed battery cells
aiming to boost the generated voltage.

through the E-threads, serving as current collectors for theDC
power to be utilized. The aforementioned oxidation-reduction
process is outlined in (1) and (2) for an example case where
NaOH is used as the electrolyte. That is, DC voltage and
current can be generated just by getting the electrochemical
fabric moistened via an ionically conducting liquid (saline
solution, sweat, wound fluid, etc.).

Ag2O+ H2O+ 2e− → 2Ag+ 2OH− (1)

Zn+ 2OH− → ZnO+ H2O+ 2e− (2)

Incorporating engineering concepts into the design of the
printed battery cells can boost/scale the generated DC power
levels depending on the application. For example, a voltage
boost can be achieved by connecting two or more of the
printed battery cells in series. An illustration of this principle
is shown in Fig. 1(b). Such connections among different
battery cells may be implemented via flexible and conductive
inter-connects, such as conductive E-threads [17], [18] and/or
inks [24].

III. ELECTROCHEMICAL FABRIC FABRICATION
A. FABRICATION OF A SINGLE CELL
In order to create a conductive paste that can adhere onto a
polyester fabric, a standardized method for making battery
electrode slurry is employed [25]. First, the solid form of the
electrode (Zn or Ag2O) is crushed to fine powders using a
mortar and pestle. Then, a binder such as polyvinylidene flu-
oride (PVDF) in an n-methyl-2-pyrrolidone (NMP) solvent
is added to the powder to form an ink that can be screen-
printed, hand-printed or printed using an inkjet printer. In this
work, a typical ratio of 90 wt.% active materials and 10 wt.%
PVDF is experimentally determined to provide maximum
conductivity while still allowing the electrodes to adhere
to the fabric. The desired ink viscosity is tuned by adding
and removing the NMP solvent. For screen- or hand-printed
electrodes, the ideal ink attains a paste-like viscosity.

The Zn and Ag2O inks are deposited onto a medical-
grade polyester fabric via hand-printing or screen-printing.
Medical-grade polyester fabrics are used in order to provide
maximum bio-absorbability (absorb on-body sweat), how-
ever most conventional clothing fabrics (cotton, silk, and
linen) can be potentially used instead. Once the electrode inks
are deposited, the cloth is dried at 100 ◦C for one hour. The
dry weight of the Zn electrode was standardized to 30 mg
(90 wt%) and up to 300 mg for Ag2O (90 wt%). The stan-
dardized dry mass of the metal slurries was chosen to provide
sufficient battery capacity to power a sensor for several hours
using Zn as the limiting reactant. This procedure creates cir-
cular deposits with a diameter of approximately 0.50 cm for
the Zn (anode) and Ag2O (cathode) onto a 1.5 cm × 4.0 cm
fabric cutout. This proof-of-concept diameter of the anode
and cathode was chosen so as to allow the battery cell to
fit onto the defined fabric cutout while also enabling hand-
stitching of E-threads across the deposits to serve as current
collectors. In this particular case, flexible Cu/Ni E-threads
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FIGURE 2. Printed battery cell consisting of Silver Oxide (cathode) and
Zinc (anode) deposited onto a flexible fabric.

of 0.075mm diameter [26] are selected for electrical probing.
Fig. 2 shows a completed, flexible printed battery cell on a
polyester fabric.

FIGURE 3. Two printed battery cell consisting of silver oxide (cathode)
and zinc (anode) wired in series using Cu/Ni E-threads.

B. FABRICATION OF INTER-CONNECTED BATTERY CELLS
To allow for DC power scalability, multiple printed battery
cells can be inter-connected in series or parallel, or combi-
nations thereof depending on the desired current and voltage
output. For example, a voltage boost can be achieved by con-
necting two or more of the printed battery cells in series. To
do so, flexible electrically conducting threads can be stitched
into the polyester fabric in order to electrically measure and
utilize the energy stored in these battery cells. As an example,
Fig. 3 shows the physical representation of two printed battery
cells in a series arrangement. In this particular case, two
battery cells were printed on two separate pieces of polyester
fabric, and flexible Cu/Ni E-thread was used to stitch/connect
these cells for maximum electrical contact. Each of the cells
were, eventually, moistened separately. Alternatively, instead
of physically separating the two cells, hydrophobic sprays
(or other means of electrical separation) could be employed
between adjacent battery cells to avoid detrimental short
circuits. Expectedly, similar techniques can be pursued to
wire the printed battery cells in a parallel arrangement, per
the application requirements.

IV. MEASUREMENT RESULTS
A. POWER GENERATION FROM A SINGLE CELL
The power generation capabilities of our in-house fabricated
electrochemical fabrics were measured using standard

FIGURE 4. Power discharge curve of the printed battery cells.

electrochemistry techniques. To obtain the discharge char-
acteristic of the printed battery cells, galvanostatic measure-
ments (constant cell discharge) were performed that helped
evaluate the voltage performance and capacity available.

As a proof-of-concept, a conventional electrolyte for an
alkaline Ag2O/Zn battery, 10 M NaOH, was used to establish
the discharge characteristics of the batteries printed on fab-
rics. A constant discharge current of 100 µAwas applied to a
single pair of anode and cathode while the voltage of the cell
was measured. Fig. 4 shows a variation of the galvanostatic
data gathered, where power instead of voltage is plotted on the
y-axis, thereby showing the available power versus time from
a single printed battery cell at a constant 100 µA load. The
results from three separate battery cells are super-imposed,
demonstrating consistency, and, thus, verifying the repro-
ducibility of the designed electrochemical cells on the fabrics.
Notably, Fig. 4 can be evaluated in three parts: the first hour,
hours 2-4, and hours 4-5. In the first hour, the power generated
by the printed battery cell starts at approximately 120 µW
and falls to ∼100 µW. Then, at around the 80-minute mark,
the first depletion region occurs and the battery cell stabilizes
to ∼80 µW for 3 hours. Finally, a second depletion region
occurs at the end of the fourth hour, and the battery cell
stabilizes at ∼30 µW.

B. POWER SCALABILITY
Table I shows the voltage boost achieved by connecting mul-
tiple printed battery cells in a series arrangement (see Fig. 3).
As shown, a single cell in 10 M NaOH generates 1.46 V,
whereas the voltage is boosted to 2.54 V when two cells
are connected in series, and to 2.85 V when three cells are

TABLE 1. Scalability results.
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FIGURE 5. Equivalent circuit model for two printed battery cells in series
arrangement.

connected in series. Similar voltage scaling is observed when
using DPBS buffer (mimicking wound fluid) and 0.5M saline
solution (mimicking human sweat) as the electrolyte. Since
DPBS and saline are weaker electrolytes compared to 10 M
NaOH, lower voltage levels are generated by the printed
battery cell.

As seen, and contrary to conventional batteries, the voltage
boost from the batteries printed on fabrics is not linear. This
non-linearity is due to the high built-in impedance associ-
ated with the printed battery cell. To better understand this
non-linearity, Fig. 5 shows an equivalent circuit model for
two printed battery cells connected in series, while (3) shows
how to calculate a potential voltage boost when the battery
cells are connected to a sensor.

Vsensor = 2Vb
Zsensor

2Zb + Zsensor
(3)

Here, Vb is the voltage generated by each of the printed
battery cells, Zb is their built-in impedance, and Zsensor is the
impedance of a sensor device to be powered via the proposed
configuration. For a conventional battery, Zb is orders of
magnitude less than Zsensor, so the Zb term in (3) is negli-
gible and linear voltage scaling occurs. However, the built-in
impedance of the printed battery cell is not negligible com-
pared to a typical sensor impedance (e.g., Zsensor = 120 k�
for the digital thermometer to be employed in Section IV.C);
therefore, non-linear voltage scaling occurs. This high value
for Zb is attributed to a range of factors, ranging from the
exact geometry of the metal deposits on the fabric to possible
impurities in the metals used to make the metal slurries.

C. PROOF-OF-CONCEPT DEMONSTRATION OF
POWERING UP A THERMOMETER
A proof-of-concept experiment was performed to demon-
strate powering of a digital thermometer using the proposed
printed batteries on fabrics. To do so, an Anpro thermometer
was employed. The minimum operational voltage and current
requirements for this device were measured to be 1.5 V and
12.5µA, respectively. Under these conditions, the impedance
of the thermometer was calculated to be 120 k�. According to
Table I, the voltage level produced by a single printed battery
cell was not enough to consistently power on the sensor.
Hence, two printed battery cells wired in a series arrangement
were used to meet the sensor power requirements.

FIGURE 6. Two printed Zn/Ag2O battery cells deposited onto a flexible
fabric, wired in series using thin Cu/Ni E-thread and soaked in 10M
NaOH, powering a digital thermometer.

Our proof-of-concept experimental set-up is shown
in Fig. 6. Specifically, the employed printed battery cells were
fabricated based on the process described in Section III.A,
connected via conductive E-threads as shown in Fig. 3, and
further moistened by: a) a conventional 10MNaOH solution,
b) a buffer solution (mimicking human body fluid) and
c) a saline solution (mimicking human sweat). In all three
cases, and as shown in Fig. 6, the power levels were high
enough to successfully power the digital thermometer.

To our knowledge, this is the first time that powering of
sensor electronics is demonstrated using flexible batteries
printed on fabrics with biological fluid mimics.

V. CONCLUSION
We introduced a novel method for powering wearable elec-
tronics by integrating electrochemical storage onto fabrics.
Contrary to conventional powering techniques (batteries, RF
power harvesting, etc.), the designed method leverages con-
ductive liquids readily available on the body (sweat, wound
fluid, etc.), and is fully flexible, behaving like regular cloth-
ing. Proof-of-concept results for a single battery cell demon-
strated sustained power generation of ∼80 µW. Importantly,
multiple of these printed battery cells can be inter-connected
to scale the DC power, hence, allowing flexibility in meet-
ing various application/sensor requirements. As an example,
a series combination of two battery cells inter-connected via
flexible E-threads was shown to successfully power up a
digital thermometer.

Scalable DC power up to the mW range and for long
periods of time is envisioned for the future, to be realized via
optimization of the associated materials, pattern design, inter-
nal impedance characteristics, and inter-connections. Overall,
this novel technology is expected to be vital for unobtrusively
powering electronics in military, sports, and emergency oper-
ations, among others.
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