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ABSTRACT In the past two years, calls for developing synergistic links between the two worlds of vehicular
ad-hoc networks (VANETs) and autonomous vehicles have significantly gone up to achieve further on-
road safety and benefits for end-users. In this paper, we present our vision to create such a beneficial link
by designing a multimodal scheme for object detection, recognition, and mapping based on the fusion
of stereo camera frames, point cloud Velodyne LIDAR scans, and vehicle-to-vehicle (V2V) basic safety
messages (BSMs) exchanges using VANET protocols. Exploiting the high similarities in the underlying
manifold properties of the three data sets, and their high neighborhood correlation, the proposed scheme
employs semi-supervised manifold alignment to merge the key features of rich texture descriptions of objects
from 2-D images, depth and distance between objects provided by 3-D point cloud, and the awareness of
self-declared vehicles from BSMs’ 3-D information including the ones not seen by camera and LIDAR. The
proposed scheme is applied to create joint pixel-to-point-cloud and pixel-to-V2V correspondences of objects
in frames from the KITTI Vision Benchmark Suite, using a semi-supervised manifold alignment, to achieve
camera-LIDAR and camera-V2V mapping of their recognized objects. We present the alignment accuracy
results over two different driving sequences and show the additional acquired knowledge of objects from
the various input modalities. We also study the effect of the number of neighbors employed in the alignment
process on the alignment accuracy. With proper choice of parameters, the testing of our proposed scheme
over two entire driving sequences exhibits 100% accuracy in the majority of cases, 74%–92% and 50%–72%
average alignment accuracy for vehicles and pedestrians and up to 150% additional object recognition of the
testing vehicle’s surrounding.

INDEX TERMS VANETs, autonomous vehicles, LIDAR, manifold alignment, KITTI.

I. INTRODUCTION
A. MOTIVATION
For years, researchers on Vehicular Ad-hoc Networks
(VANETs) and Autonomous vehicles presented various solu-
tions for vehicle safety and automation, respectively. Yet,
the developedworks in these two areas have beenmostly con-
ducted in their own separate worlds, and barely affected one-
another despite the obvious relationships. The US National
Science Foundation and US Department of Transportation
have expressed tremendous need and importance to relate
these two worlds together in several of their calls for research
proposal in 2017 [2]. They clearly emphasized on the major
importance of integration and fusion of data from various

input modes in order to create a deeper understanding of
vehicle object surroundings. Precisely, enriched 3D scene
reconstruction by different input technologies and deep learn-
ing techniques are of a paramount importance to develop
autonomous vehicle systems that can perform effectively and
safely on roads. These directions are strongly supported by
the multiple accidents and traffic light violations made by
autonomous vehicle prototypes from top players in themarket
(e.g., Tesla, Uber) [3]–[5], incidents that could have easily
been mitigated if communications among vehicles and with
the road infrastructure (e.g. Traffic signals, traffic signs, etc)
would have been considered. Tesla’s Autopilot fatal crash [5]
was caused by the failure to recognize the white side of the
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tractor trailer against a brightly lit sky. The autopilot’s solely
reliance on camera and lack of V2V communication infor-
mation and LIDAR is the main cause of the crash. The crash
encountered by UBER’s autonomous car [3] resulted from
the human-driven vehicle’s failure to yield. The integration of
V2V messages in UBER’s pilot would allow the autonomous
vehicle to know the intention of surrounding cars, along
with the information offered from LIDAR and cameras.
To respond to this crucial need, we propose in this paper
to enrich the learning of the 3D vehicle surroundings using
multi-modal inputs, namely LIDAR scans, camera frames,
V2V-conveyed basic safety messages (BSMs). Despite the
curses of the data representation and dimensionality, learning
the correspondence between the same objects from different
data inputs is a necessary task to both improve (i.e., get more
accurate knowledge about detected items in each data set) and
enrich (i.e., combine undetected items from all data set into
one global picture) the understanding of autonomous vehicles
about their surroundings, thus allowing them to make safer
and more accurate driving decisions. Incorporating objects
detected from these three sources into one scheme requires a
mapping process between objects that possess similar under-
lying structure (i.e. they all represent many common features
of a same environment) and neighborhood correlations (i.e.,
neighboring items in one data sets should be still neighbors in
the others). Given this properties, we propose to cast thismap-
ping problem as a manifold alignment problem [6]. Indeed,
manifold alignment is a dimensionality reduction based map-
ping tool between data sets exhibiting similar underlying
structure and neighborhood correlations, which makes it a
perfect fit for the data sets of interest.

B. RELATED WORK
Analyzing camera frames using various techniques has been
one of the mostly used techniques for autonomous vehicle
surrounding recognition. One suggested technique is seman-
tic segmentation, which labels each pixel in an image with
the category of the belonging objects. To determine that a
certain pixel belongs to a vehicle, a person or to any other
class of objects, a contextual window that is wide enough
is defined to show the surrounding of the pixel and con-
sequently make an informed decision of the pixel’s object
class. Techniques based on Markov Random Fields (MRF),
Conditional Random Fields (CRF) and many graphical mod-
els are presented in [7]–[9] to guarantee the consistency of
pixel labeling in the context of the overall image. In addi-
tion, the authors in [10]–[12] developed various methods
for image pre-segmentation into super-pixels, which are used
to extract the categories and features from both individual
segments and combinations of neighboring segments.

Alternatively, the authors in [13] attempted to create 3D
reconstruction of dynamic scenes by achieving a long-range
spatio-temporal regularization in semantic video segmenta-
tion, due to the fact that both the camera and the scene are
in motion. The developed idea is to integrate deep convo-
lutional neural networks (CNNs) and CRF to perform sharp

pixel-level boundaries of objects. The proposed solution min-
imized the distances between the features associated with cor-
responding points in the scene, and consequently optimized
the feature space that is used by the dense CRF. To this end,
deep learning has shown the best performance in inferring
objects from previously untrained scenes. In [14], the seg-
mentation of the input images was achieved by representing
the dynamic scene as a collection of rigidly moving planes
and jointly recovering the geometry/3D motion when over-
segmenting the scene. The developed piece-wise rigid scene
is intended to represent real world scenes with independent
object motions rather than pixel-based representations like
partially used in [15].

Joseph et al. [16] developed a general purpose object detec-
tion system characterized by a resolution classifier and the
usage of a two fully connected networks. These two networks
are built on top of a 24-layer convolutional network, followed
by two fully connected layers. Additionally, a unified muti-
scale deep CNN for real-time object detection is developed
in [17] with many sub-network detectors and multiple output
layers for multiple object class recognition.

Another widely-used sensing technique for 3D envi-
ronment reconstruction is LIDAR scanners. 3D LIDAR-
generated point clouds were already used in distance ranging,
obstacle detection and avoidance, path planning, and were
thus imported to autonomous driving systems. 2D convolu-
tional neural networks (CNNs) [18] have been designed for
processing and recognizing objects from 3D LIDAR point
cloud. However, this solution is not considered optimal since
it requires a model to recover the original geometric relation-
ships. Vote3Deep is developed in [19] for fast point cloud
object detection using 3D CNN, in order to keep the key
power of LIDAR as distance and objects 3D shapes and depth
detection. TheKITTIVision Benchmark Suite [20] offers raw
LIDAR and labeled objects from point cloud.

As clarified above, most autonomous driving systems rely
on LIDAR, stereo cameras or radar sensors to achieve object
detection, and scene flow estimation of objects on roads.
Despite the great advancement in both technologies, they still
are incapable of detecting hidden elements, such as hidden
vehicles or pedestrians. Camera based systems may also fail
in detecting geometrically line-of-sight entities due to limited
visibility conditions, such as bad weather conditions (e.g.,
very bright sun, fog, heavy rain/snow) and close colours to
surrounding nature (e.g., the cause of the prototype acci-
dent in [5]). Finally, the camera and LIDAR techniques fail
in detecting road/traffic conditions, (e.g., red traffic lights,
change in speed limit, etc), which may cause traffic violation
(e.g., [4]) and even fatal problems. As aforementioned, all
such problems may be resolved if these sensing technologies
are complimented with actual in-flow information from both
close vehicles and traffic infrastructure through VANETs.
Google’s self driving car project called WAYMO [21] is
collaborating with Intel in order to create powerful chips
responsible for the processing and fusion of data retrieved
from radars, cameras, and LIDARs. Researchers in [22]
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presented an approach to geometrically align points from
LIDAR scans to points captured from a 360 degree camera.

In addition, VANETs offers various types of V2V and
vehicle-to-infrastructure (V2I) safety messages on 7 control
channels operating over a dedicated 75 MHz spectrum band
around 5.9 GHz [23], [24]. Our aim in this paper is to present
an augmented scene flow understanding and object map-
ping by considering not only LIDAR and cameras, but also
DSRC-based V2V beacons exchanged between vehicles.

C. OUR CONTRIBUTION
The goal of this work is tomerge the key features of LIDAR in
giving accurate distances, camera with object textural details,
and V2V beacons for the awareness of both hidden out-
of-sight vehicles or vehicles not observed by the two other
means. We first adapt the camera and LIDAR learning and
object recognition schemes to prepare the resulting data for
alignment. We also generate BSMs for vehicles detected in
the KITTI Vision Benchmark Suite for alignment purposes.
Exploiting the physical neighborhood correlation within the
three data sets, and their natural correspondences in the 3D
physical space, we then cast the merging problem of these
three sets of data as a semi-supervised manifold alignment.
Our proposed approach is to first identify few clear corre-
spondences between data points from each pair of data sets,
and employ them to align (i.e., pair) the rest of the points
between the camera-LIDAR and camera-V2V data sets, thus
establishing a full object correspondence among the three
sets. To perform this alignment, we compute the neighbor-
hood correlations and Laplacian matrix for in each data set
using local linear embedding. The alignment problem is then
formulated as an eigenvalue problem over a compounded
Laplacian matrix. Once the mapping of paired points is done,
the other points from each data set can be easily paired and
the non-paired points can be added in the aligned 3D envi-
ronment, thus significantly enriching the vehicle knowledge
of its surroundings. We test this work using the scene flow,
3D LIDAR point clouds, and generated BSMs of the KITTI
Vision Benchmark Suite, and perform the camera-LIDAR
and camera-V2V alignment.

The remainder of this paper is organized as follows. Cam-
era object recognition and data-set preparation from the
KITTI suite scene flow and 3D LIDAR point clouds are
presented in Sections II-A and II-B, respectively. We present
the manifold alignment formulation and solution between
the 3 Dimensional LIDAR space, camera Space, and V2V
beacons in Section III. BSM creation according to the LIDAR
recognized objects from the KITTI suite, number of rec-
ognized objects per input type and the performance of the
alignment process are illustrated in Section IV. Section V
summarizes the findings and conclusion of this paper and
illustrate directions for future work.

II. PREPARING DATA SETS FOR ALIGNMENT
In this section, we will illustrate the steps taken in order
to prepare the manifolds of the different data sets from the

multi-modes of vehicle sensing of its surroundings. Luckily,
the raw V2V data usually comes with the required infor-
mation for alignment, since each BSM clearly indicate the
GPS position of its transmitting vehicle. Thus, the adjacencies
between vehicle objects from the V2V data can be easily
computed and does not require any further recognition nor
preparation. Thus, the next two subsections will focus on
adapting the object recognition schemes from camera feeds
and LIDAR scans to both extract the objects of interest to
the alignment process, and determine their relative locations
to one-another. This information will be then used to create
manifolds for each of these data sets, representing the adja-
cency relations of their detected objects of interest, whichwill
then enable us to feed them to the alignment process.

A. ADAPTING RECOGNITION FROM CAMERA FEEDS
In this section, we describe our approach of adapting the
learning procedure from camera feeds, in order to prepare the
camera data set that is suitable for our proposed alignment
process. This adaptation consists of tailoring the darknet’s
CNN, developed in [16] to test the KITTI stereo images using
the architecture illustrated in Fig. 1, to render both the two
important object classes for the alignment process, namely
‘‘Cars’’ and ‘‘Persons’’, and the center of gravity of the object
bounding box (or object pixels) in the 2D space. Inspired
by this CNN design, we propose to exploit the feature of
objects’ anchor boxes, which predict the coordinates of the
bounding boxes around recognized objects, to find their pixel
adjacency directly from the fully connected layers that are
developed on top of the convolutional network extractor (both
illustrated in Fig. 1). We use a single CNN that processes
the entire image pixels during both the training and test time,
and predicts all the bounding boxes and their corresponding
classes probabilities. We then apply a hard threshold on the
probabilities of the object suspected to be either a ‘‘Car’’ or a
‘‘Person’’, beyond which these objects are deem to be so.

While parsing through the frames of any driving sequence,
our tailored CNN stores the characteristics of each object
in an organized way, including its class name, anchor box
dimensions in pixels, and its calculated center of gravity
in the 2D space. Moreover, counters are set to keep track
of the total number of objects from each class per frame.
The extracted details of objects are stored separately from
one frame to another both within the same driving sequence
and across different sequences. To test the efficiency of
our tailored CNN, we applied it to recognize the objects
in Fig. 2 and Fig. 4, representing two original frames (that
we will denote in the rest of the paper as Frame (a) and
Frame (b), respectively) from two different driving sequences
from the KITTI Suite. Frame (a) and Frame (b) include
different object counts per class either from image recogni-
tion or from labeled LIDAR object recognition. The model
is being changed to support reading all the frames contained
in both of the drive sequences 2011_09_28_drive_00016 and
2011_09_26_drive_0005 from the KITTI Suite. We opt to
select from sequences recorded with RGB cameras instead
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FIGURE 1. Darknet convolutional neural network architecture [16].

FIGURE 2. Original frame (a) from RGB sequence drive
2011_09_26 drive_0005 #117.

FIGURE 3. Detection of frame (a) objects and their centers of gravity.

of gray-scale, for clarity of work purposes. The results of
applying our tailored CNN on Frame (a) and Frame (b) are
illustrated in Fig. 3 and Fig. 5, respectively. We can clearly
see from both figures that the objects are perfectly recognized
and labeled with their proper classes. The center of gravity of
each object is depicted by a red cross within each object’s
anchor box. The centers of gravity are computed according
to the pixels belonging to each object and are expressed in
pixels in the 2D space.

It is worth noting that some vehicles are not detected in
both Fig. 3 and Fig. 5. The failure in detecting these vehi-
cles occurred due to the either the overlap between vehicles
(as in the parked undetected vehicle on the right of street

FIGURE 4. Original frame (b) from RGB sequence drive
2011_09_28 drive_0016 #32.

FIGURE 5. Detection of frame (b) objects and their center of gravity.

in Fig. 3) or the shaded zone they lie into (as in the case of the
parked vehicle to the right of the leftmost recognized vehicle
in Fig. 5) and thus the low variance, as perceived by the cam-
era, between their pixel colours and those of the background.
As aforementioned, the latter phenomenon was the cause of
the fatal accident by the Tesla autonomous vehicle prototype,
which calls for our proposed multi-modal sensing of the
vehicle’s 3D surrounding environment by adding LIDAR,
and most importantly V2V (and also V2I and vehicle-to-
pedestrian V2P) information to each vehicle’s object recogni-
tion system. Indeed, the problem of these undetected objects
will be resolved if the camera information is aligned with
the received V2V information from the other vehicles, thus
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FIGURE 6. Pixel-wise manifolds of the recognized objects for both Frame
(a) and Frame (b).

reducing chances for of having missing knowledge of the
surrounding vehicles.

In Fig. 6, we plot the 2D pixel-wise manifolds of the car
and people objects detected by camera for both Frame (a) and
Frame (b). These manifolds illustrate the adjacency relations
between the centers of gravity of the detected objects in
each of the frames, which represents approximate distances in
terms of pixels between them in the 2D space. The neighbor-
hood relations between the objects from the camera frames
will be thus expressed in terms of pixels, and will be inserted
with that format to the neighborhood weight calculations that
will be introduced in Section III-C. The obtained curves for
both Frame (a) and Frame (b) in Fig. 6 thus represent camera
data set manifold in the pixel domain.

It is important to note here that the representation of distant
objects in the manner illustrated in Fig. 6 can give a meaning-
ful value of distance between them, and can be easily corre-
lated with distances from both LIDAR scans and V2V BSMs
positions. However, due to the 2D nature of camera images,
the distance representation between very close or overlapping
objects in the image may be highly inaccurate and will not
provide relevant information to the alignment process.

B. ADAPTING RECOGNITION FROM LIDAR POINT CLOUDS
This section illustrates the adaptation of object recognition
from LIDAR point clouds to prepare a data set that is suitable
for our proposed alignment process. To simplify this pro-
cess, we are not considering the recognition of every object
from the LIDAR point clouds, since a tremendous number
of unknown, and most importantly un-mappable, objects can
be detected as a set of neighbored point clouds. As in the
previous section, we will thus restrict the recognition of the
Vote3Deep 3D CNN, developed in [19], to identify only
‘‘Cars’’ and ‘‘Persons’’, since the remaining items do not
represent major importance in the alignment process. The
Vote3Deep 3D CNN uses feature-centric voting to detect per-
sons and cars that are spatially sparse along many unoccupied
regions, without the need to transform the 3D point cloud to
a lower dimensional space.

FIGURE 7. Point cloud scan corresponding to frame (a).

FIGURE 8. Point cloud scan corresponding to frame (b).

The Velodyne LIDAR scans corresponding to both of
Frame (a) and Frame (b) are plotted in Fig.7 and in Fig.8,
respectively. The black centered area in both figures is the car
that is equipped with the 360◦ Velodyne spinning laser scan-
ner. The circled points in both figures represent the free space
contour lines where no obstacles have been encountered (i.e.,
each circle represent points of equal distance from the vehicle
with no objects in them). All cars and persons in both of
Frame (a) and Frame (b) are represented by more dense dots
(almost creating a 3D surface) due to the reflections of the
laser beams from these objects. We note that the other black
areas without circled points nor objects correspond to zones
in which the LIDAR beams were blocked by obstacles. Con-
sequently, the LIDAR scans cannot provide any knowledge
of what is in these zones.

Fig. 9 depicts the 3D manifolds of the detected car and
people objects from the LIDAR scans of both Frame (a)
and Frame (b). The relative position of each each object
with respect to the Velodyne LIDAR Scanner position is
represented by an (x,y,z) triplet in the 3D space. As in Fig. 6,
the manifolds represent the adjacency relations between the
centers of gravity of the detected objects in each of the frames,
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FIGURE 9. Manifolds of the detected objects from LIDAR point clouds
corresponding to both frame (a) and frame (b).

which represents the approximate distances between them in
the 3D space.

We note that the manifolds representing the detected
objects from the LIDAR point clouds contain a larger number
of persons and cars compared to those detected from the
camera in Fig. 6. For example, the undetected shaded vehicle
next to the leftmost detected vehicle in Fig. 5 by the camera
was detected by the LIDAR point clouds as shown in Fig.9.
Moreover, the objects that are behind of the camera were
captured by the LIDAR spinning scans.

III. PROPOSED ALIGNMENT APPROACH
Having the manifolds of all vehicle sensing modes created,
this section will illustrate the proposed approach to align
these three manifolds, thus linking each object in each data
set to its corresponding ones in the two others. Objects with
no correspondences (e.g., objects detected in one data set but
not the other) can then be added to the global knowledge of
the vehicle, thus creating one enriched scene for the vehicle
about its surroundings.

Our proposed approach to align these three data sets is
founded on aligning both the LIDAR and V2V data sets
individually with the camera data set. This choice is driven
by the fact that the camera component is the most widely
used component in autonomous vehicles, both at the research
and prototyping level. Basically, the main two types of input
data that the system takes are raw RGB frames from camera,
LIDAR points cloud recorded in the driving sequences and
V2V generated BSMs. Consequently, the alignment process
is applied between camera, LIDAR and V2V data are princi-
pally the anchor boxes surrounding objects extracted from 2D
Convnet, 3D position of objects retrieved after detection from
3DLIDAR and the V2V positions of cars. Once both data sets
are aligned with the camera data sets, the correspondences
between each two objects in themwill be set naturally through
their common corresponding object in the camera data set.
Consequently, the rest of this section will focus on aligning
only two data sets, one from the LIDAR or V2V data set, and
the other being the camera.

The manifold alignment procedure between any two cor-
related data sets (i.e., having some correlation to one another
in some space) is based on jointly embedding the objects of
these data set in a lower dimensional space while both:

• Aligning points of initial correspondence between these
data sets (i.e., points that are initially known to corre-
spond to one another in the two data sets) in this lower
dimensional space.

• Preserving the neighborhood correlation (i.e., the local
structure) in each of them.

Once this embedding is done, each pair of points from the
two data sets that have the closest proximity in this lower
dimensional embedding are declared as corresponding to
one-another. Clearly, our data sets of interest have clear cor-
relation in the 3D space as a subset of each of them represent
the exact same objects perceived by the vehicle through three
different modes. They thus qualify to be aligned using man-
ifold alignment. Given the above methodology, the proposed
alignment process between our camera and LIDAR/V2V data
sets will follow three main steps:

1) Neighborhood weight computation within each data
sets (to preserve local structures).

2) Initial correspondance determination
3) Semi-supervised alignment

Each of these steps will be explained in details in the next
three subsections.

A. NEIGHBORHOOD WEIGHT COMPUTATION
The neighborhood weights are a one dimensional represen-
tation of the distance/adjacency relations between each pair
of objects in any one data set. A higher/lower weight value
between two data points symbolizes their higher/lower prox-
imity in their original space. Computing these weights are
usually done through dimensionality reduction techniques,
such as locally linear embedding, heat kernels, ... etc. In our
work, we select the locally linear embedding (LLE) tech-
nique [25] because it gives more importance in preserving
neighborhood correlation in the one dimensional space.

To compute the neighborhood weights using LLE for any
data set, the N data points having the closest Euclidian dis-
tance to each higher dimensional data point t(i) are first iden-
tified as its neighbor set N (i). Let

[
t(N (i,1)), . . . , t(N (i,N ))

]
be such set of points for data point t(i). Given this set, LLE
thus computes the neighborhood weights of t(i) using the
following optimization problem:

argmin
Wij
=


∣∣∣∣∣∣t(i) −

∑
j∈N (i)

Wijt(N (i,j))

∣∣∣∣∣∣
2
 s.t

∑
j∈N (i)

Wij = 1

(1)

Clearly, a closer the point t(N (i,j)) to t(i) will have a higher
weight Wij. Points t(j) that are not in N (i) will have Wij = 0.
The above optimization problem can be solved for each point
t(i) using a closed form solution as follows [25]. Defining the
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distance matrix Di of point t(i) as

Di =


t(i) − t(N (i,1))

t(i) − t(N (i,2))

.

.

.

t(i) − t(N (i,N ))

 (2)

Wij for all t(j) ∈ N (i) can be computed as:

Wij =

N∑
k=1

{
(DiDT

i )
−1
}
jk

N∑
m=1

N∑
n=1

{
(DiDT

i )
−1
}
mn

(3)

Note that
{(
DiDT

i

)−1}
uv

is the element of the uth row and

the vth column in the inverse of matrix DiDT
i . By repeating

this procedure for all data points in each of the data sets,
we obtained all required neighborhood weights for the align-
ment process.

B. INITIAL CORRESPONDENCES DETERMINATION
The second step of the alignment process consists of deter-
mining at least one point of correspondence between the
camera and LIDAR/V2V data set. Some techniques were
employed in the literature to estimate these initial correspon-
dences based on the geometry of the data sets [26], [27]. The
main idea behind these techniques is to match some local
geometries within the data sets, and declare points having a
few highly similar local geometries as corresponding. In most
cases, this requires going through a long search among all
combinations of points to find high similarities and thus close
to correct correspondences, which sometimes increases the
complexity of the process.

Luckily, the data sets considered in this paper already
possess some geometric references that can somewhat related
them to one-another. For instances, the front camera and
LIDAR are usually aligned in the vehicle, and it is thus
easy to roughy determine LIDAR reflected beams (and thus
its corresponding detected objects if any) from a certain
direction/range corresponding to a certain direction/range of
the camera picture (and thus its detected object). We can
thus use one of these objects from the same exact direction
and distance from the vehicle to tag them as initial corre-
spondences. For example, we can pick the initial point of
correspondence between these two data sets to be the ones
representing the one or few furthest point(s) captured by
both the camera and LIDAR within the same direction(s)
from the vehicle. If we apply this approach for Frame (b),
we can align, we can estimate that the leftmost identified
vehicle in Fig.5 with the vehicle identified by the LIDAR
beam reflected from that direction. This approach is also
suitable for the alignment with V2V as we can estimate
the distance from the camera and/or LIDAR to this farthest

recognized object in a certain direction and match it to the
most likely received GPS that matches it in distance and
direction from the vehicle. Consequently, we will employ
this approach to identify one or few point of correspondence
across the three data sets, and employ them in the alignment
process.

It is important to mention here that, although some errors
may occur in this initial alignment process, but so could
happen in the proposed techniques in the literature [26],
[27] given the exact same three data sets. Most importantly,
the error in our case will be in slight range within the entire
geometry of the data sets, and we can still get good alignment
results for the other objects.

C. SEMI-SUPERVISED ALIGNMENT
As aforementioned, the semi-supervised alignment of two
manifolds is done by jointly embedding of their data points
in a lower dimensional space while both aligning the ini-
tial points of correspondence and preserving the neighbor-
hood correlation in each of them. The problem of aligning
between the camera data set (that we will denote byX ) to the
LIDAR/V2V data set (that we will tab by Y)
can be expressed as:

argmin
f,g

λx∑
i,j

[fi − fj]2 W x
ij + λ

y
∑
i,j

[gi − gj]2 W
y
ij

+µ
∑
i∈P
|fi − gi|2

}
(4)

where f = [f1, .., fX ](T ) and g = [g1, .., gY ](T ) are vectors
in RX and RY of the X camera points and Y LIDAR/V2V
points, respectively, P is the set of paired points between X
and Y , whereas W x

ij and W
y
ij are the neighborhood weights

between the ij pair of points within data sets X and Y ,
respectively.

Clearly, this problem is a three-objective function opti-
mization, with weighting factors λx , λy and µ. The first
two terms aim to separately find the vectors f and g that
are separately preserving the neighborhood structures of the
points in X and Y , respectively. Indeed, minimizing the first
term will occur by attributing a smaller fi − fj term (i.e.,
close values of fi and fj) for any i − j pair of points in X
with larger W x

ij . Minimizing the second term plays the exact
same role with the elements of vector g to preserve in it the
neighborhood structure of Y . The third term aims to equalize
(i.e., align) the elements in f and g that correspond to paired
points inX andY . Indeed, it penalizes discrepancies between
fi and gi corresponding to each point i ∈ P .
With some simple manipulation, Eq. (4) can be re-written

as:

argmin
f,g

{
λxfTLxf+ λygTLyg+ µ(f− g)T (f− g)

}
(5)
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where Lx = [Lxij] ∀ i, j ∈ X , such that:

Lxij =


∑
j

W x
ij , i = j

−W x
ij j ∈ Ni

0 Otherwise

(6)

while Ly = [Lyij] ∀ i, j ∈ Y such that Lyij is defined by
replacing each W x

ij by W
y
ij in (6). In general, the problem in

(5) is ill-defined. Nonetheless, imposing a hard constraint to
make fi = gi ∀ i ∈ P (i.e. as µ→∞), the problem in (5) is
be re-casted as an eigenvalue problem. Define vector h as:

h =

fP = gP
fQx

gQy

 (7)

where Qx
= X /P and Qy

= Y/P . In other words, h is
vector structured in a way that it begins with elements of f
and g corresponding to the paired points in P , followed by
the remaining (i.e., unpaired) elements of f, and ends with
the remaining (i.e., unpaired) elements of g.
Having this vector defined, and setting µ → ∞ in (5),

we can re-write the problem as:

argmin
h

{
hTLzh
hTh

}
s.t. hT 1 = 0 (8)

where:

Lz =


λxLxPP + λ

yLyPP λxLxPQx λyLyPQy

λxLxQxP λxLxQxQx 0

λyLyQyP 0 λyLyQyQy

 (9)

with LxIJ (LyIJ ) defined as the sub-matrix of Lx(Ly) cor-
responding to the rows indexed by the elements in I and
the columns indexed by the elements in J . λx and λy are
computed following the work in [27] as: λx = X/(X + Y )
λy = Y/(X + Y ). The solution of the problem in (8) is
known to be the eigenvector h that corresponds to the smallest
non-zero eigenvalue of Lz. Finding the optimal vector h∗

naturally defines the optimal vectors f∗Qx and g∗Qy . By finding
the elements of closest distance from these two latter vectors,
the corresponding unpaired points in X and Y are paired
together. This concludes the alignment process.

Note that the vectors f∗Qx and g∗Qy may not (and most
probably won’t) be of the same dimension, and thus the
remaining points in the longer vector should correspond to
objects that were detected by one mode but not the other.
These points can thus be added to global vehicle under-
standing to its surrounding while respecting its neighborhood
correlations (i.e., weights) within its corresponding data set.
When this alignment and object addition operation is repeated
for between the camera-LIDAR and camera-V2V data set
pairs, this results in an enriched construction of the vehicle
surroundings that no single mode of information (camera,
LIDAR, or V2V) can attain individually.

IV. ALIGNMENT ACCURACY AND GAIN TESTING
In this section, we aim to test both the accuracy of our pro-
posed alignment scheme and its gain in enriching vehicles’
knowledge about its surroundings using multi-modal inputs.
In these tests, we will use the KITTI benchmark as our source
of camera feeds and LIDAR scans of vehicle surroundings,
due to its wide approval and adoption in the testing of various
autonomous vehicle recognition and driving systems. The
raw data recording of both of the driving sequences contain
color stereo sequences recorded with a 0.5 Megapixels cam-
era stored in png format, 3D Velodyne LIDAR point clouds
stored as binary float matrix, 3D GPS/IMU data for location
and timestamps information stored in text files.

The only problem with this benchmark is that it does not
include a library of BSMs as it did not assume any V2V
communications. We will thus first generate a V2V BSM
streams for the vehicles in the entire sequences and perform
the tests using these generated BSMs. The driving sequences
2011_09_28_drive_0016 and 2011_09_26_drive_0005 are
recorded during daytime in non-rush hour around the campus
of Karlsruhe Institute of Technology and metropolitan area of
Karlsruhe in Germany, respectively. The former sequence has
a total size of 0.7 GB, 192 frames of 1392*512 pixels each
and contains 11 distinct cars and 9 distinct persons. while
the latter sequence has a total size of 0.6 GB, 160 frames
of 1392*512 pixels each and contains 12 distinct cars and
3 distinct persons. We will then illustrate the detailed align-
ment accuracy and gain results for Frame (a) and Frame (b).
Finally, we present the aggregate alignment accuracy on the
entire two aforementioned sequences.

In the remaining of this section, we define the alignment
accuracy (in percentage) as the accuracy in mapping all the
points from X (i.e., camera data set) to Y (LIDAR/V2V data
sets). More formally, it is defined as the percentage of points
in X mapped to wrong (i.e., non-actually corresponding)
points in Y normalized by the total number of points of X
(i.e., the camera data set) We also define the alignment gain
(in percentage) as the percentage of added objects from the
alignment process (i.e., from mapping LIDAR/V2V detected
objects to the camera detected objects), normalized to the
original number of detected objects in the camera data set.

A. V2V BSMS GENERATION FROM KITTI
BENCHMARK OBJECTS
The lack of time-stamped V2V BSMs data that corresponds
to camera frames and LIDAR scans have encouraged us to
dynamically generate the V2V related messages of the recog-
nized objects from the LIDAR scans. We chose the LIDAR
scans over the camera feeds to generate BSMs as usually
BSMs can be received from larger distances that the range of
cameras and thus should include a larger number of vehicles.
Moreover, since we are using the camera as our reference
alignment set (i.e., our methods aligns both the LIDAR and
V2V data sets with camera data set), it is better generate the
V2V BSMs from another set to have stronger discrepancies
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FIGURE 10. Adjacency of recognized objects from DSRC.

in the data sets and make the alignment more challenging.
Note that, although they are generated from LIDAR data in
our testing, the V2V BSM data sets and their correspond-
ing manifolds will be significantly different from those of
the LIDAR data sets, since the former ones include objects
identified as ‘‘Car’’ only. Indeed, pedestrians do not typically
generate BSMs, and thus objects identified as people in the
LIDAR data set will not show up in the V2V BSM data set.

For each identified vehicle by the LIDAR in every frame
of the two aforementioned sequences, we generate a simple
BSM only stating its position. The vehicles detected per-
scan, whether moving or parked, are assumed to generate the
V2V BSM beacons. It is important to note that, in practice,
parked vehicles may or may not send beacons depending on
the employed V2V standard. However, this fact will not affect
the alignment process proposed in this paper, but will rather
only increase or decrease the number of objects to be aligned.
We employed the position (x,y,z) triplet of the object of the
Velodyne LIDAR Scanner to emulate the GPS coordinate
system (Latitude, Longitude, Elevation) that will be used
in practical scenarios. Note that we did not include to our
generate data set other typical BSM fields, such as messages
count, temporary ID, brake system status, and acceleration,
as they will not be used in the alignment process. In practical
scenarios, the vehicle can easily extract the position informa-
tion from the BSM for alignment purposes.

Fig. 10 depicts the manifolds of the generated V2V
BSM data sets of Frame (a) and Frame (b) respectively.
As expected, the shape of and the number of points in the
manifolds in Fig. 10 are different from the ones formed by
LIDAR objects in Fig. 9, due to the lack of objects identified
as ‘‘Persons’’ from the former.

B. ALIGNMENT RESULTS FOR FRAME (A) AND FRAME (B)
To understand the accuracy and gain results of our alignment
process on Frames (a) and (b), we first illustrate in Fig. 11
the number of detected objects per class in these two frames.
We note that, for both frames, the LIDAR scans have detected
more cars and persons than the camera feeds. Due to the

FIGURE 11. Number of objects per class for both frame (a) and frame (b).

FIGURE 12. Camera-LIDAR object alignment of frame (a).

method with which they are obtained, the V2V data set have
the same number of cars as the LIDARdata set, but no persons
as expected.

Fig. 12 and Fig. 13 represent the detailed camera-to-
LIDAR and camera-to-V2V alignment results, respectively,
for Frame (a).

Similarly, Fig. 14 and Fig. 15 represent the detailed
camera-to-LIDAR and camera-to-V2V alignment results,
respectively, for Frame (b).

The top portion of all four figures illustrate the camera dat
set points in 2D, where as the bottom figure illustrate the
LIDAR or V2V data set points in 3D.

The first result to report from these figure is that the align-
ment accuracy was 100% for all the four alignment tasks.
In other words, all data points from the camera were mapped
to the points of the exact same objects in the LIDAR and
V2V data sets. The second observation is the presence of
objects from the camera data set that were not aligned with
points from the V2V data set for both Frame (a) and Frame
(b), which are represented by the circled points in the top
portions of Fig. 13 and Fig. 15, respectively. By comparing
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FIGURE 13. Camera-V2V Object alignment of frame (a).

FIGURE 14. Camera-LIDAR object alignment of frame (b).

FIGURE 15. Camera-V2V object alignment of frame (b).

the positions of these points with the recognized objects of
Frame (a) and Frame (b) in Fig. 3 and Fig. 5, respectively,
it is easy to notice that all such unmapped points from the
camera data set represent only pedestrians. This behavior is

FIGURE 16. Alignment gains for frame (a) and frame (b).

indeed expected as it is known that V2V data set does not
include points representing pedestrians. We can note from the
top portions of Fig. 12 and Fig. 14 that this case did not occur
when aligning with the LIDAR data set, due to the ability
of the LIDAR to detect ‘‘Person’’ objects, and their proper
mapping to those detected by the camera. These facts also
clarify the number of mapped points between camera and
LIDAR exceed those mapped between the camera and V2V
objects.

Another important observation is the presence of
unmapped data points in the bottom portions of all four
figures, represented by different markers. These points con-
sists of the objects detected by the LIDAR scans and V2V
BSMs but were not detected by analyzing the camera feeds
for both frames. Consequently, these points constitute the
components contributing to the alignment gain as they enrich
the vehicle recognition of its surrounding compared to the
sole use of camera feeds (widely used in autonomous vehicle
experiments and prototypes). The ‘‘Car’’, ‘‘Person’’, and
overall alignment gains, obtained for both LIDAR and V2V
alignment process with the camera information, are illus-
trated in Fig. 16. We can see that up to 120%, 50%, and 78%
alignment gains can be obtained by in the car, person, and
overall objects, respectively. This clearly show the merits of
ourmulti-model surrounding recognition system.We can also
notice the overall LIDAR gains are always equal or larger
than the V2V gains in this test, because the V2V data
sets represent a fraction of the LIDAR data set. However,
in practical scenarios, V2V gains can jump significantly
as V2V BSMs cover larger distances (around 250 meters)
than those scannable by cameras and LIDARs, and thus can
significantly enrich the knowledge about a much wider range
of its surroundings.

We finally studied the sensitivity of the alignment accuracy
in response to the change in the percentage of points selected
for neighborhood weight calculations. Indeed, the used num-
ber of neighbors (N ) used to compute these weights, and its
percentage (i.e., ratio) with the respect to the entire data set
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TABLE 1. Number of objects per class for both of the driving sequences.

size, can be crucial factors in the accuracy of the alignment.
For Frame (a) and Frame (b) respectilvey, Fig.17 and Fig.18
depict the accuracy performance of both camera-LIDAR and
camera-V2V alignments against the percentage of the number
of neighbors in the neighborhood weight computation pro-
cess, normalized by the total size of each of the data sets.
Both figures clearly justify our initial intuition by showing the
significant effect of this parameter on the alignment accuracy.

We can also observe that having a mid-range percent-
age of the points in the neighborhood weight computation
(from 30 to 40 %) results in much better accuracy compared
to both lower (10 to 25 %) and higher ranges (50% and
above). The degradation in the lower range can be explained
by the effect of outliers (i.e., points seeming to be close,
especially in the camera and LIDAR scans, while not being
truly so) in weight computations when the chosen percent-
age of neighbors is small. When the percentage increases
to the mid range, the number of considered neighbors in
the computation becomes quite larger, thus diminishing the
effect of the smaller percentage of outliers in misrepresenting
neighborhood correlation. However, as this percentage grows
beyond a certain limit, the algorithm will relate each point to
a lot of points, some of which definitely not being in its true

vicinity. Thus, the concept of neighbourhood dilutes, which
results in the exhibited performance degradation.

Another final notice about Fig.17 and Fig.18 is the the
camera-V2V alignment process always results in a better
performance. This can be interpreted by the fact that the V2V
data set object are known to be all vehicles. Consequently,
it is easy in this case to reject any alignment between a
point in the V2V data set with a point representing a person
from the camera data set. In other words, we can easily
restrict the alignment between the V2V data set and only the
objects identified as cars in the camera data set, which reduces
the number of points to be aligned, removes all potential
errors of aligning cars to persons (which can be the case in
with LIDAR), and thus results in better overall alignment
performance.

C. ALIGNMENT RESULTS OVER ENTIRE SEQUENCES
To extend our testing beyond two limited frames (i.e., only
Frame (a) and Frame (b)), this section illustrates the align-
ment results for two driving sequences from the KITTI data
set in terms of both accuracy and gain. In such more practical
setting of an autonomous vehicle driving, we cannot know in
advance the number of objects in each frame. Consequently,
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TABLE 2. Alignment accuracy per sequence drive.

FIGURE 17. Effect of number of neighbors on the alignment accuracy for
Frame (a).

the selection of the percentage of neighbors used to create
the weights of the graph are performed using the best values
obtained from both of the two frames (a) and (b) as well as
previous studies on manifold alignment (usually in the range
between 30% to 40%).

FIGURE 18. Effect of number of neighbors on the alignment accuracy for
Frame (b).

For both driving sequences 2011_09_26_drive_0005 (con-
sisting of 160 frames, the 117-th being Frame (a)) and
2011_09_28_drive_0016 (consisting of 192 frames, the 32-
nd being Frame (b)), we tested the alignment accuracy perfor-
mance and gains. Since immediate subsequent frames do not
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TABLE 3. Alignment gains for the driving sequences.

significantly change in nature, performing alignment of such
frames will not yield to any tangible new information, thus
adding non-justified computational burden on the system.
Consequently, we consider a practical scenario by aligning
the receivedmultimodal data every 5 frames of each sequence
drive in order to capture tangible dynamism of the objects
without enduring excessive unnecessary computational loads.
It is important to note that the number of identified objects as
cars and vehicles vary from one frame to another, and from
one sequence to the other, as presented in Table. 1.
For each of these frames, we first prepared the cam-

era and LIDAR data sets as explained in Section II, and
generated BSMs for all vehicles in each of the con-
sidered scenes as highlighted in Section IV-A. We then
preformed the camera-LIDAR and camera-V2V align-
ment processes for each of these frames, using 33%
(as identified from Frame (a)) and 40% (as identified
from Frame (b)) of each point’s neighbors in its weights
computations for sequences 2011_09_26_drive_0005 and
2011_09_28_drive_0016, respectively. We recorded the
alignment accuracy and gains for each of the aligned frames
and finally averaged these results over the entire number of
used frames in each of the sequences.

FIGURE 19. Average alignment accuracy of the driving sequences (1):
Sequence 09_26_0005 and (2): Sequence 09_28_0016.

The per-frame alignment accuracy for both sequences are
presented in Table. 2, and the average alignment accuracy
results are illustrated in Fig. 19. We can first notice that our
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FIGURE 20. Average alignment gains of the driving sequences (1):
Sequence 09_26_0005 and (2): Sequence 09_28_0016.

proposed scheme achieved 100% of alignment accuracy per-
frame in many frames of both of driving sequence. This result
demonstrates the fact the neighboring distance in pixels is
very meaningful and describes the objects’ neighborhood as
in the LIDAR and V2V data sets, especially when objects
are sparse. Some alignment results were less accurate (50%,
66.66% and 75%) due to some instances of overlapping and
very close objects (especially for persons). The resulting
variations in accuracy levels is also strongly related to the
number of objects, the selected percentage of neighbors as
well as how the objects are dispatched in the 2d camera space,
3D LIDAR representation and V2V environment. Moreover,
we can notice a better achieved alignment accuracy achieved
in the camera-V2V alignment compared to the camera-
LIDAR one, which can be explained both as in the previous
section and the fact of not having human alignment in the
V2V cases (which is one of the causes of lower alignment
performance due to object overlaps and higher proximity).
Looking at Fig. 19, we can observe between 74% and 92%
of average overall alignment accuracy for vehicles and 50%
to 78% average accuracy for persons. These results are quite
encouraging, especially on the vehicle side, as they exhibit
high accuracy of alignment, thus yielding to a better under-
standing of the observed objects (especially vehicles) by each
autonomous vehicle. Even for the cases of mis-alignment,
they occur due to same object overlap or close proximity,
which does not represent a sever drawback to the overall
vehicle recongnition of its surroundings. Indeed, all mis-
aligned objects are all from the same type and are occupying
the same neighborhood within the vehicle surroundings, thus
not significantly affecting its decisions.

Table. 3 illustrates the alignment gains obtained in
each frame in both considered sequences and the average
gains across all frames per are plotted in Fig. 20. The
depicted results show significant gains (from 17% and up to
150%) in the knowledge of the vehicle using the proposed

multimodal surrounding recognition approach. Again,
the alignment gains of the objects of type persons in the V2V
data set are null because pedestrian do not send BSMs.

V. CONCLUSION
In this paper, we developed a multimodal surrounding recog-
nition scheme for autonomous vehicles, capable of mapping
corresponding recognized objects from camera, LIDAR, and
V2V data sets, The proposed scheme exploits the fact that the
spacial relationships between objects in all three data sets can
be characterized by manifolds, both representing intersecting
sets of these objects and exhibiting high neighborhood cor-
relations. We thus employ a manifold alignment approach to
learn the correspondences between similar objects within the
different data sets and enrich them with the other objects not
detected by each mode, thus accomplishing a more robust
perception of its surroundings. We first tested the proposed
approach for two specific scenes to gain preliminary insights
and more rigorous analysis of the main factor affecting the
alignment accuracy, such as the percentage of neighborhood
correlation, overlapping objects, etc. We then applied the
learned information in testing our proposed scheme in entire
driving sequences. Formany cases, 100% alignment accuracy
was achieved, and alignment accuracy averages of 74%-92%
and 50%-78% were obtained for cars and persons, respec-
tively. Cases of mis-matches were further shown to occur
only within the same type of objects and for objects that
overlap or are in very close proximity to one-another, thus
minimally effecting the possible decisions of the recognizing
vehicle.
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