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ABSTRACT Learning from imbalanced data is a challenging task in the fields of machine learning and
data mining. As an effective and efficient solution, cost-sensitive learning has been widely adopted to
address class imbalance learning (CIL) problems. Weighted extreme learning machine (WELM), which is
constructed based on ELM, is a significant member in the cost-sensitive-learning algorithmic family.WELM
can effectively deal with CIL problems. However, it has two main drawbacks: 1) it has high time complexity
on large-scale data since a large-matrix multiplication operation is required in the solution procedure and
2) it lacks flexibility since it can only tune the training error for each instance and not for each class
label. In this paper, we present an alternative to WELM, which is called label-WELM (LW-ELM). Unlike
WELM, LW-ELM copes with CIL problems by tuning the training error of each class label. Specifically,
the expected output (or training class label) that corresponds to the minority class is augmented, thereby
providing stronger tolerance to training errors of the minority-class instances. In this paper, we design two
types of weight allocation strategies, both of which are based on the class-imbalance ratio (CIR). In contrast
with WELM, LW-ELM is fast and flexible, where fast means that it has low-time complexity and flexible
indicates that it can also be used to tackle imbalanced multi-label learning problems, while WELM cannot.
The experimental results on binary-class, multiclass, andmulti-label data sets with skewed class distributions
show the effectiveness and superiority of the proposed LW-ELM algorithm.

INDEX TERMS Class imbalance learning, cost-sensitive learning, extreme learning machine, weighted
extreme learning machine, multi-label learning.

I. INTRODUCTION
Many real-world classification problems that have been
examined in recent years are represented by highly imbal-
anced data sets, in which the number of instances from
one class is much smaller than that in another. Generally,
a problem of this type is called either a class imbalance
learning (CIL) problem [1] or a rare event detection prob-
lem [2]. For such problem, most traditional classification
models tend to provide the biased predictions that focus only
on the accuracy of the majority class and neglect the rare
events. During the past two decades, CIL problems have
attracted attention from many researchers and many learning

techniques have been presented. These techniques have also
been widely adopted in a variety of CIL applications, includ-
ing fraud detection [3]–[5], credit card approval [6], [7],
software defect prediction [8], [9], network intrusion detec-
tion [10], [11], disease diagnosis [12], [13], bioinformat-
ics [14]–[16], industrial manufacturing [17], and environment
resource management [18].

For a CIL problem, sampling [19]–[22], cost-sensitive
leaning [23]–[28] and ensemble learning [29]–[32] are the
most frequently used techniques. In contrast with the other
techniques, cost-sensitive learning possesses several advan-
tages: 1) it does not need to modify the distribution of the
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training instances; 2) it can adaptively determine the opti-
mal position of the classification boundary; and 3) it often
has relatively low time complexity because it only modifies
the traditional classification algorithm and does not inserts
extra steps into the learning procedure. Therefore, we focus
on solving CIL problems by cost-sensitive learning in this
paper.

With the exception of meta-cost [23], cost-sensitive
learning algorithms are generally correlated with a spe-
cific classification model. In this paper, extreme learning
machine (ELM), which is a popular classification model,
is intensively considered. We select ELM because it always
has higher or comparable prediction accuracy and generaliza-
tion ability than back-propagation neural networks (BPNNs)
and support vector machine (SVM) [33], [34], fast modeling
speed, and can be applied to binary-class, multiclass and
multi-label classification problems easily [35], [36].

There is a well-known cost-sensitive learning algorithm
that is based on ELM, namely, weighted extreme learning
machine (WELM) [25]. WELM regulates the training errors
by increasing the penalty factor that corresponds to theminor-
ity class instances. It can effectively deal with the class
imbalance problem. However, it has two internal drawbacks:
1) when the training set is large, it has high time complexity
as the large-matrix multiplication operation is required in
the solution procedure and 2) it lacks flexibility as it can
only tune the training error of each instance and, thus, can-
not be adopted to address multi-label imbalanced learning
problems.

To decrease the time complexity and promote the fea-
sibility of WELM, we present a new ELM-based cost-
sensitive learning algorithm, which is called label-weighted
extreme learning machine (LW-ELM). Instead of tuning
the penalty factor of each class, LW-ELM augments the
expected output (or class label) that corresponds to the
minority class instances, thereby improving the tolerance
to training errors of the minority-class instances. LW-ELM
is faster than WELM since it does not need to insert a
large weight matrix into the optimization procedure; it only
needs to provide a weighted assignment for the expected
output matrix. Moreover, LW-ELM is more feasible than
WELM as it regulates training errors for each class label
but not for each instance. Thus, it can be easily extended to
solve multi-label imbalance learning problems. In this paper,
we design two kinds of weight allocation strategies, both
of which are based on the class-imbalance ratio (CIR). The
first is more radical and the second more moderate. The
experimental results on binary-class, multiclass and multi-
label data sets that follow skewed class distributions indicate
the effectiveness and superiority of the proposed LW-ELM
algorithm.

The remainder of this paper is organized as follows.
In Section II, we briefly review the existing CIL techniques
in the context of ELM and multi-label learning. Section III
introduces two preliminaries for this study: ELMandWELM.
In Section IV, we analyze the effectiveness of label weighting

and introduce two weight assignment strategies and the pro-
posed LW-ELM algorithmic framework in detail. Finally,
we compare the theoretical time complexities of ELM,
WELM and LW-ELM. Section V presents the experi-
mental results and the corresponding analysis and discus-
sion. At last, Section VI presents the conclusions of this
paper.

II. RELATED WORK
A. CIL TECHNIQUES IN THE CONTEXT OF ELM
In general, three main types of approaches have been applied
to CIL problems: sampling [19]–[22], cost-sensitive lean-
ing [23]–[28] and ensemble learning [29]–[32]. Sampling is
based on rebalancing class distributions by deleting instances
from the majority classes (undersampling) or adding new
instances to the minority classes (oversampling). The advan-
tage of the sampling technique lies in its independence from
the classification models. The aim of cost-sensitive learning
is to bias the existing classifiers towards the minority classes.
Therefore, cost-sensitive learning is generally correlated with
a specific classification model, such SVM, decision tree,
logistic regression or ELM. For the ensemble learning that
is associated with CIL problems, sampling or cost-sensitive
learning algorithms are integrated into a specific ensemble
learning framework, e.g., bagging, boosting or random forest.
For reviews and surveys of CIL techniques, interested readers
may refer to [1], [2], and [37]–[39].

In the context of ELM, several CIL approaches have been
proposed in previous work. Vong et al. [40] adopted the
random oversampling (ROS) strategy to promote the recog-
nition rate of the level of suspended particulate matter, which
follows skewed distributions. Sun et al., [41] integrated the
synthetic minority oversampling technique (SMOTE) into a
multiple-ELM framework to increase the predictive accu-
racy of a corporation life cycle. For cost-sensitive learning
techniques, Zong et al., [25] proposed a weighted ELM
algorithm that is named WELM, which improves the per-
formance on the minority classes by assigning larger penalty
factors to the training instances that belong to those minority
classes. A similar algorithm, namely, fuzzy ELM (FELM)
was independently proposed by Zhang and Ji [42], which
regulates the distributions of penalty factors by inserting a
fuzzymatrix. However, they failed to provide a unified design
rule for the fuzzy matrix. Recently, Zhang and Zhang [43]
presented an evolutionary cost-sensitive ELM (ECS-ELM)
algorithm. However, the algorithm is specially designed
for application to the cost-sensitive but not CIL scenario.
Yu et al., [27] proposed a special cost-sensitive ELM algo-
rithm, namely, ODOC-ELM, for coping with CIL problems.
The algorithm trains a normal ELM classifier and searches
for the optimal combination of decision output compensation
thresholds with the aim of minimizing the G-mean metric
of the training instances. The WELM algorithm has been
integrated with a boosting ensemble learning framework and
achieved improved classification performance [44].
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B. CIL TECHNIQUES IN THE CONTEXT OF
MULTI-LABEL LEARNING
Traditional supervised learning always faces a data set in
which each object is associated with a single label that
denotes its category. However, in real-world applications, one
example might hold multiple labels simultaneously, i.e., be
associated with a set of class labels. In general, we call
this kind of task a multi-label learning problem [45]. Taking
image retrieval as an example, an image might be associated
with several categories, such as grass, cloud, sky, mountain,
tree and lake (see Fig. 1).

FIGURE 1. An example of multi-label learning instance.

In previous work, it has been indicated that for multi-
label classification data, the CIL problem is generally more
serious. That is, for most categories, label 1 is often extremely
scarce. Therefore, CIL techniques have also been widely
used in multi-label classification problems. Tahir et al. [46]
proposed the inverse random under sampling (IRUS) algo-
rithm for addressing the CIL problem in multi-label data.
In IRUS, the majority class is severely under-sampled mul-
tiple times and in each round, the number of instances that
belong to the majority class should be guaranteed to be less
than that for the minority class. Then, each under-sampled
majority set should be integrated with all instances in the
minority class to construct the training subset, which is used
subsequently to train a classifier. Finally, all classifiers are
integrated to make decisions in the form of majority voting.
For a multi-label classification problem, this procedure is
conducted on each class label. Charte et al. [47] discussed
the CIL problem in multi-label classification in detail and
designed several metrics for measuring the imbalance level
in multi-label data sets. Based on these metrics, four types of
sampling algorithms, namely, LP-RUS, LP-ROS, ML-RUS,
and ML-ROS, were presented. In [48], Charte et al. pro-
posed an improved algorithm, namely, ML-SMOTE. The
authors further clarified how to determine neighbors and
synthesize the label set of the target instance from its
neighbors’ labels. Zhang et al. [49] presented an algorithm
named cross-coupling aggregation (COCOA), whose main

advantage is that it tries to leverage the exploitation of label
correlations and the exploration of class imbalance. In brief,
to induce the predictivemodel on each class label, one binary-
class imbalance learner that corresponds to the current label
and several multi-class imbalance learners that are coupled
with other labels are aggregated for prediction. ELM can be
well adapted for multi-label learning without adding extra
structures or steps [50]. However, no work has been per-
formed on multi-label CIL problems in the context of ELM.

III. PRELIMINARIES
A. EXTREME LEARNING MACHINE
ELM, which was proposed by Huang et al. [33], [34], is a
learning algorithm for single-hidden-layer feed-forward neu-
ral networks (SLFNs). The main characteristic of ELM that
distinguishes it from the conventional learning algorithms of
SLFN is the random generation of hidden nodes. Therefore,
ELM does not need to iteratively regulate parameters to make
them approach the optimal values. Thus, it has faster learning
speed and better generalization ability. Previous research has
indicated that ELM can produce better or at least similar gen-
eralization ability and classification performance compared
to SVM and BPNN, but only consumes tenths or hundredths
of their training time [33], [34].

Let us consider a classification problem with N train-
ing instances for distinguishing m categories. The ith train-
ing instance can be represented as (xi, ti), where xi is an
n× 1-dimensional input vector, while ti is the corresponding
m×1-dimensional output vector. Suppose there are L hidden
nodes in ELM and all weights and biases on these nodes are
generated randomly. Then, for instance xi, its hidden layer
output can be represented as a row vector h(xi) = [h1(xi),
h2(xi), . . . , hL(xi)]. Therefore, the mathematical model of
ELM can be described as

Hβ = T (1)

where H=[h(x1), h(x2), . . . , h(xN )]T is the hidden-layer out-
put matrix over all training instances, βis the weight matrix
of the output layer, and T=[t1, t2, . . . , tN ] denotes the target
matrix (expected output matrix). Obviously, in Eq. (1), only
β is unknown, so we can adopt the least-square algorithm to
acquire its solution, which can be described as follows:

β = H†T =

{
HT(HHT)−1T, when N ≤ L
(HHT)−1HTT, when N > L

(2)

where H† denotes the Moore-Penrose generalized inverse of
the hidden-layer output matrix H, which can guarantee that
the solution is the least-norm least-square solution of Eq. (1).

We can also train an ELM from the viewpoint of opti-
mization [34]. In the optimization version of ELM, we wish
to simultaneously minimize ||Hβ − T||2 and ||β||2. Thus,
the optimization problem can be described as follows:

Minimize: LpELM =
1
2
||β||2 + C

1
2

N∑
i=1

||ξi||
2

Subject to : h(xi)β = tTi − ξ
T
i , i = 1, 2, . . . ,N (3)
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where ξi = [ξi,1, ξi,2, . . . , ξi,m] denotes the training error
vector of the m output nodes with respect to the training
instance xi, while C is the penalty factor, which represents
the tradeoff between the minimization of the training errors
and the maximization of the generalization ability. According
to the Karush–Kuhn–Tucker (KKT) theorem, the solution of
Eq. (3) can be expressed as follows:

β = H†T =


HT(

I
C
+HHT)−1T, when N ≤ L

(
I
C
+HHT)−1HTT, when N > L

(4)

B. WEIGHTED EXTREME LEARNING MACHINE
WELM is a cost-sensitive learning version of ELM, which
can be regarded as an effective way to cope with the CIL
problem [25]. The main strategy of WELM is to assign
different penalties to different categories, where the minority
class has a larger penalty factor C while the majority class
has a smaller C value. Then, it focuses on the training errors
of the minority instances, thereby making the classification
hyperplane appear at a more impartial position. A weighting
matrix W is used to regulate the parameter C for different
instances, i.e., Eq. (3) can be rewritten as:

Minimize: LpELM =
1
2
||β||2 + C

1
2
W

N∑
i=1

||ξi||
2

Subject to: h(xi)β = tTi − ξ
T
i , i = 1, 2, . . . ,N (5)

whereW is an N ×N diagonal matrix in which each value on
the diagonal represents the corresponding regulation weight
of parameter C . In [25], the authors provide two weighting
strategies, which are described as follows:

W1ELM : Wii = 1/#(ti) (6)

and

W2ELM : Wii =

{
0.618/#(ti) if # (ti) > AVG(ti)
1/#(ti) if # (ti) ≤ AVG(ti)

(7)

where #(ti) and AVG(ti) denote the number of instances that
belong to class ti and the average number of instances over
all classes, respectively. Then, the solution can be described
as follows:

β =


HT(

I
C
+WHHT)−1WT, when N ≤ L

(
I
C
+ HWHT)−1HTWT, when N > L

(8)

Compared with Eq. (4), an extra weight matrix W has been
added into the solution procedure in Eq. (8). Since the size
of W is N × N , where N denotes the number of training
instances, when N is large enough, the time complexity of
determining β in WELM inevitably increases substantially.
Therefore, we expect to provide an alternative to WELM that
has lower time complexity but the same effect. This is one of
themainmotivations of this study. The alternative algorithmic
framework will be presented in the following section.

IV. METHODS
A. WHY LABEL WEIGHTING?
Before we train an ELMorWELMmodel, an expected output
matrix T should be generated. The matrix T includes m rows
andN columns, wherem andN denote the numbers of classes
and training instances, respectively. T can be represented as:

T=


t11 t12 · · · t1N
t21 t22 · · · t2N
...

...
. . .

...

tm1 tm2 · · · tmN

 (9)

Each entity tij in T is either 1 or −1, where 1 indicates
that the instance belongs to the corresponding class, and
−1 indicates that it does not. Let us revisit Eq. (5). It is not
difficult to observe that in WELM, the optimized objective is
the tradeoff between the minimization of the weight matrix
of the output layer β and the minimization of the weighted
training biases. Irrespective of the first optimization term,
the weighted training bias for any single instance xi can be
represented as CWii||ξi||

2, where ξT
i
= tTi − h(xi)β. Since the

weighted biases of all training instances must be minimized
uniformly, it is obvious that the instance with the smaller
weight (majority class instance) can incur a higher training
bias, whereas the instance with the larger weight (minority
class instance) should have a lower training bias.

Let us consider the question from another perspective; if
we remove the weighting matrix W but provide stronger
tolerance to training biases for the instances that belong to
the minority class compared to the examples from the major-
ity class, the CIL problem might be well addressed. This
could be implemented by augmenting the expected output
that corresponds to the instances in the minority class, i.e., by
making some entities in T larger than 1, while leaving the
others unchanged. The idea could be intuitively explained by
ELM’s decision rule. In ELM, although the expected output
is restricted to {−1,1}, the value range of the actual output
is generally (−∞, +∞) and the actual output is always a
continuous value. To make decision, a threshold value of 0
might be required. Then, when and only when an actual
output value is larger than 0 will the instance be assigned to
the corresponding category. Therefore, whenwe compare two
expected outputs ti and tj, if | ti| > |tj|, then we say that ti has
stronger tolerance to training bias than tj as it is farther from
the threshold value of 0. That is, if the aim is to minimize
the overall training bias, then the instance would tend to be
awarded to category i, not j.
In addition to the intuitionistic explanation, we try to

explain the concept by the analysis theory that is used in
our previous work [27]. Without loss of generality, suppose
the imbalanced data set is a binary-class set. Then, in ELM,
the expected outputs of the minority class and the majority
class are assigned values of 1 and −1, respectively. Con-
sidering a small and compact boundary region, there are S
majority class instances and 1minority example, where S�1.
The words "small and compact" mean that all the instances
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in that region have similar inputs. Let us describe the feature
vector of the minority class instance as x0 = (x10, x

2
0, . . . , x

n
0)

and the feature vectors of the majority class instances as
xi = (x10 + 1x1i , x

2
0 + 1x2i , . . . , x

n
0 + 1xni ), where i ∈

{1, 2, . . . , S} and 1xji denotes a small positive or negative
deviation for the jth feature component of the ith instance
in comparison with that of instance x0. In addition, we use
1xi = (1x1i ,1x2i , . . . ,1xni ) to denote the deviation of the
feature vector of the ith instance in comparison with that of
the minority class instance x0. Then, according to Eq. (1),
the actual outputs of these instances can be represented as:

f (xi) =

{∑L
i=1 βih(x0), if j = 0∑L
i=1 βih(x0 +1xj), if j = 1, 2, . . . , S

(10)

Based on Eq. (10), 1f (xi), which is the variation between
the actual output of the jth majority class instance xj and that
of the minority class instance x0, can be calculated as follows:

1f (xi) =
∑L

i=1
βih(x0 +1xj)−

∑L

i=1
βih(x0)

=

∑L

i=1
βi[h(x0 +1xj)− h(x0)] (11)

In Eq. (11), when ||β|| and1xj are both sufficiently small,
1f (xi) can be guaranteed to be a small real number, which is
either positive or negative, i.e., two closely adjacent instances
have similar actual outputs in ELM. Suppose β has been
determined. Then, Qsub, which is the total training bias of the
subset, can be represented as:

Qsub = [f (x0)− 1]2 +
∑S

i=1
[f (x0)+1f (xi)− (−1)]2

(12)

To minimize the training bias of the subset, we should set the
following quantity to zero:

∂Qsub
∂f (x0)

= (2S + 2)f (x0)+ 2
∑S

i=1
1f (xi)+ 2S − 2 (13)

Then, we can calculate the actual output of the minority
instance x0 as follows:

f (x0) =
1− S −

∑S
i=11f (xi)

1+ S
(14)

As we mentioned above,
∑S

i=11f (xi) is sufficiently small.
Thus, its influence can be neglected. Then, it is clear that f (x0)
tends to output a negative value that is far from the threshold
of 0 as S � 1. Furthermore, with the increase of S, f (x0)
gradually approaches −1. That also explains why ELM can
be damaged by class-imbalanced distributions.

Next, we analyze the same problem in our label weight-
ing scenario. Suppose the expected output of sample x0 has
been previously augmented P times. Then, Eq. (12) can be
rewritten as:

Qsub = [f (x0)− P]2 +
∑S

i=1
[f (x0)+1f (xi)− (−1)]2

(15)

To minimize the training bias, we have:

∂Qsub
∂f (x0)

= (2S + 2)f (x0)+ 2
∑S

i=1
1f (xi)+ 2S − 2P

(16)

Then, f (x0) can be described as follows:

f (x0) =
P− S −

∑S
i=11f (xi)

1+ S
(17)

If P = S, the bias that is caused by the skewed data distri-
butions can be well corrected. This is a powerful theoreti-
cal explanation for the effectiveness of the label weighting
strategy.

B. WEIGHT ASSIGNMENT
For label weight assignment, we design two rules, both of
which are based on the class-imbalance ratio (CIR), which
is the ratio between the numbers of instances that belong
to the majority class and the minority class. In binary-class
and multiclass CIL problems, the expected outputs should be
assigned by one of the following two functions:

LW1ELM: tij =

{
#max(C)/#(Ci), if xj ∈ Ci
−1, if xj /∈ Ci

(18)

and

LW2ELM: tij =

{
2
√
#max(C)/#(Ci), if xj ∈ Ci
−1, if xj /∈ Ci

(19)

where #(Ci) and #max(C) denote the number of instances
that belong to the ith category and the number of instances in
the largest majority class, respectively. When there are fewer
instances in one class, each instance that belongs to that class
is assigned a larger expected output value. In Eq. (18) and
Eq. (19), we also observe that in contrast with LW1ELM,
LW2ELM is a more moderate weight assignment rule.
Unlike multiclass classification problems, a multi-label

learning problem can be regarded as a combination of multi-
ple binary-class problems. In addition, the expected output
matrix T in binary-class or multiclass problems obeys an
exclusion principle, namely, that there is only one element
that does not equal -1 in each column, in contrast to multi-
label problems. Therefore, we modify the weight assignment
rules and express them as follows:

LW1ELM: tij =

{
∼ #(Ci)/#(Ci), if xj ∈ Ci
−1, if xj /∈ Ci

(20)

and

LW2ELM: tij =

{
2
√
∼ #(Ci)/#(Ci), if xj ∈ Ci
−1, if xj /∈ Ci

(21)

where ∼#(Ci) denotes the number of instances that do not
belong to the ith category.

To intuitively show the difference in label weight assign-
ment rules between multiclass problems and multi-label
problems, we provide two examples:
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Example 1: For a multiclass imbalance problem, with
ELM, the expected output matrix is

T =

 1 −1 −1 −1 −1 −1
−1 1 1 −1 −1 −1
−1 −1 −1 1 1 1


Then, with LW1ELM and LW2ELM, the expected output
matrices are respectively modified as:

T1
=

 3 −1 −1 −1 −1 −1
−1 3/

2
3/
2 −1 −1 −1

−1 −1 −1 1 1 1


and

T2
=


√
3 −1 −1 −1 −1 −1

−1
√
3/
2

√
3/
2 −1 −1 −1

−1 −1 −1 1 1 1


Example 2: For a multi-label imbalance problem, with

ELM, the expected output matrix is

T =


1 1 −1 −1 −1 −1
1 −1 1 1 −1 −1
−1 −1 1 −1 1 −1
−1 −1 −1 −1 −1 1


Then, with LW1ELM and LW2ELM, the expected output
matrices are respectively modified as:

T1
=


2 2 −1 −1 −1 −1
1 −1 1 1 −1 −1
−1 −1 2 −1 2 −1
−1 −1 −1 −1 −1 5


and

T2
=


√
2
√
2 −1 −1 −1 −1

1 −1 1 1 −1 −1
−1 −1

√
2 −1

√
2 −1

−1 −1 −1 −1 −1
√
5


C. LW-ELM ALGORITHMIC FRAMEWORK
The detailed procedure of the LW-ELM algorithm is
described in Fig. 2. Binary-class, multiclass and multi-label
classification problems have been integrated into a uniform
algorithmic framework. Their difference is only reflected in
step 5∼step 9 in Fig. 2, in which they use different rules to
correct the initial expected output matrix T.

D. ANALYSIS OF THE TIME COMPLEXITY
As mentioned above, one of the main aims of this study
is to reduce the running time consumption of cost-sensitive
learning in the context of ELM. Thus, in this subsection,
we will analyze and compare the time complexities of the
ELM, WELM and LW-ELM algorithms in detail.

In the testing phase, we have received the hidden weight
connecting matrix β, which indicates that the testing times
are totally equivalent for the three algorithms. Therefore, we
only consider their differences in running time in the train-
ing phase. The procedure can be divided into three sequen-
tial stages: a preprocessing stage (generating T and/or W ),

FIGURE 2. Description of the procedure of the LW-ELM algorithm.

calculation stage I (calculating H) and calculation stage II
(calculating β).
Suppose the number of training instances is N , the dimen-

sion of each training instance is n, the number of class labels
ism and the number of hidden nodes is L. In the preprocessing
stage, we first scan all instances to count the number of
categories to obtain m. Then, we generate an expected output
matrix T and assign an appropriate value to each element in T.
Therefore, it is not difficult to calculate the time complexity
of ELM, which is O(mN). For WELM and LW-ELM, CIL
indexes will be calculated. Thus, only a small amount of extra
running time is consumed for them. In calculation stage I,
all three algorithms perform the same calculation. Hence,
they take the same constant running time: O(NnL). However,
in calculation stage II, these three algorithms present signif-
icant differences in terms of time consumption as both ELM
and LW-ELM solve β by Eq. (4), while WELM solves β
Eq. (8). The size of H is L × N , the size of T is m × N
and the size of W is N × N . Thus, HHT takes O(NL2) time,
HTT O(NLm) time, HWHTO(N 2L + NL2) time and HTWT
O(N 2L+NLm) time.Meanwhile, since both HHT andHWHT

are L-order square matrices, their time complexity for the
inversion calculation is O(L3). That means that WELM takes
O(N 2L) more time. That is, when the number of training
instances N is sufficiently large, we might observe a sig-
nificant difference between WELM and ELM (LW-ELM) in
terms of running time. In addition, with the increase of the
number of training instances, this difference will increase.
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TABLE 1. Binary-class and Multiclass CIL Data sets used in this paper.

To verify our analysis, we tried to track the variation of
running time for these three algorithms with the increase in
the number of training instances. Without loss of generality,
binary-class two-dimensional synthetic data were adopted as
the training set, where the majority class satisfies the normal
distribution of mean 0.5 and variance 0.2 and the minor-
ity class satisfies the normal distribution of mean 0.2 and
variance 0.1. CIR was set to 9.0. In addition, we generated
5 training sets with different scales, in which the numbers
of instances are 100, 500, 1000, 5000 and 10000. ELM1 and
WELM2 Matlab codes can be downloaded on the homepage
of G.B. Huang in Nanyang Technological University and for
all three algorithms, the number of hidden nodes is set to 100.
The running time curves of these three algorithms are shown
in Fig. 3.

 fig3.tif

FIGURE 3. Running time curves of ELM, WELM and LW-ELM algorithms.

1http://www.ntu.edu.sg/home/egbhuang/elm_random_hidden_
nodes.html

2http://www.ntu.edu.sg/home/egbhuang/elm_codes.html

In Fig. 3, when the number of training instances is less
than a specific value, e.g., 1000, the three algorithms have
similar running times, which could be neglected in practical
applications. That means that when N is not sufficiently
large, the running time is dominated by the other attributes,
e.g., L. However, with the continued increase of the number of
training instances, N will dominate the running time of each
algorithm. At this moment, the time complexities of ELM and
LW-ELM increase with N , while that of WELM increases
with N 2. The experimental results in Fig. 3 well support our
theoretical analysis.

V. EXPERIMENTS AND DISCUSSION
A. DATA SET DESCRIPTION
In our experiments, three types CIL data sets have been
collected: binary-class, multiclass and multi-label sets.
Specifically, 14 binary-class and 8 multiclass imbalanced
data sets were collected from the UCI data repository [51]
and 10 multi-label data sets were downloaded from MLC
Toolbox [52], which is a Matlab toolbox for multi-label
learning. To thoroughly present the trait of each comparison
algorithm, the collected data sets were required to contain
different numbers of features, numbers of instances and CIL
indexes. Table 1-Table 2 present detailed descriptive informa-
tion about these data sets.

B. EXPERIMENTAL SETTINGS
All experiments were run on a 2.60 GHz Intel(R) Core(TM)
i7 6700HQ 8-core CPU with 16 GB RAM using the Matlab
2013a running environment.

On binary-class and multiclass CIL data sets, the LW-ELM
algorithm was compared with several benchmark algo-
rithms: ELM [34], W1ELM [25], W2ELM [25], RUS-
ELM, ROS-ELM [40] and SMOTE-ELM [41]. Specifi-
cally, for all sampling algorithms, the class-imbalance ratio
after sampling was required to be 1. In addition, for the
SMOTE-ELM algorithm, the parameter for the number of
nearest neighbors K has been assigned a default value of 5.
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TABLE 2. Multi-label Data sets used in this paper.

TABLE 3. F-measure metric on Binary-class and Multiclass CIL Data sets.

The two most popular performance evaluation metrics,
namely, F-measure and G-mean, were adopted to compare
different algorithms. In particular, F-m easure measures the
trade-off between precision and recall, while G-mean mea-
sures the trade-off among the accuracies that belong to
different categories.

On multi-label data sets, the proposed LW-ELM algo-
rithm was compared with several existing multi-label
CIL algorithms, namely, ML-ELM [34], ML-ROS [47],
ML-SMOTE [48], IRUS [46] and COCOA [49]. All parame-
ters in these algorithms were assigned the default values that
were provided by the corresponding references. Two popular
metrics, namely, Macro-F and Micro-F, have been adopted
for evaluating the performance of each algorithm.

All the algorithms except COCOA use ELM to construct
the classification model. Hence, we need to select an activa-
tion function and designate two parameters, namely, C and
L, in advance. Here, the most popular activation function,
namely, the sigmoidfunction, was adopted, whileLandCwere
determined by grid search by internal 5-fold cross-validation,
where L ∈ {10, 20, . . . , 200} & C ∈ {2−4, 2−2, . . . , 220}.

In addition, considering the randomness of the experi-
ments, the experimental results might be unstable. Therefore,
we use 10 random 5-fold cross-validations to calculate the
average result for each algorithm. All experimental results
were given in the form of mean ± standard deviation.

C. RESULTS ON BINARY-CLASS AND MULTICLASS
IMBALANCED DATA SETS
Table 3 and Table 4 present detailed experimental results
on binary-class and multiclass CIL data sets in terms of the
F-measure and G-mean metrics, respectively. The best result
on each data set has been highlighted in boldface. Further-
more, to show whether the best LW-ELM algorithm performs
significantly better/worse than the comparison algorithms,
a pairwise t-test at 5% significance level has been conducted.
Accordingly, a win/loss frequency was counted and a marker
•/◦ is shown in tables whenever the best LW-ELM algorithm
achieves significantly superior/inferior performance on a data
set. Otherwise, a tie was declared and no marker was given.
The overall win/tie/loss counts across all data sets were sum-
marized in the last row of each table.
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TABLE 4. G-mean metric on Binary-class and Multiclass CIL Data sets.

From the results in Table 3 and Table 4, we observe the
following:

1) On binary-class and multiclass CIL data sets, both
sampling and cost-sensitive learning could promote
the quality of the classification model to some extent.
This conclusion can be drawn by comparing the results
between any CIL algorithm and the original ELM algo-
rithm. On some simple data sets, e.g., wisconsin, wine
and penbased, the improvement might not be presented
clearly; this phenomenon has been well explained and
analyzed in several previous works [27], [53]. That is,
the harmfulness of a class-imbalanced distribution on
traditional classification models is correlated with mul-
tiple complex factors, including the class-imbalance
ratio, class overlap, small disjunctions and the ratio
of noise. However, on some extremely difficult data
sets, e.g., abalone19, poker8-9-vs-5 and wilt, several
CIL algorithms have improved the classification per-
formance substantially.

2) In terms of F-measure (Table 3), our proposed
LW-ELMalgorithm significantly outperforms the com-
parison algorithms in 75% (ELM), 50% (W1ELM),
70.84% (W2ELM), 58.33% (RUS-ELM), 37.5%
(ROS-ELM) and 45.83% (SMOTE-ELM) of cases and
is only significantly inferior to several other algorithms
once or twice. These results indicate that LW-ELM is
capable of achieving a good balance between predictive
exactness (precision) and completeness (recall) in han-
dling CIL data. Specifically, the LW-ELM algorithm
has achieved the best F-measure on 11 data sets, includ-
ing 4 by LW1ELM and 7 by LW2ELM.

3) In terms of G-mean, the LW-ELM algorithm sig-
nificantly outperforms the comparison algorithms
in 79.16% (ELM), 33.33% (W1ELM), 41.67%
(W2ELM), 29.17% (RUS-ELM), 20.83% (ROS-ELM)
and 29.17% (SMOTE-ELM) of cases but has been
outperformed in 0% (ELM), 12.5% (W1ELM),

16.67% (W2ELM), 16.67% (RUS-ELM), 20.83%
(ROS-ELM) and 25% (SMOTE-ELM) of cases. There-
fore, compared with ELM and W2ELM, our proposed
LW-ELM performs significantly better. However, com-
pared with several other algorithms, it could only
produce comparable performance. Specifically, the
LW-ELM algorithm only obtains the best result on
7 data sets, which is the same as the WELM algorithm.
Therefore, in terms of running time, the LW-ELM
algorithm is a successful alternative to theWELMalgo-
rithm, but the LW-ELM algorithm does not outperform
WELM in terms of classification performance.

4) We also note an interesting phenomenon that LW1ELM
tends to yield a better G-mean metric, while LW2ELM
is more appropriate for obtaining a high F-measure
metric. We believe that this phenomenon is correlated
with the weighting strategies that are adopted by these
two algorithms, as LW1ELM uses a radical weighting
strategy, which can promote the accuracy of the minor-
ity class by sacrificing that of the majority class to a
large extent, while LW2ELM is more moderate and is
helpful for finding the best tradeoff between precision
and recall. That is, it is recommended for the user to
select an appropriate version according to his or her
practical requirements.

5) In addition, on highly skewed data sets, e.g.,
abalone19 and poker8-9-vs-5, it is easier to achieve
excellent classification performance using the
LW1ELM algorithm, while LW2ELM generally lacks
stability on these data sets. In other words, the highly
imbalanced data requires augmenting the instance
weight that belongs to the minority category to a large
extent.

D. RESULTS ON MULTI-LABEL DATA SETS
Table 5 and Table 6 show the results of seven comparison
algorithms on 10 multi-label data sets, in terms of Macro_F
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TABLE 5. Macro_F metric on multi-label data sets.

TABLE 6. MIcro_F metric on multi-label data sets.

and Micro_F, respectively. Pairwise t-test at 5% significance
level has also been conducted to determine the significant
difference between any algorithm and the best LW-ELM
algorithm.

LW-ELM significantly outperforms the ML-ELM,
ML-ROS and ML-SMOTE algorithms in terms of both the
Macro_F and Micro_F metrics. LW-ELM only performs
worse than those three algorithms on the Medical data set in
terms of Micro_F. Thus, LW-ELM significantly outperforms
those three algorithms. For the two other algorithms, namely,
IRUS and COCOA, we observe that in terms of the Macro_F
metric, LW-ELM has presented similar performance to those
two algorithms, whereas in terms of the Micro_F metric,
LW-ELM performs obviously better than IRUS and worse
than COCOA. To clarify the reason the IRUS and COCOA
achieve better or at least similar performance to our proposed
LW-ELM algorithm, we must investigate the intrinsic mech-
anism that is hidden behind these two algorithms. Ensemble
learning, which takes advantage of the diversity of multiple
base classification models, generally improves the perfor-
mance of the classification model. Therefore, both IRUS
and COCOA profit from ensemble learning. Additionally,
in addition to ensemble learning, COCOA considers the label
correlations, which might provide important hidden informa-
tion for improving the quality of multi-label classification
models.

Compared with LW1ELM, LW2ELM performs signifi-
cantly better, except on several data sets with low average

class-imbalance ratios, e.g., CAL500, Emotions and Yeast.
We believe the reason lies in that regardless of whether
Macro_F or Micro_F deviates in terms of F-measure, as in
our analysis in the previous subsection, LW2ELM is more
appropriate for producing high F-measure than LW1ELM.
Accordingly, we recommend LW2ELM for multi-label CIL
scenarios.

E. COMPARISON OF RUNNING TIME
We should also consider the computation times of various
comparison algorithms. The average running times of vari-
ous algorithms are summarized in Table 7 (binary-class and
multiclass data sets) and Table 8 (multi-label data sets).

According to Table 7, the LW-ELM algorithm generally
consumes slightly more running time than both the ELM
and RUS-ELM algorithms but has obviously lower time
complexity than the ROS-ELM, SMOTE-ELM and WELM
algorithms. This phenomenon is clearer on large-sample data
sets, e.g., abalone19, wilt, page-blocks5, magic and letter-A.
This phenomenon occurs because ROS-ELM increases the
number of training instances, SMOTE-ELM requires neigh-
borhood calculations to be frequently performed, andWELM
must deal with the problem of large-matrix multiplication,
which inevitably increase the training time consumption. The
results are consistent with our theoretical analysis. On several
large-sample data sets, the proposed LW-ELM algorithm can
reduce the running time by several hundred times compared
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TABLE 7. Running time (seconds) of various comparison algorithms on binary-class and multiclass data sets.

TABLE 8. Running time (seconds) of various comparison algorithms on multi-label data sets.

with the WELM algorithm. That means that LW-ELM could
be an efficient alternative to WELM.

In Table 8, two interesting phenomena are observed: First,
as an undersampling algorithm, IRUS requires much longer
training time than the two oversampling algorithms, namely,
ML-ROS and ML-SMOTE. It is correlated with the ensem-
ble mechanism that is adopted by IRUS, which extremely
undersamples the majority class to train a set of base clas-
sifiers. The number of base classifiers that should be con-
structed depends on multiple factors, such as the number of
class labels, the number of instances and the average class-
imbalance ratio. Therefore, it is not difficult to explain why
IRUS consumes more training time on Corel5k data sets
than that on Rcv1(s1), Rcv1(s2) and Tmc2007 data sets.
Second, as another ensemble learning algorithm, COCOA
requires substantially less running time but achieves signif-
icantly better performance than IRUS. It is easy to explain
this phenomenon as follows: COCOA integrates significantly
fewer base classifiers than IRUS but leverages exploitation of
label correlations and exploration of class imbalance, while
IRUS only considers class imbalance.

The LW-ELM algorithm still has very low time-
complexity, which is only slightly higher than that of
ML-ELM. On large-scale data sets with many class labels,
LW-ELM could reduce the running time by hundreds or even
thousands of times compared with the more time-consuming

algorithms, e.g., IRUS. Meanwhile, LW-ELM has achieved
excellent classification performance on most multi-label data
sets. Hence, it is a good choice for dealing with multi-label
class imbalance problems.

VI. CONCLUSIONS
In this paper, a fast and feasible cost-sensitive learning
algorithm, namely, label-weighted extreme learning machine
(LW-ELM), is proposed. As an alternative to the traditional
weighted extreme learningmachine (WELM) algorithm, LW-
ELM has two main advantages: 1) it achieves substantially
faster training speed on large-scale data sets by eliminat-
ing a large-matrix multiplication operation, and 2) it can
be used to cope with the class-imbalance problem in multi-
label data by regulating the weight of each class label.
Specifically, for different purposes, two diverse label weight
assignment strategies have been proposed, of which one is
drastic and the other is moderate. We tried to verify the
effectiveness and feasibility of LW-ELM theoretically and
empirically evaluated the LW-ELM algorithm by comparing
it to six other algorithms on 24 binary-class and multiclass
CIL data sets and to five algorithms on 10 multi-label data
sets. LW-ELM achieves the best performance of all compared
algorithms on single-label data sets and better performance
than all algorithms except COCOA on multi-label data sets.
It has significantly lower time complexity than the other
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algorithms, which increases its practicability in real-world
applications.

In future work, the effectiveness of LW-ELM will be fur-
ther evaluated in additional real-world application scenarios.
Additionally, the integration of LW-ELM into the Boosting
ensemble learning and online learning frameworks will be
investigated.
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