
Received April 10, 2018, accepted May 10, 2018, date of publication May 21, 2018, date of current version July 25, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2838568

Semi-Supervised Community Detection
Based on Distance Dynamics
LILIN FAN, SHENGLI XU, DONG LIU , AND YAN RU
School of Computer Science and Technology, Henan Normal University, Xinxiang 453007, China

Corresponding author: Dong Liu (liudonghtu@gmail.com)

This work was supported in part by the joint funds of the National Natural Science Foundation of China under Grant U1404604, in part by
the Science and Technology Project of Henan Province under Grant 152102310313, and in part by the Ph.D. Research Startup Foundation
of Henan Normal University under Grant QD14135.

ABSTRACT Community detection methods that are based entirely on the topology of the network do
not always achieve higher accuracy. This implies that the topological information alone is insufficient to
accurately uncover the community structures of networks. Recently, some methods were proposed that used
prior information to improve the performance and accuracy of community detection. However, most of these
methods have high time consumption and are not suitable for dealing with large-scale networks. In this paper,
we propose a fast semi-supervised community detection method called SemiAttractor that integrates the
prior information into the distance dynamics model. Experimental results from both artificial and real-world
networks show that the proposed method can effectively improve the accuracy of community detection and
reduce the time costs.

INDEX TERMS Community detection, semi-supervised, distance dynamics, graphs.

I. INTRODUCTION
Numerous studies have shown that community structures
often exist in the real-world [1], [2]. For example, there are
communities in social networks that are formed by groups
of common interests or similar social backgrounds [3], [4].
There are communities exposed by functional units in
biochemical networks that help them move in a better
direction [5], [6]. The in-depth study of community struc-
tures helps us better understand the systematic structures and
functional characteristics of real-world networks. Therefore,
community detection has become increasingly important in
the field of complex networks.

In recent years, scholars have increasingly devoted them-
selves to the field of community detection and proposed a
large number of community detection algorithms. The classic
community detection algorithms include the KL method [7],
the Metis method [8], the maximum stream/minimum cut
method [9], [10], the GN algorithm [11], [12], the modular-
ity [4], the Louvain Spectral clustering [13], the MCL [14],
the Infomap [25], the Multi-level Learning based Memetic
Algorithm [39], the nature-inspired algorithms [42], [43] and
the label propagation(LPA) [22]. All of the above methods
belong to unsupervised schemes, which means that they can
only use the network’s topological information.

In real applications, we can obtain some useful
prior information such as individual labels and pairwise

constraints [15]. Individual labels are the labels which are
placed on individual nodes in the networks. The pairwise
constraints indicate that two nodes belong to the same com-
munity (a ‘‘must-link’’ constraint)or different communities
(a ‘‘cannot-link’’ constraint). However, how to effectively
combine the prior information with the topology of the
network to guide the process of community detection is still
a challenge.

Recently, scholars have proposed useful semi-supervised
community detection methods, such as the NMF-LSE [16],
the SNMF-SS [17], the SS-masterl [18], the Spin-
GlassSS [19] and Discrete potential theory [20]. By incor-
porating the prior information, these semi-supervised
community detection methods effectively improve the
accuracy of community detection. However, most of these
methods have high time complexity and create the difficulty
in dealing with large-scale networks.

Lately, Shao et al. [21] proposed a community detection
method based on distance dynamics. This method uses the
dynamic distance model to describe the distance links in
the network and defines three kinds of intuitive interaction
modes. It dynamically discovers the community structure by
simulating the changes of the distance between nodes in the
network. This algorithm is capable of revealing high-quality
communities and can handle large-scale networks. However,
this method exclusively considers the network topology and
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ignores any type of prior information for community detec-
tion performance.

How to integrate the prior information into distance
dynamics is an important challenge. To solve this problem,
we propose a novel semi-supervised community detection
algorithm based on distance dynamics. We combine the pair-
wise constraints with the topology of the network to modify
the distances between the nodes. This method reduces the
time consumption and makes full use of the prior infor-
mation. The comparisons performed on both artificial and
real-world networks show that our proposed SemiAttractor
algorithm can significantly improve the community detection
performance.

The structure of this paper is as follows. Section II briefly
reviews the previous works related to semi-supervised com-
munity detection. Section III details the semi-supervised
community detection algorithm based on distance dynamics
and the complexity analysis of this algorithm. Section IV
compares the experimental results of our algorithmwith other
related algorithms on real and artificial networks. Section V
summarizes this article.

II. RELATED WORK
In recent years, scholars have proposed many semi-
supervised community detection methods [16]–[20], [23],
[26], [27], [35]. These methods take advantages of the net-
work topology and also utilize prior information to improve
the accuracy of community detection.

Recently, many semi-supervised community detection
methods based on the NMF model [38] have been pro-
posed. Zhang [18] proposed a semi-supervised community
detection framework. Under this framework, many forms of
NMF-based algorithms, such as the NMF-LSE, SNMF and
BNMF, can all be employed for optimization. To effectively
utilize the available prior information, Zhang et al. considered
that the pairwise constraints between nodes can be used for
logical derivation between nodes. Therefore, Zhang et al. [24]
proposed an enhanced semi-supervised community detection
method. They found that the ‘‘must-link’’ constraint gives
better community detection results than the ‘‘cannot-link’’.
Zhang et al. [16] proposed a semi-supervised symmetric
non-negative matrix factorization method for commu-
nity detection. It incorporates pairwise constraints into
the adjacency matrix of the original network to guide the
clustering of nodes. This method theoretically proved
the equivalence between the objective function and
modularity. Liu et al. [26] presented a semi-supervised non-
negative matrix factorization model based on the graph
regularization and ‘‘must-link’’ constraints. They refined
this model by introducing a set of parameters to adjust
the degree of each node, which leads to a new semi-
supervised NMF model, called PSSNMF that considers the
node popularity. Unfortunately, PSSNMF can only use the
‘‘must-link’’. However, the number of communities for most
NMF-based community detection methods needs to be fixed
in advance.

Other researchers proposed some semi-supervised com-
munity detection methods based on the physics model.
Eaton and Mansbach [19] proposed a semi-supervised Spin-
Glass model [37] and proved that the method of minimizing
the Hamiltonian energy equation by using the potts model is
mathematically equivalent to the modularity Q. They consid-
ered prior information for both individual community labels
and pairwise constraints, construct the rewards and punish-
ments U (C), construct a new Hamiltonian energy equation
H ′(C), and finally obtain the best energy equation H ′(C)
for community detection. In addition, Eaton et al. con-
ducted experiments on noise effects and found that the semi-
supervised Spin-Glass model can effectively counteract the
effects of noise. To use individual labels as prior informa-
tion, Liu et al. [20] designed a semi-supervised community
detection algorithm. Based on the discrete potential theory,
Liu et al. considered each node to be an elementary charge,
and transformed community detection into potential transfer
theory based on the heat transfer process. However, most of
the semi-supervised community detection methods based on
the physics model have high time complexity and limited
abilities to deal with large-scale networks.

Recently, Shao et al. [21] proposed the distance dynamics
model to detect the community structure of complex networks
based on the links. Each link is associated with an initial
Jaccard distance [36], which indicates the similarity between
two neighbor nodes. The distance between links in a network
is affected by three aspects. The direct link between two nodes
can reduce the distance between links. The common neigh-
bors of two nodes can also reduce the distance between links.
Exclusive neighbors will increase the distance of the link.
With the evolution of time and drive of network topology,
the distance of the links between those nodes with the highest
similarity first synchronizes and then rapidly decreases to 0.
Meanwhile, the distance of the links between those nodes
with the highest dissimilarity rapidly increases to 1. Then,
in a sequential process, more nodes synchronize together, and
the distance between them gradually decreases or increases.
Finally, the intrinsic communities of different sizes in the
network are searched by disconnecting the internal links of
the network. However, the distance dynamics model cannot
use any type of prior information for community detection.

The motivation of this paper is to integrate the prior infor-
mation into the community detection method based on the
distance dynamics model. We combine the original network
topology with the pairwise constraints to modify the distance
between the nodes. The initial kinetic distance of the links in
the network has changed. By doing so, we can reduce the time
step to accelerate the convergence of the distance between
nodes and improve the accuracy of our algorithm.

III. SEMI-SUPERVISED COMMUNITY DETECTION
BASED ON DISTANCE DYNAMICS
In this section, we propose a novel semi-supervised commu-
nity detection method based on distance dynamics. Each link
is associated with an initial distance d . The distance dynamics
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are based on three interaction models. Finally, as time passes,
due to the influence of its neighbors, the initial distance d
of each link dynamically increases or decreases. Driven by
prior information and network topology, all distances d will
converge, and the communities can be obtained by dislodging
the links with maximal distances. At the end of this section,
we give an analysis of the complexity of this method.

A. PRELIMINARIES
To clearly illustrate our approach, some definitions are
introduced. Let G = (V ,E,W ) be an undirected graph,
where V is the set of all nodes, E is the set of all links
and W is the weight of the corresponding links. Each link
e = {u, v} ∈ E represents the link between two nodes u and v,
and ω(u, v) ∈ W indicates the weight of the corresponding
link. ∀e = {u, v} ∈ E and ω(u, v) = 1 in the case of an
unweighted graph. For an undirected graph G = (V ,E,W )
with n nodes, the corresponding adjacency matrix A is:

Auv =

{
1 if e = {u, v} ∈ E,
0 otherwise.

(1)

where Auv = 1 denotes the link between nodes u and v if
the link exists. Otherwise, Auv = 0. The adjacency matrix A
represents a symmetric matrix of n× n.
ngb(u) denotes all the neighbors of node u, but it does not

include itself.

ngb(u) = {v|Auv = 1, v = 1, 2, . . . , n} (2)

deg(u) indicates the degree of node u.

deg(u) =
∑

Au (3)

For the two nodes u and v that are connected by a link e =
{u, v} ∈ E , their common neighbors set CN (e) is defined as:

CN (e) = ngb(u) ∩ ngb(v) (4)

The formula of the Jaccard distance [36] of the two nodes
u and v is defined as follows:

d(u, v, 0) = 1−
card(CN (e))+ 2

card(ngb(u) ∪ ngb(v))
(5)

where card(CN (e)) denotes the number of common neigh-
bors of nodes u and v but not includes nodes u and v. d(u, v, 0)
indicates the initial distance between two nodes.

For the weighted graph, the Jaccard distance of the two
nodes u and v is defined as follows:

d(u, v, 0) = 1−

∑
x∈ngb(u)∩ngb(v)

(w(u, x)+ w(v, x))∑
{x,y}∈E;x,y∈ngb(u)∪ngb(v)

w(x, y)
(6)

In real applications, there are some prior information that
can be used to guide the community detection. More con-
cretely, pairwise constraints specify the relative community
membership for pairs of nodes. They can serve to identify
pairs of nodes that belong to nodes in the same community
(a ‘‘must-link’’ constraint) or different communities

(a ‘‘cannot-link’’ constraint). We denote the set of ‘‘must-
link’’ and ‘‘cannot-link’’ constraints as Cml and Ccl
respectively.

We introduce a new matrix A∗ to add pairwise con-
straints. If nodes u and v belong to the same community,
A∗uv = α < −1. If not, A

∗
uv = β > 1, and otherwise A∗uv = 0.

Here we integrate the prior information into the adjacency
matrix A such that A∗ = A∗ + A. A∗ contains the following:

A∗uv =



1 if u∼̇v,
1+ α if u=̃v,
1+ β if u ˜6=v,
α if u .= v,
β if u 6= v,
0 otherwise.

(7)

where u∼̇v means that there is a link between nodes u
and v but it is not sure whether they are in the same com-
munity. u=̃vmeans that there is a link between nodes u and v
and they are in the same community. u ˜6=v indicates that there
is a link between nodes u and v but they belong to different
communities, u .= vmeans that there is no link between nodes
u and v but they are in the same community, u 6= vmeans that
there is no link between nodes u and v and they belong to
different communities.

B. SEMI-SUPERVISED INTERACTION MODEL
The intrinsic links of real-world networks give a natural way
to model the interaction. For each node, it naturally interacts
with its adjacent nodes. Let e = {u, v} ∈ E be a link
between two adjacent nodes u and v. There are three distinct
scenarios that influence the distance d(u, v, 0) and rely on
its local topological structure. (1) DI indicates the influence
from the interactions of direct link nodes. (2) CI indicates the
influence of common neighbors. (3)EI indicates the influence
of exclusive neighbors.

To incorporate the prior information into the commu-
nity detection method based on the distance dynamics
model, we modify the initial distance d(u, v, 0), DI (u, v, 0),
CI (u, v, 0) and EI (u, v, 0) as follows. We modify the value of
equation(5) or (6) using the matrix A∗uv that contains the prior
information and the network topology. If A∗uv = 1 + α, then
d(u, v, 0) = 0. If A∗uv = 1+β, then d(u, v, 0) = 1. Otherwise,
d(u, v, 0) is still the initial value.

d(u, v, 0) =


0, if {u, v} ∈ Cml,
1, if {u, v} ∈ Ccl,
d(u, v, 0), otherwise.

(8)

The distance d(u, v, 0) between nodes u and v is obvi-
ously influenced by two directly linked nodes u and v,
as one node attracts another towards itself. Thus, the
distance d(u, v, 0) decreases. We use DI (u, v, 0) to describe
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this distance change:

DI (u, v, 0) =



0, if {u, v} ∈ cml,
1, if {u, v} ∈ ccl,

−(
f (1− d(u, v, 0))

deg(u)
+
f (1− d(u, v, 0))

deg(v)
),

otherwise.
(9)

where f (·) is a coupling function. We use sin(·) in this study.
The influence from the common neighbors of nodes u

and v attract the two nodes. Thus,it changes the smaller
distance. We use CI (u, v, 0) to denote the influence of the
common neighbors of two nodes:

CI (u, v, 0)

=



0, if {u, v} ∈ cml,
1, if {u, v} ∈ ccl,

−

∑
x∈CN (e)

(
f (1− d(x, u, 0))(1− d(x, v, 0))

deg(u)

+
f (1− d(x, v, 0))(1− d(x, u, 0))

deg(v)
),

otherwise.

(10)

In addition, for two nodes connected by the link e = {u, v},
there will also exist some neighbors that exclusively belong
to node u or v. We denote them as EN (u) = {ngb(u) −
CN (e)}−{v}, and similarly, EN (v) = {ngb(v)−CN (e)}−{u}.
These exclusive neighbors also affect the distance between
nodes. We use EI (u, v, 0) to express this influence:

EI (u, v, 0)

=



0, if {u, v} ∈ cml,
1, if {u, v} ∈ ccl,
−

∑
x∈EN (u)

(
f (1− d(x, u, 0)ρ(x, u, 0))

deg(u)
)

−

∑
y∈EN (v)

(
f (1− d(y, v, 0)ρ(y, v, 0))

deg(v)
)

,
otherwise.

(11)

Here, we use ρ to denote the degree of positive or neg-
ative influence on distance d(u, v, 0), and λ is the cohesion
parameter.

ρ(x, u, 0) =

{
1− d(x, v, 0), 1− d(x, v, 0) ≥ λ,
1− d(x, u, 0)− λ, otherwise.

(12)

Finally, the dynamic distance can be updated as:

d(e, t + 1) = d(e, t)+ DI (e, t)+ CI (e, t)+ EI (e, t) (13)

Where t is the number of time steps, d(e, t + 1)
is the distance at the last time stamp t . Finally, when
d(e, t) ≤ 0 or d(e, t) ≥ 1 for all links, the iteration process is
stopped. After the iterations, the links where d(e, t) ≥ 1 are

removed from the original network, and the final communi-
ties are obtained.

C. THE SEMIATTRACTOR ALGORITHM
In this section, we specifically describe the SemiAttractor
algorithm. The convergence of the distance of links is accel-
erated by modifying the initial distance with the network
topology and pairwise constraints. Finally, the distances of all
links converge, and the community structure of the network is
naturally detected by dislodging the links with long distances.

The cohesion parameter λ is used to determine the posi-
tive or negative interaction influence on the distances from
exclusive neighbors (see equation(12)). Figure 1 plots the
NMI with different values of λ, ranging from 0 to 1 on the
synthetic and real-world networks. Through the analysis of
the NMI, we can see that the SemiAttractor allows for the
emerging optimum partitioning with the parameter λ in a
stable range [0.5, 0.7]. The clustering results with respect to
distinct parameters are further illustrated in Figures 1(a)-(d).
Extensive experiments further demonstrate that SemiAttrac-
tor usually produces an optimum result within the range
λ ∈ [0.5, 0.7]. Finally, the pseudocode of the SemiAttrac-
tor is given in Algorithm 1. We set the cohesion parameter
λ = 0.6 in our algorithm SemiAttractor.

FIGURE 1. The accuracy of cohesion parameter λ on the artificial
benchmark and real-world networks. No prior information (0%) is
converted into the Attractor algorithm. (a) λ on LFR µ = 0.7 network.
(b) λ on LFR µ = 0.8 network. (c) λ on Football network. (d) λ on
Political Events network.

Time Complexity Analysis: To study the SemiAttractor,
we need to get the initial distance of the two nodes under one
link in the network, where the time is calculated as O(|E|).
It is also necessary to calculate the corresponding Jaccard dis-
tance of the private neighbor with time complexity O(k|E|),
where k is the approximate average number of individual
neighbors of the two linked nodes. During each iteration,
we only need to recall the distance at the previous time
stamp. Therefore, the time complexity of this step is O(t|E|),
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Algorithm 1 Semi-Supervised Community Detection Based
on Distance Dynamics (SemiAttractor)

Input: undirected graph G=( V,E,W), cohesion
parameter λ the constraints matrix A∗

Output: the community label ci of each node ui
1 Generate adjacency matrix A by E
2 for each link e = (u, v) ∈ E do
3 Compute the initial distance d(e, 0) by equation(5)
4 for each node x ∈ EN (u) do
5 Compute the distance d(u, x, 0) by equation(6)
6 end for
7 for each node y ∈ EN (v) do
8 Compute the distance d(v, y, 0) by equation(6)
9 end for
10 end for
11 A∗ = A+ A∗

12 Modified the all distance d(e, 0) by the constraint
matrix A∗ using equation(8)

13 while (any(d(e, t) > 0&d(e, t) < 1)
d(e, t + 1) = d(e, t)+DI (e, t)+CI (e, t)+ EI (e, t)
by equation(13)

14 end while
15 for each link e = (u, v) ∈ E do
Modified the constraint matrix A∗ by the distance
d(e, t + 1)

16 end for
17 Find the community by BFS
18 if d(e, t + 1) = 1 then
Remove the link e from the network

19 end if
20 Find the resulting components (communities) C
21 return C;

where t is the number of time steps. Hence, the total time
complexity isO(|E|+k|E|+t|E|). During the operation of the
SemiAttractor, the more prior information we use, the smaller
the value of t is. Section IV presents the change of t in more
detail.

IV. EXPERIMENTS
In this section, we first detail the datasets used in the
experiments. Second, we introduce four other bench-
mark algorithms to compare with the SemiAttractor. Then,
we specifically describe how to use the prior informa-
tion. Subsequently, we present the evaluation standard of
the experimental results. Finally, we conduct a specific
analysis of the experimental results. All experiments were
run on Intel (R) Core i7-7820 CPU 2.9GHz, processor
with 32.0GB RAM.

A. DATASETS
In the experiments, we use two types of artificial benchmarks
and several classic real-world networks. The networks are
some detail described as follows:

Synthetic LFR networks [28]: The LFR networks were
designed by Lancichinetti et al. These networks have prac-
tical features, such as power law distribution and commu-
nity size, and they are most commonly used as simulation
datasets in current community detection research. They are
also the artificial networks that are closest to real-world net-
works. The main parameters of LFR networks are as follows.
N represents the number of nodes, k represents the average
degree of nodes in the network, maxk represents the node’s
maximum degree, and γ represents the parameter of node
degree distribution. β represents the community size distri-
bution. minc represents the number of nodes included in the
smallest community. maxc represents the number of nodes
included in the largest community. µ is the mixed parameter,
which indicates the probability that a node is connected to the
external community. The larger the value of µ is, the more
difficult the community will be found. By setting different
parameters, different types of simulated networks can be
generated. LFR networks have known community structures,
so they can be used to evaluate the quality of communities
that were found by our algorithm. In our experiments, all
parameters of LFR networks were set as follows: N = 1000,
k = 10, maxk = 50, minc = 10, and maxc = 100.

Real-world Datasets:
Football Network [5] Newman created a complex social

network based on the 2000 American College Football
League. This network consists of 115 nodes and 613 links.
The nodes in the network represent the football teams. The
links connected by the two nodes represent the competition
between the two teams. In this network, the 115 football
teams are divided into 12 conferences.

Polbooks Network [29] Valdis Krebs built the Polbooks
network based on the online sales of American political books
on Amazon. In this network, the nodes represent political
books sold by online booksellers, and the links indicate
that the books were bought by the same buyers. This net-
work consists of 105 nodes and 441 links. The nodes are
divided into the three categories of ‘‘liberal’’, ‘‘neutral’’, and
‘‘conservative’’.

Polblogs Network [30] The Polblogs network was com-
piled by Lada Adamic in 2005. It represents the political
inclination of people who posted blogs, and these data are
displayed by the blog directory. Based on the incoming and
outgoing links and posts during the 2004 presidential election
period, the network contains 1490 nodes and 9518 links. Each
node in this dataset has a corresponding attribute description
(0 or 1) in which 0 indicates left or liberal and 1 indicates
right or conservative.

Political Events Network The political events net-
work represents the cooperation and hostility between
196 countries. It was created through the determination
of 336,555 different political events between countries
(or representatives of those countries) reported in the press
from January 1, 2005, to December 4, 2010. Each event has a
correspondingGoldenstein score [31]. We can form 988 links
based on these scores, and then get the entire network.
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When we choose a threshold of 3 for our experiment, we can
determine whether the relationship between states is hos-
tile or cooperative. The goal of the community division is to
restore six geopolitical areas that represent 6 communities.

EnronNetwork [32] (http://www.cs.cmu.edu/ enron/) The
Enron e-mail dataset was generated from the Enron network,
which consists of a set of emails representing the e-mail
communications between 156 people. There are 673 links
in this network. Each link indicates that at least two people
connected by this link have sent or received at least one
e-mail. According to the job titles provided by Shetty and
Adibi, this network can be divided into two communities.

Cora Network [33] The Cora dataset is composed of
machine learning essays. It covers 2,708 scientific publi-
cations and 5,429 links. The publications are grouped into
seven categories, each of which is described by a vector
of 0/1 values.

BlogCatalog Network This is the data set that Tang
and Liu [40] crawled from the social network BlogCatalog
(http://www.blogcatalog.com). BlogCatalog is a social blog
directory website. We can grab the group membership
of the friendship network by gaming. The data set
contains 10,312 nodes, 333,983 links are divided into
39 communities.

Northeastern Network Traud et al. [41] used Facebook
data from Northeastern University in September 2005 to
analyze the social structure of the Facebook friendship net-
work from both micro and macro perspectives. The data set
contains 13,882 nodes and 381,936 links, which are divided
into 7 communities.

B. BASELINE
To show the effectiveness of our method, our experiments are
compared with the number of time steps and the accuracy of
the Attractor algorithm. Then, our experiment selects three
representative semi-supervised community detection algo-
rithms to compare the accuracy with of our algorithm.

Attractor [21] is an unsupervised community detection
method based on distance dynamics. A detailed description
of this method was previously mentioned in Section II.

PSSNMF [26] is the NMF framework based on the graph
regularization and ‘‘must-link’’ constraints. A set is intro-
duced to reconstruct the parameters of the NMF model to
adjust the degree of each node and utilize the influence of
the node’s degree to make full use of the prior information.

NMF-LSE [18] is a semi-supervised community detec-
tion method based on the Least Squares Error under the
NMF framework. This method directly encodes the prior
information into the adjacency matrix and modifies the topol-
ogy of the network to clarify the network’s community
structure.

Spin-GlassSS [19] is a semi-supervised community detec-
tion method based on the spin-glass model. The prior infor-
mation is added by introducing a penalty function into the
Hamiltonian energy equation and thenminimizing the Hamil-
tonian energy equation using the potts model. Finally, the new

module function is optimized by the simulated annealing
algorithm to get the community division in the network.

In our experiments, the PSSNMF, NMF-LSE and Spin-
GlassSS give the actual number of communities in advance.
The other parameters are the same as those used in the origi-
nal papers.

C. HOW TO USE THE PRIOR INFORMATION
There are many kinds of prior information, such as pairwise
constraints and individual labels. Given an undirected graph
G that has n nodes and k communities, there are N = n(n−1)

2
pairs of pairwise constraints. The constraints are divided into
two types: ‘‘must-link’’ and ‘‘cannot-link’’. The total number

of ‘‘must-link’’ is Nml =
k∑
c=1

nc(nc−1)
2 , where nc represents

the number of nodes included in the c-th community. The
total number of ‘‘cannot-link’’ is Ncl = N − Nml . When we
choose pairwise constraints, we randomly select two nodes
from set V . However, there may be no link between the two
nodes. In other words, the existence of this prior information
does not affect the distance. To make full use of the prior
information, we use the logical reasoning techniques pro-
posed by Zhang et al. [24] to enhance the prior information.
Nodes i and j are in the same community, and the nodes j and
k are in the same community. Therefore, nodes i and k are in
the same community, and thematrixA∗ik can bemodified as α.
However, if nodes j and k are in different communities, then
nodes i and k are in different communities, and the matrix A∗ik
can be modified as β.
In our experiments, we consider that the PSSNMF can only

use the ‘‘must-link’’ in the pairwise constraints. Similarly,
the other three semi-supervised algorithms randomly select
the same number of constraints from the total constraints.
Since the acquisition of the prior information is random, all
experiments must run 50 times to get the average value with
the same amount of prior information. More details of the
real-world networks are shown in Table 1.

D. EVALUATION STANDARDS
In our experiments, the authoritative evaluation methodology
of the normalized mutual information(NMI) [34] is selected.
It is defined as follows:

NMI (C1,C2) =

k∑
i=1

k∑
j=1

cij log
cijc

c(1)i c(2)j√
(
k∑
i=1

c(1)i log
c(1)i
c )(

k∑
j=1

c(2)j log
c(2)j
c )

where C1 is the ground-truth community label and C2 is
the computed community label. k and c are the numbers of
communities and nodes, respectively. cij is the number of
nodes in the ground-truth community i that are assigned to
the computed community j. c(1)i is the number of nodes in the
ground-truth cluster i, and c(2)j is the number of nodes in the
computed cluster j, where NMI ∈ [0, 1].
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TABLE 1. Statistics of real-world datasets used.

FIGURE 2. The number of time steps (t). 0% prior information represents the Attractor algorithm. (a) LFR µ = 0.7. (b) LFR µ = 0.8. (c) Football
network. (d) Polbooks network. (e) Enron network. (f) Polblogs network. (g) Political events network. (h) Cora network. (i) BlogCatalog network.
(j) Northeastern network.

E. RESULTS ANALYSIS
1) COMPARISON OF THE SEMIATTRACTOR AND
ATTRACTOR IN THE NUMBER OF TIME STEPS AND
ACCURACY OF COMMUNITY DETECTION
We first assess the number of time steps (t) of the Semi-
Attractor and Attractor algorithms on artificial and real-
world networks, as shown in FIGURES 2(a)-(j). It is easy
to determine that the t required for all networks to complete
the community detection consistently and rapidly decreases
the used prior information increases. Notice that no prior
information (0%) is converted into the Attractor algorithm.
In FIGURES 2(a)(b), in LFR networks that µ = 0.7
and µ = 0.8, the respective t required for the Attractor
algorithm reaches 125 and 132. As the prior information
increases, t decreases. Furthermore, when the prior informa-
tion reaches 30%, the number of time steps becomes very
few. In particular, in FIGURE 2(f), we can see that when
the prior information is 0%, the t required by the Attractor
algorithm reaches 117. Once we add a small amount of the
prior information to the network, the number of time steps of
in the SemiAttractor algorithm will decrease significantly.

However, there are some unsatisfactory results.
In FIGURE 2(e), when 1% prior information is used
by the SemiAttractor algorithm, its t to complete the Enron
network community detection is greater than that of the
Attractor algorithm. In FIGURE 2(g), when 4 ∼ 5% prior
information is added by the SemiAttractor algorithm,
the number of time steps to complete the Political Events
network community detection is greater than the Attractor
algorithm. Take the Enron network as an example. When
we integrate 1% prior information into network topology,
the number of time steps t is equal to 24 in the Semi-
Attractor algorithm at nodes 54 and 72, while the Attrac-
tor algorithm requires the number of time steps t = 20.
t equals to 29 in the SemiAttractor algorithm at nodes
72 and 75, but the Attractor algorithm only needs the num-
ber of time steps t = 20. The reason for the relatively
higher t of the SemiAttractor may be those nodes con-
nect multiple communities with tight internal connections
and sparse external connections. The experiments reveal
that the increase of t is caused by a few inter-community
links. In addition, most of the distances of links in the
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SemiAttractor algorithm converge faster than in the Attractor
algorithm.

From FIGURES 2(a)-(j), when the prior information is
increased to 10%, the t is reduced to half of the Attractor algo-
rithm. These experimental results all prove that our algorithm
can effectively reduce the number of time steps t and the time
costs.

FIGURE 3. The performance 0% to 30% prior information on the
LFR benchmark and Real-world networks. 0% prior information
represents the Attractor algorithm. (a) LFR networks.
(b) Real-world networks.

FIGURES 3(a)(b) depict the performance of SemiAttractor
algorithm on the artificial and real-world networks, with
no prior information (0%) is converted into the Attractor
algorithm. In the case of an increase in prior information,
the NMI of most networks increases rapidly. In addition,
we can find that when the prior information is increased
to 15% in both artificial and real-world networks, the
NMI values of our algorithm all reach 0.9 or more. From
FIGURE 3 (a), when µ is set to 0.7, the NMI value of
the SemiAttractor continues to increase with the addition
of prior information. When µ is set to 0.8, the NMI value
of the SemiAttractor maintains an upward trend. Moreover,
when the amount of prior information is 30%, the Semi-
Attractor’s NMI value almost reaches 1, which means that
the algorithm achieved the best community division. From
FIGURE 3 (b), in particular, the NMI value of the
Polblogs network is 0.1903, which is calculated by theAttrac-
tor algorithm. However, the NMI value rapidly increases
to 0.9972 after adding 1% prior information, which is almost
perfect.

There are also unsatisfactory results with the Polbooks net-
work. For example, the NMI value of the Polbooks network
by the Attractor algorithm is 0.5917, but the NMI value of
the Polbooks network with the SemiAttractor algorithm is
lower than that with the Attractor algorithm after 1% prior
information is added. This situation may occur because a
small amount of prior information may not improve the accu-
racy of community detection under the topology of particu-
lar networks. Nonetheless, this situation does not affect the
overall effect because when the prior information continues
to increase, the NMI value will continue to rise.

Through the comparison of t between the Attractor and
SemiAttractor algorithms with different numbers of prior
information in FIGURE 2 and the change of NMI values
in FIGURE 3, it is easy to discover that the SemiAttractor

algorithm can quickly reduce time consumption and improve
the accuracy with a small amount of prior information.

2) SEMIATTRACTOR ALGORITHM IS CONTRASTED WITH
THE OTHER THREE SEMI-SUPERVISED COMMUNITY
DETECTION ALGORITHMS
To evaluate the effectiveness of our proposed SemiAttractor
algorithm, we show the comparative performances of our
algorithm with the PSSNMF, NMF-LSE and Spin-GlassSS
on both artificial and real-world networks.

As seen in FIGURE 4(a), in LFR networks, when
µ is equal to 0.7, it is easy to see that our SemiAttractor
algorithm performs better than the other three semi-
supervised algorithms. When using our algorithm for
community detection, its NMI values are the highest. In par-
ticular, when the prior information is increased above 10%,
the NMI values obtained by the SemiAttractor algorithm
reach almost 1, whichmeans that we achieve the best commu-
nity division. Of course, the accuracy of community division
results obtained by the PSSNMF algorithm is also very high.
From FIGURE 4(b), when µ is equal to 0.8, which is the
most difficult case for community detection, we can find that
the SemiAttractor algorithm is inferior to other algorithms
only when the prior information is less than 7%, when the
proportion of prior information is higher than 7%, with the
increase of prior information, the NMI values obtained by our
algorithm gradually increase. Moreover, when the proportion
of prior information reaches 26 ∼ 30%, only the NMI values
corresponding to our algorithm reach 1, which is not achieved
by the other three semi-supervised algorithms.

FIGURE 4. The experimental results of the SemiAttractor, PSSNMF,
NMF-LSE and Spin-GlassSS on the LFR benchmark networks.
(a) LFR µ = 0.7. (b) LFR µ = 0.8.

To further verify the validity of our algorithm, we con-
ducted experiments on the eight real-world networks listed
in TABLE 1. We compare our SemiAttractor algorithm with
other three semi-supervised algorithms in their performances
on real-world networks, as depicted in FIGURE 5.

From FIGURES 5(a)(d), we see that our algorithm
achieve the best community detection results in the Football
and Polblogs networks. When the ratio of prior informa-
tion is 1%, the corresponding NMI values reach 1. From
FIGURES 5(c)(e)(g)(h), we see that our algorithm all out-
performs the other algorithms on the Enron, Political Events,
BlogCatalog and Northeastern networks, regardless of the
proportion of prior information. Moreover, when the prior
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FIGURE 5. The experimental results of SemiAttractor, PSSNMF NMF-LSE
and Spin-GlassSS on real-world networks. (a) Football network.
(b) Polbooks network. (c) Enron network. (d) Polblogs network.
(e) Political events network. (f) Cora network. (g) BlogCatalog
network. (h) Northeastern network.

information exceeds 25%, the NMI values reached 1. From
FIGURE 5(f), the performance of the SemiAttractor out-
performs the other algorithms when the prior information
exceeds 6%, when the ratio of prior information is 11%,
the corresponding NMI values reach 1. However, from
FIGURE 5(b), we see that due to the particularity of the
Polbooks network, the effects of the four algorithms appear
to be non-monotonic situations with the increase of the pro-
portion of prior information. Nonetheless, on the whole, the
NMI values are still gradually increasing, although our Semi-
Attractor algorithm is inferior to the other algorithms when
the prior information is less than 4%. When the propor-
tion of prior information exceeds 26%, the corresponding
NMI of our algorithm reaches almost 1, which shows
the superiority of the SemiAttractor algorithm over the
NMF-LSE and PSSNMF algorithms.

Overall, our SemiAttractor algorithm shows better perfor-
mance on both artificial and real-world networks. In addition,
the number of real communities is given in the PSSNMF,
NMF-LSE and Spin-GlassSS algorithms in our experiments.
However, our SemiAttractor algorithm does not require the
real number of communities. This further illustrates that the
SemiAttractor algorithm is very effective.

3) RUNTIME
In order to evaluate the ability of the SemiAttractor algorithm
to handle large-scale networks, we chose four real-world net-
works to compare the running time of the algorithm, Polblogs,
Cora, BlogCatlog and Northeastern. FIGURES 6(a)-(d) show
the running time of different semi-supervised algorithms on
real networks. We can observe that the running time of the
SemiAttractor algorithm decreases with the prior information
increasing. The number of edges has a significant influ-
ence on the SemiAttractor algorithm. The time consumption
increases with the increase of edge numbers. Because the
time complexity of SemiAttractor algorithm is linear with the
number of edges. The time step is reduced through the drive of
prior information and network topology, the time consump-
tion is then reduced. While the other three semi-supervised
algorithms are not sensitive to the prior information, the rela-
tionship with the number of nodes is more obvious. In other
words, the amount of priori information cannot effectively
reduce the time consumption of the algorithm.

FIGURE 6. The runtime of the different algorithms. (a) Cora network.
(b) Polblogs network. (c) BlogCatalog network. (d) Northeastern network.

V. CONCLUSION
In this paper, we add the prior information into the com-
munity detection method based on distance dynamics to
generate a semi-supervised community detection algorithm.
Specifically, we directly encode the prior information into
the adjacency matrix of the network. It is driven by the
network topology and prior information. The distance of
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the links between those nodes with highest similarity first
synchronizes and then rapidly decreases to 0. Meanwhile,
the distances of the links between those nodes with the high-
est dissimilarity rapidly increases to 1. The SemiAttractor
algorithm shows better performance through testing on both
artificial and real-world networks. As the prior information
increases, the results of community detection are closer to the
real communities.

However, our proposed SemiAttractor algorithm has some
drawbacks. First, since the SemiAttractor method relies on
the accuracy of the prior information, its ability to discover
accurate community structures rapidly degrades as the prior
information is perturbed by noise. This will be an interesting
topic to study in future work. Second, the SemiAttractor
method is a disjointed community detection algorithm, and
it cannot find the overlapping structure of the network. How
tomake our SemiAttractor algorithm applicable for the detec-
tion of overlapping communities with prior information is the
next question to be considered.
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