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ABSTRACT Under the background of global energy conservation, the energy hub (EH)-based integrated
energy system is becoming the transition direction of future energy structure. In this paper, we study the
cooperative economic scheduling problem for multiple neighboring integrated energy systems on the basis
of EH. Different with the traditional non-cooperative mode where each EH operates individually, these EHs
constitute a cooperative community and can share energy among them. Considering the autonomy and self-
interest of different EHs, the coordinatedmanagement problem is modeled as a bargaining cooperative game,
where involved EHs will bargain with each other about the exchanged energy and the associated payments.
The bargaining solution can achieve a fair and Pareto-optimal balance among the objective functions of
different EHs. A distributed optimization is applied to find the bargaining solution of the cooperative system,
to guarantee the autonomous scheduling and information privacy of EHs. Numerical studies demonstrate
the effectiveness of the bargaining-based cooperative economic scheduling framework, and also show the
improvement of benefits of the community system.

INDEX TERMS Cooperative game, distributed approach, energy hub, energy trading, multiple energy
system, Nash bargaining.

NOMENCLATURE
A. ACRONYMS
EH Energy hub
RES Renewable energy source
EUC Electricity utility company
GUC Natural gas utility company
CHP Combined heat and power unit

B. INDICES AND SETS
t , T Index and set for time hours
i, N Index and set for energy hubs

C. PARAMETERS
Pbge,t Background electric demand for EUC

at time t

Pbgg,t Background natural gas demand for
GUC at time t

λme,t Wholesale electricity market price at
time t

λmg,t Wholesale natural gas market price at
time t

λmin
e Minimum profit parameter for EUC
λmin
g Minimum profit parameter for GUC
κe,t , µe,t Electricity price parameters
κg,t , µg,t Natural gas price parameters
PRESe,i,t Renewable outputs of EH i at time t

η
gf
gh Thermal generation efficiency of gas

furnace
ηse,i Charging/discharging efficiency of

electric storage in EH i
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ηsh,i Charging/discharging efficiency of
thermal storage in EH i

η
chp
ge , ηchpgh Electric/heat generation efficiency of

CHP
Le,i,t , Lh,i,t Electric/heat loads of EH i at time t
Pin, max
e , Pin,max

g Maximum transport limits of
electricity and natural gas

Pchp,min
e,i , Pchp,max

e,i Minimum/maximum electric outputs
of CHP in EH i

Pchp,min
h,i , Pchp,max

h,i Minimum/maximum thermal outputs
of CHP in EH i

Pgf,min
h,i , Pgf,max

h,i Minimum/maximum thermal outputs
of gas furnace in EH i

Rchpu,i , R
chp
d,i Ramp up/down limits of CHP in EH i

Rgfu,i, R
gf
d,i Ramp up/down limits of gas furnace

in EH i
Pch,max
e,i , Pdis,max

e,i Maximum charging/discharging limits
of electric storage in EH i

Pch,max
h,i , Pdis,max

h,i Maximum charging/discharging limits
of thermal storage in EH i

Es,min
e,i , Es,max

e,i Minimum/maximum energy bounds
of electric storage in EH i

Es,min
h,i , Es,max

h,i Minimum/maximum energy bounds
of thermal storage in EH i

Es
e,i,0, E

s
h,i,0 Initial energy level of electric storage

and thermal storage in EH i

D. VARIABLES
Pse,t Total electric demand for EUC at time t
Psg,t Total natural gas demand for GUC at time t
Pine,i,t Purchased electricity from EUC by EH i at

time t
Ping,i,t Purchased natural gas from GUC by EH i at

time t
λine,t Retail electricity price at time t
λing,t Retail natural gas price at time t
Pexe,i,t Exchanged energy with other EHs by EH i at

time t
Cex
e,i,t Associated exchanging cost for EH i at time t

Pchpe,i,t Electric power generated by CHP in EH i at
time t

Pchph,i,t Thermal power generated by CHP in EH i at
time t

Pgfh,i,t Thermal power generated by gas furnace in
EH i
at time t

αi,t Dispatch ratio of natural gas input between
CHP
and gas furnace in EH i at time t

Es
e,i,t Energy level of electric storage in EH i at

time t

Es
h,i,t Energy level of thermal storage in EH i at

time t
Sche,i,t , S

dis
e,i,t Charging/discharging binary state variable

of electric storage in EH i at time t
Schh,i,t , S

dis
h,i,t Charging/discharging binary state variable

of thermal storage in EH i at time t
Pche,i,t , P

dis
e,i,t Charging/discharging power of electric

storage in EH i at time t
Pchh,i,t , P

dis
h,i,t Charging/discharging power of thermal

storage in EH i at time t

I. INTRODUCTION
Nowadays, energy crisis and environmental pollution have
made utilizing multiple energy in an integrated way a trend
of future energy system [1]–[5]. Meanwhile, the develop-
ment of combined heating and power (CHP) plants, gas-
fired units, and other multi-energy conversion technologies
further accelerates this energy structure transition [2], [3].
In a multiple energy system, different forms of energy are
interconnected with each other via coupling infrastructures,
instead of traditional being operated independently. However,
owing to the complexity of energy coupling and the diversity
of involved energy devices, great challenges are posed for
the coordination and management of the integrated energy
system. In this context, energy hub (EH) [4], [5], is pro-
posed to help model and manage the multiple energy system,
especially for the distribution-level regional integrated energy
system.

In literature, there exist many researches on the optimiza-
tion and scheduling of multiple energy system on the basis
of EH. Specifically, in [6], an optimization approach for
multiple buildings was formulated via an EH, where the EH
concept was utilized to manage a collection of buildings in
a cooperative way. Based on EH, Hao et al. [7] proposed a
hierarchical optimization model for the small and medium-
sized regional multiple energy system, with time-varying tar-
iffs and flexible operating modes. In [8], an optimal operation
framework was established for an EH based micro integrated
energy system, where the objective was to minimize the total
operation cost related to electricity, natural gas, and heat.
In [9], the market transaction problem of an EH manager was
illustrated, where the EH manager needed to determine the
optimal involvement in upstream energy markets, as well as
the optimum electricity and heat offering prices to clients.
In [10], a day-ahead dynamic optimal operation model was
presented for a micro energy grid based on EH concept, and
also the real-time pricing problem was considered. However,
the study in [6]–[10] mainly focused on the optimal opera-
tion/ scheduling/ transaction problem from the perspective of
a single EH operator, without considering the interaction with
other EHs.

Due to the diversity of configurations and the proximity
of locations, it is common that there exist multiple EHs
managed by different operators in a region. This may bring
a complex business environment for those adjacent EHs.
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Specifically, the economic decisions of EHs can be tightly
coupled together, as the trading of each individual EH could
affect the energy prices in the local market, and further influ-
ence the decisions of other EHs. Therefore, it is necessary
for an EH operator to consider the impacts from other neigh-
boring EHs when formulating its own economic operation
strategy.

Recently, the game-theoretic approaches were commonly
adopted to explore the interaction among different EHs.
Sheikhi et al. [11] and Bahrami and Sheikhi [12] formulated
the problem as an ordinal potential game, where each EH
locally and selfishly determined its action to minimize its
operation cost. The works in [13] and [14] also developed a
non-cooperative/ competitive game to address the interaction
among EHs, where a Nash equilibrium was found to guaran-
tee the stable optimal operation of EHs. Bahrami et al. [15]
further extended the works in [11]–[14] with uncertainty
about load demand and energy prices, and focused on the
competition among multiple EHs using the potential game
theoretic approach. In [16], the interaction among multiple
parks with various energy flows was also characterized as
a non-cooperative game model. Considering the self-interest
and information privacy of different EHs, the game theory
provides a natural model to study their conflicts and collab-
orations, in a distributed way [17]. However, the above non-
cooperative game theory-based approaches in [11]–[16] are
more focused on the independency of EHs, failing to capture
the potential cooperation among EHs, and thus usually lead
to non-Pareto optimal solutions.

With the popularization of smart devices, different EHs
can share some information to achieve the cooperative opera-
tion. Through limited information exchange, these EHs may
obtain the more favorable retail prices from upstream energy
suppliers, compared with that in non-cooperative mode [18].
Moreover, it is possible that these EHs exchange energy
among them, due to the diversity of both configurations and
demands in different EHs. This can not only increase the oper-
ation flexibility of multi-energy systems, but also reduce the
waste of surplus energy. Furthermore, it can also bring more
benefits for these EHs, compared with only exchanging with
the utility companies in non-cooperative mode. Therefore, it
is equally important to consider the scenario that involves
multiple small autonomous EHs operating in a cooperative
fashion, which is considered as an important feature of the
future energy business mode [1], [2].

In this paper, we are interested in studying the coop-
erative interaction of multiple EHs, to explore the coordi-
nated scheduling and energy trades among them. To the best
knowledge of the authors, although much research has been
devoted to the economic interaction of multiple EHs, little
work is available on the cooperative interaction among them.
It is assumed that these EHs are autonomous but willing
to collaborate together to constitute a cooperative commu-
nity. They jointly optimize their scheduling and also conduct
energy trading among them, by taking the advantages of
diverse supply and demand patterns in different EHs. Sim-

ilar to [11]–[16], the upstream energy retail prices are also
assumed to be influenced by the total energy demands of EHs
in this region. Since EHs can anticipate the impact of their
actions on price values, the cooperative scheduling of those
EHs may also bring more favorable prices for themselves.

A common approach to optimizing the cooperative coali-
tions is to minimize the total cost of all participants, through a
centralized or hierarchical control structure [19], [20]. How-
ever, it always leaves unclear about the associated trading
costs (benefits) for each EH should pay (receive). Moreover,
some private information of EHs are exposed, which is not
desirable for these autonomous EHs. Therefore, this paper
intends to study the cooperative interaction problem, from
the bargaining game theoretic perspective. The bargaining
solution not only can effectively improve the economic per-
formances of these participants, but also can help achieve
a fair benefit balance among EHs. Through a distributed
optimization approach, the bargaining cooperative problem
can be decomposed into local problems for each autonomous
EH operator, instead of being controlled by a global oper-
ator. This enables those cooperative EHs autonomously
coordinate together without exposing their own private
information.

The main contributions of this paper are listed as follows:
• We develop a cooperative scheduling model for multiple
EHs, where EHs not only coordinate their local opera-
tions, but also conduct energy trading with each other.

• We characterize the cooperative interaction among EHs
as a bargaining game framework, which can help fairly
distribute the surplus benefits among those EHs.

• We utilize a distributed solution to solve the bar-
gaining problem, which can effectively guarantee
the autonomous scheduling and information privacy
of EHs.

The remainder of this paper is organized as follows:
Section II elaborates on the system framework. Section III
describes the energy pricing schemes of the upstream suppli-
ers, and also formulates the bargaining cooperative interac-
tion among EHs. Section IV presents a distributed algorithm
to solve the bargaining-based model. Section V demonstrates
the case studies. Finally, Section VI concludes the paper.

II. SYSTEM FRAMEWORK
Consider a cooperative community comprised of a set N =
{1, · · · ,N } of interconnected EHs as shown in Fig.1, all of
which share a common natural gas utility company (GUC)
and electricity utility company (EUC). These EHs involve
three types of energy: electricity, natural gas, and heat. Dif-
ferent types of energy are coupled by EHs’ distributed multi-
generation units, including energy conversion, storage, and
generation. Here, each EH is assumed to be equipped with the
following energy devices: renewable energy source (RES),
combined heat and power unit (CHP), gas furnace, electric-
ity storage, and thermal storage. Within the hub, energy is
transformed into various forms to meet the users’ demands,
including electric loads and thermal loads.
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Theoretically, an EH can flexibly represent the multi-
energy system of arbitrary scale. However, this study only
focuses on small-scale EHs, e.g., residential communities,
commercial buildings, industrial facilities, etc., so that these
neighboring EHs can exchange energy with each other in this
cooperative community. In the community, due to the dis-
tinction of the power generation and consumption profiles in
different EHs, these EHs may act as either energy sell-
ers or buyers depending on their net power profiles. Hence,
the energy can be exchanged among these EHs. Belonging
to different stakeholders, EHs need to bargain with each
other about the exchanged amounts and the associated pay-
ments, so that their economic benefits are not jeopardized.
In this regard, the cooperation among these EHs is actually a
paradigm of transactive interaction, and the cooperative com-
munity be seen as a peer-to-peer network (P2P) [21], [22].

To guarantee the autonomy, each EH is assumed to have
a local energy management system (u-EMS). Interiorly, the
u-EMS can send controlling signals to its internal devices and
customers, to optimize the operation of the EH. Exteriorly,
the u-EMS can exchange real-time information with other
EHs in this cooperative community and the utility companies
in the upper level. Therefore, each EH can bargain with other
EHs about the traded power and the associated payment.
Meanwhile, the EH can also independently buy natural gas
and electricity from the outer GUC and EUC at real-time
retail prices.

III. PROBLEM FORMULATION
In this section, we first illustrate the electricity pricing
schemes of EUC and GUC, then demonstrate the bargaining
game framework of EHs, and finally formulate the bargaining
cooperative scheduling model of multiple EHs in this coop-
erative community.

A. ELECTRICITY AND NATURAL GAS PRICING SCHEMES
Considering the retail prices of EUC and GUC will affect the
detailed energy purchase schedules of EHs, we first present
the electricity and natural gas pricing schemes. As energy
intermediaries, the EUC and GUC usually buy energy from
the wholesale electricity and natural gas markets, and then
sell to energy hub i ∈ N at the retail price λine,t and λ

in
g,t .

Apart from EHs, the EUC and GUC may also supply back-
ground electric and natural gas demandsPbge,tandP

bg
g,t for other

consumers [15]. Then, the total electricity and natural gas
supplied by the EUC and GUC are:

Pse,t = Pbge,t +
∑
i∈N

Pine,i,t , ∀t ∈ T

Psg,t = Pbgg,t +
∑
i∈N

Ping,i,t , ∀t ∈ T
(1)

The corresponding retail prices for EHs λine,t and λing,t
depend on both the wholesale market prices and the
total energy demands. The detailed dynamic pricing

model is:{
λine,t = λ

min
e + κe,tλ

m
e,t + µe,tPine,t , ∀t ∈ T

λing,t = λ
min
g + κg,tλ

m
g,t + µg,tPing,t , ∀t ∈ T

(2)

where λmin
e , λmin

g guarantee the minimum profit margins for
the EUC and GUC; parameters κe,t , κg,t scale the wholesale
market price λme,t and λ

m
g,t , respectively; µe,t , µg,t represent

the linear relationships between the retail prices and total
demands. The reasoning details of the dynamic pricing model
are available in [15] and omitted here to save space.

According to (1)-(2), EUC and GUC will compute the
retail electricity and natural gas prices respectively, and then
announce these information to EHs. After receiving the retail
prices information, the EH will optimize its internal schedul-
ing (including energy exchanged with other EHs) and trans-
mit its determined energy demands Pine,i,t , P

in
g,i,t to EUC and

GUC, respectively.

B. BARGAINING GAME AMONG MULTIPLE EHS
In this community, these EHs recognize that they can be
better off via cooperation, although they belong to differ-
ent operators. Different from the individual EH operation,
in the cooperative mode, EHs not only can coordinate their
local energy supplies and demands, but also can conduct
energy trading with each other. Consequently, the cooper-
ation amongst EHs can provide better economic outcome
(or reduced operation cost) than being isolated from each
other with pure self-interest. However, the critical question
for this cooperation is, how should this reduced cost be shared
in a fair manner?

A common approach that is used for optimizing a coalition
is to minimize the total cost of all participants, from the
perspective of a global controller. Nevertheless, this method
undermines the autonomy and privacy of the involved EHs;
moreover, it may lead to an unequal distribution of the coali-
tion benefits. To solve this challenge, we use the bargaining
cooperative game theory-based approach, which can optimize
the entire community performance whilst guaranteeing that
the surplus profits of cooperation are fairly distributed among
those participants [23], [24].

First, we define the payoff of EH i as ui in this bargaining
game; meanwhile, di represents the payoff of EH i when no
cooperation is reached, also called the disagreement point.
Then, the bargaining-based optimal coordination among
EHs can be achieved by solving the following optimization
problem:

Max
N∑
i=1

ln(ui − di)

subject to: ui ≥ di, ∀i ∈ N (3)

To incentivize players to cooperate with each other, the fea-
sible set of the bargaining game only includes the payoffs
which are better than the payoff at the disagreement point.
The obtained optimal solution of (3), i.e. Nash bargaining
solution (NBS), will achieve an optimal tradeoff between
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FIGURE 1. Structure of the cooperative community with multiple EHs.

Nash fairness and Nash efficiency, and thus can effectively
motivate players to collaborate together [25].

Here, we regard the minus operation cost Ci of an EH in
the time horizon as its payoff, i.e., ui = −Ci; and the minus
non-cooperative operation cost Cnon

i of EH i as the initial
disagreement point, i.e., di = −Cnon

i . Then, the bargain-
ing cooperative model among EHs is transformed into the
following form:

Max
N∑
i=1

ln(Cnon
i − Ci)

subject to: Ci ≤ Cnon
i , ∀i ∈ N (4)

where Cnon
i − Ci corresponds to the cost reduction of EH i

through bargaining. In this bargaining cooperative model,
each EH attempts to maximize its cost reduction, compared
with that in non-cooperative mode.

C. COOPERATIVE ECONOMIC SCHEDULING
MODEL OF EHS
These interconnected EHs constitute a cooperative commu-
nity where they can share their surplus energy to other defi-
cient EHs to minimize their operation costs. The cost of an
EH can be partitioned into three types: electricity purchase
cost from EUC, gas purchase cost from GUC, energy trading
cost (or revenue) with other EHs. Here, we only consider
the electricity exchange among EHs. Denote the amount of
electricity exchanged of EH i as Pexe,i,t , and the associated
cost is Cex

e,i,t . If EH i purchases energy from other EHs at
time slot t , then Pexe,i,t > 0, and the corresponding payment
Cex
e,i,t > 0; otherwise, if EH i sells electricity to other EHs,

thenPexe,i,t < 0, andCex
e,i,t < 0. The detailed formulation about

the cost of EH i is:

Ci =
∑
t∈T

[
λine,tP

in
e,i,t + λ

in
g,tP

in
g,i,t + C

ex
e,i,t

]
(5)

To guarantee the benefits from the community cooperation,
EH i will bargain with other EHs about the trading cost
Cex
e,i,t . As illustrated above, the bargaining-based optimal

coordination in this cooperative community can be achieved
by solving the following optimization problem:

Max
N∑
i=1

ln

[
Cnon
i −

∑
t∈T

(
λine,tP

in
e,i,t + λ

in
g,tP

in
g,i,t + C

ex
e,i,t

)]
(6)

Note that, in this bargaining-based objective function, the
non-cooperative cost Cnon

i of any EH i ∈ N is regarded
as the known input parameter. Meanwhile, it is assumed
that each EH i ∈ N would truthfully report its value of
Cnon
i , as a prerequisite for joining the cooperative community.

The incentive to guarantee this truthful declaration can be
achieved by the Vickrey-Clarke-Grove based mechanism, or
other faithful mechanisms [26], [27].

Considering the internal balance in this community,
the exchanged energy and the associated payments should
satisfy the following constraints:∑

i∈N

Pexe,i,t = 0, ∀t ∈ T (7)∑
i∈N

Cex
e,i,t = 0, ∀t ∈ T (8)

Apart from the community-level energy and payment bal-
ance, additional constraints within any EH i ∈ N are given
below:

Pchpe,i,t + P
RES
e,i,t + P

dis
e,i,t − P

ch
e,i,t + P

in
e,i,t + P

ex
e,i,t = Le,i,t ,

∀t ∈ T (9)

Pchph,i,t + P
gf
h,i,t + P

dis
h,i,t − P

ch
h,i,t = Lh,i,t , ∀t ∈ T (10)

Pchpe,i,t = η
chp
ge αi,tP

in
g,i,t , ∀t ∈ T (11)
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Pchph,i,t = η
chp
gh αi,tP

in
g,i,t , ∀t ∈ T (12)

Pgfh,i,t = η
gf
gh

(
1− αi,t

)
Ping,i,t , ∀t ∈ T (13)

0 ≤ αi,t ≤ 1, ∀t ∈ T (14)

0 ≤ Pine,i,t ≤ P
in, max
e , ∀t ∈ T (15)

0 ≤ Ping,i,t ≤ P
in,max
g , ∀t ∈ T (16)

Pchp,mine,i ≤ Pchpe,i,t ≤ P
chp,max
e,i , ∀t ∈ T (17)

Pchp,minh,i ≤ Pchph,i,t ≤ P
chp,max
h,i , ∀t ∈ T (18)

Pgf,minh,i ≤ Pgfh,i,t ≤ P
gf,max
h,i , ∀t ∈ T (19)

−Rchpd,i 1t ≤ P
chp
e,i,t+1 − P

chp
e,i,t ≤ R

chp
u,i 1t, ∀t ∈ T − 1

(20)

−Rgfd,i1t ≤ P
gf
h,i,t+1 − P

gf
h,i,t ≤ R

gf
u,i1t, ∀t ∈ T − 1

(21)

0 ≤ Pche,i,t ≤ S
ch
e,i,tP

ch,max
e,i , ∀t ∈ T (22)

0 ≤ Pchh,i,t ≤ S
ch
h,i,tP

ch,max
h,i , ∀t ∈ T (23)

0 ≤ Pdise,i,t ≤ S
dis
e,i,tP

dis,max
e,i , ∀t ∈ T (24)

0 ≤ Pdish,i,t ≤ S
dis
h,i,tP

dis,max
h,i , ∀t ∈ T (25)

0 ≤ Sche,i,t + S
dis
e,i,t ≤ 1, ∀t ∈ T (26)

0 ≤ Schh,i,t + S
dis
h,i,t ≤ 1, ∀t ∈ T (27)

Es
e,i,t+1 = Es

e,i,t + P
ch
e,i,t+1η

s
e,i − P

dis
e,i,t+1/η

s
e,i,

∀t ∈ T − 1 (28)

Es
h,i,t+1 = Es

h,i,t + P
ch
h,i,t+1η

s
h,i − P

dis
h,i,t+1/η

s
h,i,

∀t ∈ T − 1 (29)

Es,min
e,i ≤ Es

e,i,t ≤ E
s,max
e,i , ∀t ∈ T (30)

Es,min
h,i ≤ E

s
h,i,t ≤ E

s,max
h,i , ∀t ∈ T (31)

Es
e,i,T = Es

e,i,0 (32)

Es
h,i,T = Es

h,i,0 (33)

In the above formulations, constraints (9) and (10) are
the electric and thermal power balance equations of EH i,
respectively. Constraints (11)-(13) characterize the energy
conversion relationships of CHP and gas furnace, respec-
tively. Constraint (14) imposes the bounds of natural gas ratio
input to CHP in EH i. Constraints (15) and (16) restrict that
the input electric and gas power from EUC and GUC for EH i
are within the allowable capacities, respectively. Constraints
(17)-(19) guarantee that electric and thermal power outputs
of CHP and gas furnace are within the generation capacities.
Constraints (20)-(21) represent the ramp up and down limits.
Constraints (22)-(25) are the charging and discharging limits
of electric storage and thermal storage. Constraints (26)-(27)
enforce the constraints about binary state variables of energy
storage and thermal storage, which require that the charging
and the discharging states of a storage are mutually exclu-
sive. Constraints (28)-(29) express the electric and thermal
energy level dynamics of electric storage and thermal stor-
age, respectively. Constraints (30)-(31) signify the bounds
of stored electric and thermal energy in electric and thermal

storage, respectively. Constraints (32)-(33) require that the
electric and thermal storages have the same energy level at
the beginning and the end of scheduling horizon.

IV. DISTRIBUTED SOLUTION
In this section, we utilize a decentralized optimizationmethod
to solve the bargaining cooperative problem, which enables
the EHs in this community to coordinate with each other,
without exposing their own private information. The alter-
nating direction method of multipliers (ADMM) [28] is intro-
duced to design the distributed approach, as ADMMhas good
convergence properties for the optimization problems with
non-strictly convex objective functions.

A. PROBLEM DECOMPOSITION
In this bargaining cooperative problem (6)-(33),
constraints (9)-(33) can be separated into each EH; how-
ever, the community-level constraints (7)-(8) couple all EHs
together. In order to decouple each EH’s exchanged power
variables and the associated payment variables, we introduce
auxiliary variables:

P̂exe,i,t = Pexe,i,t , ∀t ∈ T, ∀i ∈ N (34)

Ĉex
e,i,t = Cex

e,i,t , ∀t ∈ T, ∀i ∈ N (35)

By enforcing consensus constraints as in (34)-(35), the
bargaining cooperative problem can be rewritten as:

Max
N∑
i=1

ln

[
Cnon
i −

∑
t∈T

(
λine,tP

in
e,i,t + λ

in
g,tP

in
g,i,t + C

ex
e,i,t

)]
subject to: P̂exe,i,t = Pexe,i,t , ∀t ∈ T, ∀i ∈ N

Ĉex
e,i,t = Cex

e,i,t , ∀t ∈ T, ∀i ∈ N

(7)− (33)

variables:


P̂exe,i,t , Ĉ

ex
e,i,t ,P

ex
e,i,t ,C
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e,i,t ,P
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e,i,t ,P
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g,i,t ,P
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Pdise,i,t ,P
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e,i,t ,P

chp
h,i,t ,P
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h,i,t ,P
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h,i,t ,P
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h,i,t ,

∀t ∈ T, ∀i ∈ N


(36)

The augmented Lagrangian function for the bargaining
cooperation objective is:

L

=

∑
i∈N

− ln

[
Cnon
i −

∑
t∈T

(
λine,tP

in
e,i,t + λ

in
g,tP

in
g,i,t + C

ex
e,i,t

)]

+

∑
i∈N

∑
t∈T

[
λi,t

(
P̂exe,i,t − P

ex
e,i,t

)
+
ρ1

2

(
P̂exe,i,t − P

ex
e,i,t

)2]
+

∑
i∈N

∑
t∈T

[
γi,t

(
Ĉex
e,i,t − C

ex
e,i,t

)
+
ρ2

2

(
Ĉex
e,i,t − C

ex
e,i,t

)2]
(37)

where λi,t , γi,t are the Lagrangian multipliers, and ρ1 > 0,
ρ2 > 0 are penalty parameters, corresponding to
constraints (34), (35) respectively.
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By using the ADMM decomposition technique, the prob-
lem (36) can be decomposed into the lower-level subproblem
for each EH and the upper-level subproblem for a virtual coor-
dinator. The lower-level subproblem involves EHs solving
their local optimization problems in parallel based on fixed
dual variables λi,t , γi,t and auxiliary variables P̂exe,i,t , Ĉ

ex
e,i,t .

The upper-level subproblem involves the virtual coordinator
updating the auxiliary variables and dual variables using the
results from the lower-level EH problems.

Responsible for information exchanges and information
updates, the virtual coordinator does not control any energy
components in EHs. Generally, the virtual coordinator is a
non-profit driven computing module, which can be served
by the community-level cyber network [29], or public cloud
computing center [13], etc. Resorting to the smart communi-
cation technologies, the virtual coordinator can communicate
with all participating EHs in this cooperative community.
In order to keep fairness, the virtual coordinator also should
not have any tendency.

Specifically, the subproblem for each EH is formulated as:

Min − ln

[
Cnon
i −

∑
t∈T

(
λine,tP

in
e,i,t + λ

in
g,tP

in
g,i,t + C

ex
e,i,t

)]

+

∑
t∈T

[
−λi,tPexe,i,t +

ρ1

2

(
P̂exe,i,t − P

ex
e,i,t

)2]
+

∑
t∈T

[
−γi,tCex

e,i,t +
ρ2

2

(
Ĉex
e,i,t − C

ex
e,i,t

)2]
subject to: (9)− (33)

variables:

{
Pexe,i,t ,C
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chp
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h,i,t , ∀t ∈ T

}
(38)

And the subproblem for the virtual coordinator is:

Min
∑
i∈N

∑
t∈T

[
λi,t P̂exe,i,t +

ρ1

2

(
P̂exe,i,t − P

ex
e,i,t

)2]
+

∑
i∈N

∑
t∈T

[
γi,t Ĉex

e,i,t +
ρ2

2

(
Ĉex
e,i,t − C

ex
e,i,t

)2]
subject to:

∑
i∈N

P̂exe,i,t = 0, ∀t ∈ T∑
i∈N

Ĉex
e,i,t = 0, ∀t ∈ T

variables:
{
P̂exe,i,t , Ĉ

ex
e,i,t ,∀t ∈ T,∀i ∈ N

}
(39)

B. ALGORITHM IMPLEMENTATION
The detailed procedure for the distributed algorithm to
achieve NBS is elaborated in Algorithm 1. First, each EH
i ∈ N solves the local problem (38) in parallel, to obtain
the optimal solution

{
Pex
e,i,C

ex
e,i,P

in
e,i,P

in
g,i ,P

chp
e,i ,P

dis
e,i ,P

ch
e,i,

Pchp
h,i ,P

gf
h,i,P

dis
h,i,P

ch
h,i

}
. Then it sends the values of Pex

e,i,C
ex
e,i

to the virtual coordinator. Virtual coordinator, after receiv-
ing the update values of Pex

e,i,C
ex
e,i from all EHs, solves the

optimization problem in (39) to obtain the optimal solution{
P̂
ex
e,i, Ĉ

ex
e,i

}
. Based on the current values of Pex

e,i, P̂
ex
e,i, C

ex
e,i,

Ĉ
ex
e,i, the virtual coordinator updates the dual variables in

Algorithm 1, and then send the values P̂
ex
e,i, Ĉ

ex
e,i, λi, γ i to the

corresponding EHs. Meanwhile, the penalty parameters ρ1,
ρ2 can be updated as diminishing stepsizes, e.g., ρ[k]1 = 1/k ,
ρ
[k]
1 = 1/k , to achieve a faster convergence [28].
Note that Algorithm 1 only requires limited informa-

tion exchanges between the upper-level virtual coordinator
and the lower-level EHs. Such communication can be sup-
ported by many existing one-to-many communication tech-
nologies, e.g., LTE cellular technology. For the EHs, they
only need to report their energy exchanged and payment
schedules in this cooperative community, without disclosing
their private information on internal operations. Therefore,
Algorithm 1 can effectively protect the information privacy
of all involved EHs.

Algorithm 1 Distributed Energy Trading Algorithm
1: Initialize: k = 0, λi = 0, γ i = 0, ∀i ∈ N

2: repeat
3: At each EH:
4: repeat
5: wait
6: until receive the updated λi, P̂

ex
e,i, γ i, Ĉ

ex
e,i from the

virtual coordinator
7: 1) solve local problem in (38) for the optimal
solution{
Pex
e,i,C

ex
e,i,P

in
e,i,P

in
g,i,P

chp
e,i ,P

dis
e,i ,P

ch
e,i,P

chp
h,i ,P

gf
h,i,P

dis
h,i,P

ch
h,i

}
8: 2) send Pex

e,i, C
ex
e,i to the virtual coordinator

9: At the virtual coordinator:
10: repeat
11: wait
12: until receives updated Pex

e,i, C
ex
e,i from all EHs

13: 1) solve the problem in (39) for optimal solution{
P̂
ex
e,i, Ĉ

ex
e,i,∀i ∈ N

}
14: 2) update dual variables:

λ
[k+1]
i = λ

[k]
i + ρ1

(
P̂ex[k+1]e,i − Pex[k+1]e,i

)
γ
[k+1]
i = γ

[k]
i + ρ2

(
Ĉex[k+1]
e,i − Cex[k+1]

e,i

)
15: 3) send P̂

ex
e,i, Ĉ

ex
e,i, λi, γ i to corresponding EH

16: update iteration index k = k + 1
17: until terminal condition is satisfied, i.e.,
N∑
i=1

∥∥∥P̂ex[k+1]
e,i −Pex[k+1]

e,i

∥∥∥≤ς1, N∑
i=1

∥∥∥Ĉex[k+1]
e,i −Cex[k+1]

e,i

∥∥∥≤ς2
18: end

V. CASE STUDIES
A. Test Systems
To evaluate the proposed formulation, a regional test system
with four interconnected EHs is considered, where all EHs
are in the residential area and commonly served by one EUC
and one GUC. For EUC and GUC, we set their background
demands of other consumers to Pbge,t = Pbgg,t = 0, as done
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FIGURE 2. Electricity wholesale market prices.

TABLE 1. Technical parameters of controllable devices in each EH.

in [15]. Meanwhile, the wholesale electricity and natural gas
prices are adopted from [30], as shown in Fig.2. The natural
gas wholesale price is set to 19 $/MWh (during the transfor-
mation, the low heating value of natural gas is 9.7 kWh/m3).
Parameters λmin

e , λmin
g are set to 20% of the corresponding

wholesale prices, respectively. Parameters κe,t , κg,t are both
set to 1; and parameters µe,t , µg,t are set to 5 $/MWh and
0.5 $/MWh, respectively.

Each EH’s structure is the same as shown in Fig.1. Owning
energy generation, conversion and storage equipments, each
EH can independently schedule its internal units or trade
with external business entities to meet its local electric and
thermal loads. The daily electric and thermal load curves
of the four EHs are depicted in Fig.3 (a) and (b), respec-
tively. The renewable power profiles of different EHs are
shown in Fig.4. The technique parameters of the controllable
devices, including CHP plant, gas furnace, electricity storage,
and thermal storage, are assumed to be the same for all EHs.
The detailed technical data of those energy infrastructures
are tabulated in Table 1. Note that, the CHPs in this study
are assumed to operate at the fixed electricity-to-heat ratio,
and here the ratio is 1.3. In addition, it is assumed that the
maximum transmission capabilities of electricity and natural
gas for all EH are also the same, i.e., Pin,max

e = 500 kW,

FIGURE 3. Daily load curves of four EHs in the test system. (a) Daily
electric load curves of EHs. (b) Daily thermal load curves of EHs.

FIGURE 4. Renewable outputs of EHs.

Pin,max
g = 450 kW. All tests are conducted on a Windows 10

64-bit personal computer with Intel Core i5-3570 3.4 GHz
CPU and 16 GB of RAM using Matlab with Yalmip and
Gurobi.

B. Results and Discussion
We first compare the total electricity demands from EHs
and the corresponding electricity retail prices of EUC, when
the studied EHs operate under the cooperative and non-
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FIGURE 5. Total electricity demand and price for EUC.

cooperative modes, as depicted in Fig.5. Subject to the
volatility of electricity wholesale market prices, the electric-
ity retail price also changes relatively violently, according
to Fig.5. At high-price hours, the total electricity demands
from EH clusters are relatively lower. Meanwhile, the
internal energy trading among EHs further lowers the elec-
tricity purchased from external EUC, compared with the
scenario where each EH individually operates. As shown
in Fig.5, the total demanded power drops during hours 1-6 and
12-17, when most of energy exchange among EHs occurs.
This is because EHs with excess energy can sell to other EHs
using more attractive prices, and that promotes the internal
trading among EHs. Due to the linear relationship between
the retail price and electricity demand, the electricity retail
price also declines with the reduction of the corresponding
total demand. Therefore, it is reasonable to conclude that
the cooperative scheduling of EHs not only promotes their
community-level internal trade, but also may bring more
favorable retail prices for them.

Figure 6 provides the comparison of total gas demands
from EHs and the corresponding gas price of GUC, under the
cooperative and non-cooperative modes. Not like the electric-
ity retail price, the change of natural gas retail prices across
the whole horizon is not obvious, as presented in Fig.6, just
fluctuating between the interval [19.7, 20.1]. This is mainly
because the thermal loads in EHs only can be satisfied by
consuming natural gas, resulting in the relatively stable gas
demands regardless of the cooperative or non-cooperative
modes. On the other side, it also partially attributes to the
small value of the scale factor µg,t , but the effect is very
tiny. Meanwhile, we can notice that the natural gas retail
prices do not show the similar trend as done by electric-
ity prices; specifically, the natural gas retail prices in the
cooperative mode are not always smaller than those in the
non-cooperative mode. It can be inferred that the coopera-
tion among EHs does not reduce EHs’ demands for natural
gas as done for electricity. Instead, during hours 8, 11-13,
16-18, the natural gas demands from EH clusters increase,
with different increments. Accordingly, the natural gas retail

prices determined by GUC also grow higher, in the coopera-
tive mode. This is because, during these hours, it is more eco-
nomically efficient for EHs to purchase natural gas to gener-
ate energy by their own generation devices, instead of directly
buying electricity from EUC. This is just the demonstration
of the integrated demand response proposed in [13], i.e., from
the customer side’s viewpoint, the electricity consumption is
not reduced, but the source of supplying electricity has been
switched to natural gas. In addition, it is also reasonable to
infer that the cooperation further improves the utilization of
devices in EHs, since the increased gas demands are only
consumed by internal CHP or gas furnace in EHs.

FIGURE 6. Total natural gas demand and price for GUC.

Furthermore, Fig.7 depicts the natural gas dispatch factor
α curve of EH3, in both cooperative and non-cooperative
mode. During hours 1-7, the proportion of CHP’s gas con-
sumption is relatively small; whereas, during hours 11-23,
the ratio increases remarkably. These findings are under-
standable because, the electricity prices at hours 1-7 are lower
than the natural gas price (see Fig.2), the gas consumptions
aremainly used tomeet the local thermal loads. Given that the
thermal conversion efficiency of gas furnace is higher than
that of CHP, it is reasonable that the gas furnace is assigned
with more inputs of natural gas. On the contrary, during hours
11-23, the electricity prices are apparently higher than the gas
prices, the EH prefers to utilize the natural gas to generate
electricity by itself. Accordingly, the gas dispatch ratio to
CHP is pretty high to maximize the electricity outputs of
CHP to meet its electric loads. This further demonstrates
the aforementioned effect of the integrated demand response.
Note that, the above performance is more obvious in the
non-cooperative mode, especially during hours 12-16. This is
because, in the non-cooperative mode, the EH only interact
with upstream utility companies to optimize its scheduling;
on the contrast, in the cooperativemode, the EH can exchange
electricity with other EHs, which reduces the reliance on its
CHP units. Therefore, the CHP’s gas consumption ratio in the
cooperative mode decreases at some slots, such as at hour 4-5,
and hours 12-16.
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FIGURE 7. Dispatch factor for CHP in EH3.

FIGURE 8. Electrical storage energy changes of EHs.

Figure 8 provides the details on energy levels of electrical
storages in the studied four EHs. In the non-cooperative
mode, the energy levels in both EH1’s and EH2’s storages
decline continuously during hours 8-12, resulting from the
power discharging. This is because, the EHs prefer to utilize
their own energy devices to meet the local demands, with
the increase of electricity wholesale market price. In other
words, during high-price hours, it is more cost-effective
for EH1 and EH2 to dispatch their storages, rather than
purchase energy directly from the external market. On the
contrary, in the cooperative mode, the discharge depths
in EH1’s and EH2’s electrical storages during hours 8-12
diminish. Meanwhile, this cooperation helps EH1 and EH2 to
reduce the frequent charge/discharge actions on their electric
storages, which is conductive to the lifetimes of storages.
This demonstrates that, the cooperative interaction enable
EH1 and EH2 to reduce their original dependencies on their
own electrical storages. Furthermore, it can be inferred that
EH1 and EH2 may buy energy from EH3 and/or EH4 during
hours 8-12, which can be verified by the following results on
energy trades among EHs.

FIGURE 9. Energy trading among EHs in cooperative framework.

Notably, the stored energy in EH3 and EH4may not be nec-
essarily reduced as shown in Fig.8, although they sell energy
during these hours. In fact, only EH4 reduces its original
charging power at hours 9-11. This is because, the cooperative
mode also changes the operations of CHP units in EHs, and
further influences the total generated electricity in the whole
community. It is possible that the CHP in EH3 generates
more electricity to sell to other EHs and also to charge
its own storage. This is highly consistent with the change
of dispatch factor for CHP in EH3 as illustrated in Fig.7.
Consequently, the energy level of the electrical storage in
EH3 does not decline like EH4 does, but instead increase
after cooperation. Similarly, the thermal storages in these EHs
also operate in different energy levels under the cooperative
and non-cooperative modes. For sake of simplicity and to
focus on the cooperative energy trade among EHs, we do not
include a detailed analysis of the operation results of thermal
storages. However, such detailed representation can be easily
incorporated.

The optimal electricity energy trades among these four
EHs in this bargaining cooperative framework are depicted
in Fig.9. Here, positive values represent purchasing energy,
and negative values correspond to selling energy. We can
see that, during night (mainly referring to hours 1-5), both
EH1 and EH2 purchase energy from EH3 and EH4, while
they sell energy to EH3 and EH4 during daytime (mainly
referring to hours 11-17). This is because the renewable
outputs of EH1 and EH2 mainly occur at the daytime (see
Fig.4), which are higher than their local electricity loads,
and thus EH1 and EH2 have excess energy to sell to other
EHs. On the contrary, EH3 and EH4 have surplus energy
mostly during hours 1-5, and hence they act as the role of
seller during night. Differently, during hours 18-24, these
EHs scarcely exchange any energy. This is because during
these hours, almost none of these EHs have surplus energy to
be shared in this cooperative community. Instead, they may
need to discharge their storages and purchase energy from
EUC to meet their local loads. This is also the reason that,
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TABLE 2. Costs and parameters under different modes.

the electric storages in EH1-EH4 are all in the discharge states
as shown in Fig.8, and the total demands at hours 18-24 are
relative high as shown in Fig.5. These results indicate that the
cooperative interaction among EHs can effectively improve
the internal trade among EHs according to their net energy.

Table 2 tabulates the operating costs of EH 1-4 and their
payments for energy trading. The total cost of these four
EHs declines by up to 5.5% from 934.88 $ to 883.49 $.
We see that the cooperative mode reduces the operating costs
of all EHs. This is because the internal trading reduces the
external retail price, and it decreases those EHs’ purchasing
costs from EUC. Meanwhile, since EH1 and EH2 contribute
more in this cooperative mode, they receive additional pay-
ments from EH3 and EH4. Considering the overall impact
of cost and payment, every EH benefits from the internal
trading. For example, EH1 reduces the net operation cost
from 208.85 $ (non-cooperative mode) to 196.01 $ (operation
cost in cooperative mode plus payment), with a decrease of
6.15%. This demonstrates the effectiveness of the proposed
bargaining scheme, which incentivizes EHs to participate in
the cooperative mode.

TABLE 3. Comparison between the centralized and distributed
approaches.

To analyze the accuracy of the distributed solution used in
this paper, we compare the results of the centralized approach
and distributed approach in Table 3. Here, the net operation
costs (plus internal trading payment) of EHs in the cooper-
ative mode, as well as the computation time, are presented.
It is shown that the difference of the cost results under these
two approaches is fairly small, but the computation speed of
the distributed approach is slower than that of the centralized
one. That means, the autonomy of EHs’ decision making
is achieved almost without sacrificing the economic perfor-
mance (or optimality in terms of cost), yet this is at the cost of
more computational time. This is because, in the distributed

FIGURE 10. Convergence of the primal and dual residuals in the
distributed approach.

approach, each EH will operate autonomously, and all EHs
will be coordinated by a virtual coordinator. Correspondingly,
iterations are needed to guarantee all EHs convergent to an
equilibrium state. In contrast, in the centralized approach,
there exists a global controller to fully control the operation
schedule of all EHs, and thus there is no need to conduct the
iteration process.

Specifically, the semilog curves of the primal and dual
residuals with the change of iterations in this distributed
algorithm are depicted in Fig.10. After about 75 iterations,
the primal and dual residuals both reach the maximum error
tolerance, which indicates the solutions of the distributed
algorithm satisfy the constraints in this cooperative model
and achieve the optimality. To be noted that, only when the
primal and dual residuals both reach the maximum error
tolerance, the solutions are regarded to satisfy the conver-
gence condition. In this regard, although the dual residual has
reached the tolerance in earlier iterations, the iteration process
is also needed to ensure the primal residual finally close to the
convergence precision.

VI. CONCLUSIONS
In this paper, a cooperative scheduling framework has been
proposed for multiple neighboring EHs, who are commonly
served by one EUC and GUC. With different supply and load
patterns, these cooperative EHs can exchange power ratio-
nally, to minimize their own operational costs. To guarantee
all EHs are effectively incentivized to cooperate together,
the bargaining game theory is utilized to help achieve a fair
and Pareto solution of the optimization problem. Simulation
results demonstrate that the cooperative operation of multi-
EH has better economic benefits than the non-cooperative
operation. Meanwhile, the utilization of distributed approach
ensures the autonomous scheduling of the EHs, without
exposing their private information. For future work, we plan
to include the operational constraints imposed by the electric-
ity and natural gas networks, which are generally complex to
be disposed in the game setting. Meanwhile, uncertainties in
the renewables and energy demand will also be considered,
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which can improve the applicability of this bargaining-based
cooperative model.
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