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ABSTRACT This paper focuses on the recovery of bandlimited signals from level-crossing samples by
exploiting not only the knowledge of when given levels are crossed by the input, but also the implicit
information that the signal stays between neighboring levels in the time intervals between the level crossings.
We propose to use the technique of projection onto convex sets (POCS) for perfect signal reconstruction
from either the level crossings or the associated implicit information. Two POCS algorithms are proposed:
iterative POCS and one-step POCS. While the one-step POCS is based on matrix inversion, the iterative
projections can be implemented using a chain of standard circuit operations: a low-pass filter and a clipping
circuit, respectively. The perfect signal recovery of the infinite projection iteration can be viewed as the
completion of the nonperfect input reconstruction achieved in continuous-time digital signal processing
from level crossings. The comparative analysis of simulation results for both iterative and one-step POCS
algorithms show the importance of a good selection of the initial guess for the POCS reconstruction.

INDEX TERMS Level-crossing sampling, signal reconstruction, projection onto convex sets, event-based
signal processing.

I. INTRODUCTION
Level-crossing sampling (LCS) is a central concept of
event-based signal processing (EBSP). LCS has been adopted
in various areas of EBSP such as Continuous-Time Digi-
tal Signal Processing (CT-DSP) [1], as well as the design
of level-crossing analog-to-digital converters [2]–[4], and
level-crossing digital filters [5]. This sampling scheme pro-
vides the time instants and amplitude values of the input
crossing points with given reference levels in the amplitude
domain. LCS was introduced to the signal processing litera-
ture in [6] although a similar concept was earlier laid for the
foundation of asynchronous delta modulation [7]. The rate
of level crossing is higher when the signal varies rapidly,
and lower when it changes slowly. The mean level-crossing
rate is a function of the power spectral density of the sam-
pled signal and directly depends on the signal bandwidth.
Furthermore, the level-crossing rate gives a rich informa-
tion about signal concentration in the frequency domain
and may be used for bandwidth estimation [8]. The con-
cept of level-crossing sampling has been also applied in
statistical signal processing for hypothesis testing [9]. On the

other hand, LCS with hysteresis known also as Lebesgue
sampling, or send-on-delta scheme [10], [11], provides the
basis for event-based control and communication aimed
at efficient utilization of computation and network system
resources [12], [13].

Event-based signal processing (EBSP) is inherently asso-
ciated with the time encoding of event instants (e.g., level
crossings) [12]. From the perspective of continuous down-
scaling of VLSI technology, EBSP provides an efficient alter-
native to the conventional signal processing techniques based
on uniform sampling. Modern nanoscale CMOS technology
requires low supply voltage, which makes the fine quantiza-
tion of the amplitude increasingly difficult. On the other hand,
in a deep-submicron CMOS process, the resolution of digital
event timestamping is superior to the voltage resolution of
an analog signal [14]. The techniques of encoding signals
in time instead of in amplitude is expected to be further
improved by advances in chip fabrication technology. Finally,
the event-based signal processing systems are characterized
by activity-dependent power consumption, and energy sav-
ings at the circuit level [12].
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A. METHODS OF SIGNAL RECOVERY FROM LCS
One of the main research issues with LCS is the recov-
ery of an original signal from its level crossings. Usu-
ally, the widespread bandlimited model of the signal is
assumed, with no frequency components above the Nyquist
frequency. In CT-DSP, real time signal recovery is performed
by lowpass filtering an initial continuous-time piecewise-
constant [1], or a piecewise-linear approximation of the input
signal created from the level crossings [15]. Because LCS
is a nonlinear operation, it will not be sufficient to use a
linear operation such as a lowpass filter to achieve perfect
reconstruction [16]. This method however owes its success
to its simple implementation, its potential for real-time oper-
ation and its acceptable accuracy for many applications.

In fact, LCS can be considered as a special way to acquire
nonuniform samples. It is known (see e.g. [17]) that perfect
recovery of bandlimited signal from nonuniform samples is
possible when the mean sampling rate exceeds the Nyquist
rate. References [18]–[21] provide methods that can poten-
tially achieve this reconstruction. However, this recovery is
perfect only at the limit of infinite computation complexity.
To allow finite computation, one only aims at a certain level
of precision. The presence of long time intervals between
samples is one of the main difficulties of this task [22], [23].

In this paper, we address the problem of the recovery of
bandlimited signals from level-crossing samples by exploit-
ing not only the knowledge of the samples thus acquired, but
also the expected amplitude behaviour of the input between
the samples with respect to the thresholding levels.

B. IMPLICIT INFORMATION IN EVENT-BASED SAMPLING
The input signal representation by level-crossing samples
gives the time instants when the relevant levels are crossed
but also implies that the signal stays between neighboring
levels during the time between the level crossings. The extra
knowledge of the signal behavior between the sampling
instants is inherently connected to event-based sampling and
called the implicit information to distinguish it from the
plain sample data considered as the explicit information [12].
The notion of implicit information results directly from the
definition of event-based sampling: since the signal is sam-
pled at every event occurrence, it is evident that no event
occurs between consecutive sampling instants [13]. While
the samples provide the information of discrete-time equality
constraints satisfied by the input signal, the implicit informa-
tion consists of inequalities in continuous time. The role of
the implicit information grows when the temporal distance
between the samples increases and is of particular impact
when this distance is locally larger than the Nyquist period.
The techniques currently used for signal recovery from level
crossings are classical methods of signal reconstruction from
nonuniform samples that only deal with discrete-time equal-
ity constraints and are unable to incorporate information from
continuous-time inequalities [18], [21]. The development of
effective event-based signal processing techniques calls for

approaches capable of integrating both continuous-time and
discrete-time information from the event-based sampling.

C. PAPER CONTRIBUTION
We propose to use the technique of Projection Onto Con-
vex Sets (POCS) for bandlimited signal reconstruction from
either the level crossings, or the implicit information result-
ing from LCS. The POCS method was previously used
for signal recovery from nonuniform samples [24], and for
image reconstruction [17] from level crossings [25]. This
paper is an extended version of [26], which has presented
preliminary results on POCS-based recovery from level
crossings including implicit information. Two POCS algo-
rithms are proposed: iterative POCS and one-step POCS.
In the first algorithm, the implicit information is incorpo-
rated both in the amplitude-domain projection and in the
choice of initial estimate. In the second algorithm, the implicit
information is only used in the initial estimate to be
projected.

The iterative POCS algorithm alternates projections onto
two sets. One set is defined by the a priori frequency
knowledge of bandlimitation of the input, and the other
set results from the level-crossing information and consists
of amplitude constraints. Alternating projections between
constraints in the frequency domain and constraints in the
amplitude domain due to encoding information was con-
ceptually introduced in [25] and [27]. As will be shown,
the projections on these two convex sets can be imple-
mented using standard circuit operations: a lowpass filter
and a clipping circuit, respectively. Furthermore, there is a
strong relation between the iterative POCS algorithm and
the CT-DSP technique. The perfect signal recovery of the
infinite projection iteration can be viewed as the completion
of the nonperfect input reconstruction achieved in CT-DSP
from level crossings. The preliminary piecewise constant [1]
(or linear [15]) approximation of the input performed in
CT-DSP from the level crossings corresponds to the initial
estimate of the POCS algorithm, and the second operation
of lowpass filtering in CT-DSP plays the role of the first
projection in the POCS approach, with its abstract interpre-
tation as orthogonal projection onto the space of bandlimited
signals.

The one-step POCS algorithm consists in a single projec-
tion onto a set defined by the explicit information. The main
complexity of this method lies in the inversion of a matrix.
The comparative analysis of the iterative and the one-step
algorithm shows the importance of a good selection of the
initial guess for the final reconstruction.

The paper is organized as follows. Section I gives the for-
mal definitions of explicit and implicit information in LCS.
In Section II, the framework of POCS for LCS is presented.
The dependence of the rate of convergence and performance
of the POCS algorithm with the initial guess is discussed in
Section III. Simulation results for both iterative and one-step
POCS schemes with performance analysis are reported in
Section IV. Related work is discussed in Section V.
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II. EXPLICIT AND IMPLICIT INFORMATION IN LCS
Level-crossing sampling is a type of event-triggered sam-
pling, where each event is the crossing of a signal x(t) with
one of the levels 2 = {θ1, θ2, . . . , θL}, where θ1 < θ2 <

. . . < θL . The convention θ0 = −∞ and θL+1 = ∞ will be
used. The event time instants {tn, n ∈ Z} are defined as

tn = min
{
t > tn−1, x(t) ∈ 2,

x(t) is not local extremum of x(·)
}

(1)

Excluding the local extrema from the above definition implies
that x(t) must strictly cross one of the levels at each t = tn.
The output of the level-crossing sampler is the sequence
of pairs (tn, x(tn)). This data constitutes what we call the
explicit information. However, this data does not contain the
implicit information that the signal x(t) does not cross any
level between consecutive sampling instants tn, tn+1. This can
be written in form

θ−(t) ≤ x(t) < θ+(t) (2)

where θ−(t) and θ+(t) are the bounds shown in Fig.1. At each
instant t they can be defined as

θ+(t) = min {θ` > x(t), θ` ∈ 2}

θ−(t) = max {θ` ≤ x(t), θ` ∈ 2} . (3)

FIGURE 1. Level-crossing sampling.

The above functions can be also deduced solely from the
sampling points (tn, x(tn)), provided that at least two levels
are crossed. Since the sample amplitudes are known to belong
to the set 2, then there exists a sequence `n of level indices,
such that

x(tn) = θ`n . (4)

The sign of the signal slope at tn can be expressed as

sn =

{
`n − `n−1, `n 6= `n−1

−sn−1, `n = `n−1,
(5)

assuming that `m 6= `m−1 for some m ≤ n. Then in the
interval t ∈ [tn, tn+1) we have

θ+(t) =

{
θ`n+1, sn = 1
θ`n , sn = −1

θ−(t) =

{
θ`n , sn = 1
θ`n−1, sn = −1.

III. RECONSTRUCTION USING PROJECTIONS
ONTO CONVEX SETS
A. SETS CORRESPONDING TO LEVEL-CROSSING
SAMPLES
When level-crossing samples

{
(tn, x(tn), n ∈ Z

}
are obtained

from a bandlimited signal x(t), the precise information that
is available about x(t) mathematically takes the form of set
memberships of x(t). The sets are as follows:

1) From the explicit information of the samples{
(tn, x(tn), n ∈ Z

}
, x(t) is known to belong to the set

E = {u(t) ∈ C(R) : u(tn) = x(tn) for all n ∈ Z} . (6)

2) From the implicit information of (2) x(t) is known to
belong to the set

I =
{
u(t) ∈ C(R) : θ−(t) ≤ u(t) < θ+(t) for all t ∈ R

}
.

(7)

3) From its maximum frequency �, x(t) is known to
belong to the set

B=
{
u(t) ∈ L2(R) : ∀|ω| > �,

∫
+∞

−∞

u(t)e−jωtdt = 0
}
.

(8)

C(R) is used to denote set of continuous function.
The bandlimited, irregularly sampled signal is character-

ized only by the membership x(t) ∈ B ∩ E . In general, this
characterization does not define x(t) uniquely. A bandlimited
signal that interpolates the given level crossings may still
violate the bounds θ−(t) ≤ x(t) < θ+(t). On the other
hand, any bandlimited signal satisfying the bounds θ−(t) ≤
x(t) < θ+(t) must go through the given level crossings by
continuity. Therefore, the set I is a subset of E ,

I ⊂ E, (9)

and using the constraint x̂(t) ∈ I can improve the precision of
the signal recovery. Next it is sufficient to use the constraint
x̂(t) ∈ B ∩ I instead of x̂(t) ∈ B ∩ E ∩ I, since the latter is
redundant. If B ∩ E is limited to a single signal (for example,
in the case of uniform sampling above the Nyquist rate) the
constraint x̂(t) ∈ I does not bring any additional information.
This shows that level crossing provides information on the
signal that can be useful in the case of sampling under the
Nyquist rate, or in signal recovery from a finite number of
samples.
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B. PROJECTIONS ONTO CONVEX SETS
The membership of a signal to a set has a great impact when
the set is convex.

Let us assume that a signal x (the notation x := x(t) will
be used for brevity) belongs to the Hilbert space L2(R) of
finite-energy signals. The energy of the signal x is ‖x‖2 =
〈x, x〉, where 〈u, v〉 =

∫
+∞

−∞
u(t)v(t)dt is the inner product

of L2(R) and v(t) is the conjugate of v(t). Now consider a
closed and convex set C containing signals with some prede-
fined properties. The convexity of C means that the weighted
averages

w = (1− α)u+ αv, ∀α ∈ (0, 1) (10)

of two arbitrary signals u, v ∈ C is also in C (Fig. 2).

FIGURE 2. a) Non-convex set, b) convex set.

The projection of a signal g onto the set C is the element x̂ of
the set C which is closest to the signal g

x̂ = PCg = argmin
y∈C
‖g− y‖. (11)

For each g /∈ C, the projection PCg is closer to any vector
x ∈ C than g,

‖PCg− x‖ < ‖g− x‖. (12)

The projection (11) can be generalized using a relaxation
parameter λ,

TC := I + λ(PC − I ) (13)

where I is the identity operator. For 0 < λ < 2, the transfor-
mation TC also ensures the decrease of the error [28],

‖TCg− x‖ < ‖g− x‖. (14)

If the set C containsmore than one element, the reconstruction
is not unique, and a selection of a different g may result
in a different x̂. In particular, a selection of g close to the
actual signal x can be a determinant factor for the precision
of recovery.

The direct projection onto the set C may be difficult or
computationally intractable. However if the set C is the inter-
section of the convex sets C = C1∩C2∩· · ·∩CK =

⋂K
k=1 Ck ,

then a signal x̂ ∈ C can be obtained by alternating projections
PC1 , . . . ,PCK :

gm+1 = PC1 · · ·PCK gm. (15)

Provided that the sets Ck , k = 1, . . . ,K are convex and
their intersection is non-empty, this iteration converges to
x̂ ∈

⋂K
k=1 Ck for any arbitrary g0. The method of projections

onto convex sets (POCS) was proposed by Bregman [29] and
was used in a variety of applications, including the recovery
of signals from samples [20], [24], [27] or from part of the
signal, as in the Papoulis-Gerchberg algorithm [30]. The con-
vergence of POCS for two sets C1 and C2 in R2 is illustrated
in Fig. 3. In the case of the transformation TC , in the iteration

gm+1 = TC1TC2 · · · TCK gm (16)

FIGURE 3. Iterative projections onto convex sets.

with λk > 1 (which is the relaxation coefficient used for TCk )
the estimate error decay can be faster thanwith (15) [31]. This
aspect is interesting in practice since the actual number of
iterations is often limited. More information on POCS can be
found in [28], [31], and [32].

C. POCS USING SETS CORRESPONDING
TO LEVEL-CROSSING SAMPLES
1) CONVEXITY
To use POCS for the signal recovery using the sets from
Section III-A, the convexity of these sets must be proven.
Fortunately, it is easy to show it for all sets B, E , and I:
• The convexity of E and I results from the follow-
ing fact. If w = (1 − α)u + αv for some α ∈
[0, 1], then at any given t , w(t) belongs to the interval
[u(t), v(t)] or [v(t), u(t)]. When u, v ∈ E , this interval
at t = tn for any n is reduced to {x(tn)}, so w ∈ E .
When u, v ∈ I, this interval is at any instant t included
in [θ−(t), θ+(t))], so w ∈ I.

• The set B is convex as the bandlimited signals form a
linear space [33].

This allows to perform the projection onto each of above
sets separately, as well as the projection onto their intersec-
tion, which is also convex.

2) ITERATIVE PROJECTION ONTO B ∩ I
As shown in Section III-A, it is sufficient to use set B ∩ I
as a constraint without using E explicitly. Since one-step
projection onto set B ∩ I is intractable, it must be performed
iteratively by the alternating the projections PB and PI .

The projection operator PB simply removes out-of-band
components making the projected signal bandlimited, so it
amounts to the ideal filtering

(PBg)(t) = (t) ∗
�

π
sinc (�t) (17)

=

∫
+∞

−∞

g(τ )
�

π
sinc (�(t − τ )) dτ. (18)

The sinc function is defined here as sinc (u) = sin(u)
u .
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FIGURE 4. Initial iterations and the comparison of original signal x(t) with x̂(t) = g10(t).

The projection operator PI clips the values of signal x(t)
which exceed the bounds θ−(t), θ+(t)

(PIg)(t) =


θ+(t), g(t) > θ+(t)
g(t), θ−(t) ≤ g(t) < θ+(t)
θ−(t), g(t) < θ−(t).

(19)

Finally, the desired reconstruction using the implicit informa-
tion on the bandlimited signal x(t) is given by the iteration

gm+1 = PBPIgm (20)

or in the generalized version

gm+1 = TBTIgm. (21)

An example of an iterative reconstruction is shown in Fig. 4.
To make it more illustrative, an initial signal x0(t) = 0 was
chosen.

3) ONE-STEP PROJECTION ONTO B ∩ E
While the algorithm (20) (or (21)) is conceptually simple,
its convergence is slow, and its natural implementation is
by use of analog circuits. A digital implementation would
require the use of high oversampling to accurately represent
the non-bandlimited signals produced by the projection PI ,
which would further slow down the iteration. Meanwhile,
in a purely digital implementation, an alternative to iterative
projections is to limit the algorithm to a one-step projection
onto B ∩ E and to use the implicit information only for the
choice of the estimate g(t) to be projected.

According to (11), the direct projection of a signal g(t) onto
the convex set B ∩ E can be formulated as

x̂(t) = argmin
u(t)∈B

‖u(t)− g(t)‖2

subject to u(tn) = x(tn), n = 1, . . . ,N (22)

The relative energy can be expanded as

‖u(t)− g(t)‖2 = ‖u(t)− g�(t)+ g�(t)− g(t)‖2

= ‖ u(t)− g�(t)︸ ︷︷ ︸
in-band

‖
2
+ ‖ g�(t)− g(t)︸ ︷︷ ︸

out-of-band

‖
2

(23)

where g�(t) = PBg(t). The reason why the energy can be
splitted into the in-band and the out-of-band components is
that these two spaces of signals are orthogonal. This can be
easily seen in the frequency domain via Parseval’s equality.
Since by definition x̂(t) ∈ B, then the argument of minimiza-
tion is only the bandlimited component

v(t) = u(t)− g�(t). (24)

This leads to the minimization

ŷ(t) = argmin
v(t)∈B

‖v(t)‖2

subject to v(tn) = x(tn)− g�(tn), n = 1, . . . ,N

(25)

and the solution of (22) is

x̂(t) = ŷ(t)+ g�(t). (26)
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This is standard least-squares recovery [34], [35] from the
samples y = x − g�, where x, g� ∈ RN are the values of
x(t), g�(t) at points (t1, . . . , tN ). The solution is [24], [35]

ŷ(t) =
N∑
n=1

cn sinc (�(t − tn)) , (27)

where

c = S−1(x− g�), (28)

and S is the matrix of coefficients Si,j = sinc
(
�(ti − tj)

)
.

It is known that the inversion of the matrix S is usually
ill-conditioned, especially for clustered samples [34]–[36].
To improve the stability of reconstruction, small positive
values are added to the diagonal of S to obtain a regularized
solution [36], [37]:

c = (S+ εI)−1(x− g�). (29)

For g±(t) = 0 also g� = 0 and (26) reduces to the standard
least-squares solution [35].

IV. CHOICE OF THE INITIAL GUESS
A. MOTIVATION AND DESIGN REQUIREMENTS
In the signal reconstruction process, each sample has mostly
an influence on the values of the reconstructed signal in its
vicinity. In the case of iterative POCS, a large number of
iterations is necessary to propagate the impact of samples
to the regions of signal located in the large sampling gaps.
In the case of one-step POCS, the remote impact of samples
on the signal could be higher without the regularization (29).
Unfortunately, with a high clustering of samples (which is
common for the level-crossing sampling of bursty signal)
regularization is required, because of the high impact of noise.
Overall, these various reconstruction schemes have weak
actions on the signal in large sampling gaps where, as a result,
the initial guess g(t) has a stronger influence on the final
reconstruction. The choice of initial guess therefore plays an
important role in the performance of reconstruction.

In plain irregular sampling, there is no prior informa-
tion about the behavior of the signal between the samples.
However in the case of level crossing, the additional implicit
information can be used to choose an initial guess. There are
a few criteria for the choice of g(t):
1) It should be a good model of expected behavior of orig-

inal signal in the large gaps between the level-crossing
samples.

2) It must be consistent with the implicit information.
3) It should contain small energy out of the desired band

(−�,�). The more out-of-band energy, the more dis-
tortion is introduced by filtering and the more iterations
are required for the iterative POCS to converge. In the
same scenario for the one-step POCS, the energy of the
signal ŷ(t) is higher, and as this signal is not constrained
by inequality bounds, it is more likely that the final x̂(t)
is not consistent with implicit information.

4) The function g(t) should be simple to implement. In the
particular case of the one-step POCS, it should be
designed such that g�(t) yields a closed form formula
in terms of the samples (tn, x(tn)) for computation fea-
sibility.

To simplify the formulation of the initial guess function g(t),
wewill assume that the sampled signal amplitude is upper and
lower bounded (which is a common assumption in analog-to-
digital conversion), and it is bounded by the outer levels

θ1 ≤ x(t) ≤ θL . (30)

B. PIECEWISE CONSTANT SIGNAL
The simplest guess of a signal staying between levels θ+(t)
and θ−(t) is their average which is a piecewise constant
function of t (see Fig. 5),

θ±(t) =
θ+(t)+ θ−(t)

2
. (31)

FIGURE 5. Piecewise constant guess signal θ±(t) .

The formula for θ±� (t) can be found in Appendix A. The
piecewise constant signal is used also in CT-DSP for signal
recovery from level crossings by lowpass filtering [1].

The reconstruction using the piecewise constant initial
guess is shown in Fig. 7 for the orginal signal presented
in Fig. 6.

FIGURE 6. Example of bursty signal.

C. PIECEWISE LINEAR SIGNAL
A simple alternative for the piecewise initial guess is the
piecewise linear function λ(t) with the samples as knots.

35006 VOLUME 6, 2018



D. Rzepka et al.: Reconstruction of Signals From Level-Crossing Samples Using Implicit Information

FIGURE 7. Example of bursty signal, initial guess and reconstructed signal
obtained using iterative POCS (M = 10) and one-step POCS (ε = 10−3).
Left: piecewise constant guess; right: piecewice linear initial guess.

Additional knots are placed in the center points of the inter-
vals (tn, tn+1) for which x(tn) = x(tn+1). Calling (pi, λi)
the complete sequence of knots in increasing order of pi,
λ(t) yields the formula

λ(t) = λi + (λi+1 − λi)
t − pi

pi+1 − pi
, for t ∈ (pi, pi+1).

(32)

The sequence {pi} constists of the original sampling
instants {tn} and the points tn,n+1 =

tn+tn+1
2 added at the

center of some intervals (tn, tn+1), sorted in ascending order,
as shown in Fig. 8. The sequence {λi} is defined as

λi =

{
θ`n , ∃i, n : pi = tn
θ±(pi), otherwise.

(33)

The formula for λ�(t) can be found in Appendix B. The
example of reconstruction using such an initial guess is shown
in Fig. 7. The piecewise linear signal has been proposed for
signal recovery from level crossings by lowpass filtering in
the framework of CT-DSP [15].

FIGURE 8. Piecewise linear guess signal λ(t) and reenumareted time
instants {pi }.

FIGURE 9. Reconstruction error vs. number of samples for one-step POCS
with ε ∈ 10−3 and piecewise linear initial guess. Lines correspond to the
mean error.

V. PERFORMANCE EVALUATION
A. TEST SIGNALS
In our experiments, the input signals belong to the space
of bandlimited signals of Nyquist period T = 1. They are
generated as the sum of two random components: impulsive
bursts and slowly varying component,

x(t) =
K∑
k=1

bk (t − tk )︸ ︷︷ ︸
impulsive bursts

+

N∑
n=1

wnφ(t − n)︸ ︷︷ ︸
slowly varying

(34)

where for each k , bk (t) is a bursty signal of the form

bk (t) =
J∑
j=1

wk,jψ(t + tk,j), (35)

ψ(t) = sinc2
(
1
2 t
)

and φ(t) is some bandlimited and
slowly-varying kernel. The positions tk of the bursts are
drawn randomly according to the uniform distrubution
U(0,N ), where N defines the signal length. Within each
burst bk (t), the relative positions tk,j of the kernels follow the
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FIGURE 10. Comparison of nornmalized RMS reconstruction error between initial guess, iterative POCS
(I-POCS) and one-step POCS (OS-POCS) depending on the type of initial guess. Strongest factor determining the
performance is the choice of initial guess. OS-POCS with carefully chosen regularization constant outperforms
the I-POCS, even with high number of iterations.

normal distributionN (0, σ 2
t ). Also the weights wk,j are inde-

pendent normal random variables of distributionN (0, σ 2
burst ).

The kernel ψ(t) has been chosen with a faster decay than
sinc(t) (narrow time localization of energy). The slowly vary-
ing component can be interpreted as the bandlimited signal of
random Nyquist samples wn ∼ N (0, σ 2

slow) filtered by φ(t).
The signal (34) is finally normalized to keep unit ampli-

tude, using

x(t) =
x(t)

max |x(t)|
. (36)

An example of x(t) is shown in Fig. 6.

B. NUMERICAL EXPERIMENTS
To validate and compare of the proposed methods, the sim-
ulations are performed using a large number (103) of ran-
domly generated signals of the form (34). The parameters of
simulations are
• the distance between the levels 1 ∈ {0.2, 0.1, 0.05}
• the type of initial guess (piecewise constant or piecewise
linear)

• the type of method (iterative POCS or one-step POCS)
• the method parameter (iterative POCS - number of iter-
ations M ∈ {5, 10, 50}, one-step POCS - regularization
constant ε ∈ {10−2, 10−3, 10−4})

The parameters of bursty signal are N = 100, K = 4, L = 5,
σ 2
t = 2, σ 2

burst = 1, σ 2
slow = 2. The kernel φ(t) of the slowly

varying component was obtained by twofold averaging

φ(t) = ψ(t) ∗5
(
t
W

)
∗5

(
t
W

)
, (37)

5(t) =

1, |t| <
1
2

0, otherwise.
(38)

with W = 40.

The error of a reconstruction estimate x̂(t) is measured as

e = NRMS[x(t), x̂(t)] =

√√√√∫ N
0

(
x(t)− x̂(t)

)2 dt∫ N
0 x(t)2dt

. (39)

The results indicate that the distance between the levels 1
has a strong impact on the final reconstruction error, whose
value is of similar order, e . 1. For smaller 1 values, the
relative error e/1 is better because the number of samples
is higher and the gaps between the samples are also smaller
(see Fig. 9).

The comparison of the reconstruction error averaged over
all generated random signals for various methods is shown
in Fig. 10. The piecewise linear guess outperforms the piece-
wise constant guess especially with the smaller values of 1
(which is also reflected by shorter gaps between the samples).
The input signal behavior between two neighboring levels is
hard to predict when 1 is large (1 = 0.2). In this case, both
types of guesses are not accurate. Despite this, the piecewise
linear guess remains the better initial estimate for all values
of1.With the iterative POCS, it enables a faster convergence,
and with the one-step POCS it gives better reconstruction
results.

In general the one-step POCS outperforms the iterative
POCS only if a proper regularization constant ε is chosen.
It was observed that a too small ε introduces oscillations
that make the reconstructed signal x̂(t) violate the implicit
information to a certain extent.

The performance of the iterative POCS in terms of the
number of iterations is shown in Fig. 11. The results were
also averaged over all reconstructions of random signals.
The impact of the initial guess on the convergence is
clearly visible. The iteration axis is logarithmic, and since
the decay is close to linear then the error reduction in
the first 10 iterations is almost the same as the reduction
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FIGURE 11. Convergence of the iterative POCS depending on the type of initial guess.

between 10 and 100 iteration. Therefore the increase of the
number of iterations above a certain limit gives a small
improvement of reconstruction performance.

VI. RELATED WORK
There is very little research work on the use of inequalities
in the framework of signal recovery. Some of it employs
some implicit information in an event-based approach with-
out mentioning this concept. In [24], the knowledge of the
maximum and minimum signal values is utilized to improve
signal reconstruction. The use of inequalities for image recon-
struction from level crossings is shown in [25]. This reference
de facto presents an early use of implicit information asso-
ciated with LCS for the reconstruction of two dimensional
signals. The notion of implicit information is exploited also
in [38] to improve signal reconstructions from level crossings
by conventional algorithms.

The other point to be emphasized is that the use of
implicit information in signal reconstruction involves nonlin-
ear operations, as is the case of the projections correspond-
ing to amplitude constraints. By contrast, the pure sampling
approach to signal reconstruction is inherently linear [18].
The recent work [39] reports a new approach to signal recon-
struction from level crossings based on random projections
in the split-projection least squares (SPLS) algorithm which
belongs to compressed sensing framework. The level cross-
ings are encoded using continuous-time ternary encoding
(CT-TE) that modulates amplitude variation to ternary timing
information. The SPLS algorithm uses only the knowledge of
level crossings and has been implemented in FPGA.

VII. CONCLUSIONS
When continuous-time signals are discretized in time by
event-based sampling and stored for example in computer
memory, the pure samples no longer represent how the signal
behaves during the time between them. But the information
on the expected signal behavior between the events can still
be deduced if one knows how the samples have been captured.
This knowledge is however not included in the samples, and
is given implicitly.

Most approaches to signal reconstruction in event-based
sampling adopt conventionalmethods of signal recovery from
plain (nonuniform) samples. Such methods do not include the
implicit information on the expected behaviour of the input
between the samples. CT-DSP is a technique that consciously
uses this information, but the signal reconstruction it proposes
by lowpass filtering a simple approximation of the input
is nonperfect. In this paper, we have presented the perfect
reconstruction of bandlimited signals from level-crossings
including the implicit information using POCS. We have
also shown that the signal reconstruction in CT-DSP can be
interpreted as a truncated version of the iterative POCS.

The iterative alternating projections have the advantage to
be implementable with a chain of standard circuit operations:
a lowpass filter and a clipping circuit, respectively. A problem
of high practical interest will be the design of hardware-based
POCS signal-recovery systems for perspectives of fast signal
reconstruction.

APPENDIX A
PIECEWISE CONSTANT INITIAL GUESS
We derive the explicit expression of g�(t) in terms of
(tn, x(tn)) for the various initial guesses g(t) presented in
Section IV.

Let h�(t) := �
π
sinc(�t) = sin(�t)

π t and let 1(t) be the
unit step function. The piecewise constant guess (31) can be
reformulated as

θ±(t) =
∑
n

θ`n (1(t − tn)− 1(t − tn+1)) (40)

and its filtered version is

θ±� (t) =
∑
n

θ`n (1�(t − tn)− 1�(t − tn+1)) (41)

where

1�(t) = (h� ∗ 1)(t) =
∫ t

−∞

h�(τ )dτ =
1
2
+

1
π
Si(�t)

(42)

and Si(t) denotes sine integral function.
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APPENDIX B
PIECEWISE LINEAR INITIAL GUESS
The piecewise linear initial guess (32) can be represented by

λ(t) =
∑
i

λi (3i−1(t)−3i(t)) (43)

which after filtering gives

λ�(t) =
∑
i

λi
(
3�,i−1(t)−3�,i(t)

)
, (44)

where

3i(t) =
1

pi+1 − pi
1(t) ∗ (1(t − pi)− 1(t − pi+1)) (45)

and

3�,i(t) = (h� ∗3i)(t)

=
1

pi+1 − pi
1�(t) ∗ (1(t − pi)− 1(t − pi+1))

(46)

3�,i(t) =
1

pi+1 − pi

∫ t−pi

t−pi+1
1�(τ )dτ. (47)

Let us use notation

3�,i(t) = 1�

∣∣∣t−pi
t−pi+1

where f
∣∣∣b
a
:= mean of f (t) on [a, b]

(48)

Since

lim
t→−∞

1�(t) = 0 and lim
t→+∞

1�(t) = 1 (49)

it is easy to see that also

lim
t→−∞

3�,i(t) = 0 and lim
t→+∞

3�,i(t) = 1 (50)

and hence

lim
t→±∞

(
3�,i−1(t)−3�,i(t)

)
= 0. (51)

Explicitly

1�

∣∣∣b
a
=

1
b− a

∫ b

a
1�(τ )dτ (52)

=
1

b− a

(
[τ1�(τ )]ba −

∫ b

a
τh�(τ )dτ

)
. (53)

Note that τh�(τ ) = 1
τ
sin (�t). Then

1�

∣∣∣b
a
=

1
b− a

[ϕ(τ )]ba where ϕ(t) := t1�(t)+
cos(�t)
π�

,

(54)

and finally

3�,i(t) =
ϕ(t − pi)− ϕ(t − pi+1)

pi+1 − pi
. (55)
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