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ABSTRACT Current FastSLAM algorithms face challenges such as heavy computing requirements and
difficulty in enhancing estimation accuracy. This paper presents a fast algorithm of simultaneous localization
and mapping (SLAM) based on combinatorial interval filters coupled with an improved box particle
filter (IBPF) and extended interval Kalman filter (EIKF). First, strategies for improving box contracting and
resampling are studied in depth via the linear programming contractor and dimension selection subdivision
resampling methods. Then, we propose a weighted average based on a time-varying Markov model to
increase the estimation accuracy of the EIKF. In this way, a kind of fast SLAM algorithm is designed
through combinatorial synthetic integration, inwhich the IBPF algorithm is employed to realize simultaneous
localization and the EIKF is utilized to build a map. A series of simulations and experiments demonstrate
the superior performance of our interval filters based SLAM algorithm.

INDEX TERMS Interval analysis, SLAM, box particle filter, extended interval Kalman filter, combinatorial
interval filters.

I. INTRODUCTION
Simultaneous localization and mapping (SLAM) is the key
to achieving truly autonomous navigation in mobile robots.
However, simultaneous localization and map building are
mutually dependent on each other, which can make accurate
solutions difficult and complex to obtain, especially in highly-
dimensional space.

The earliest probability-based method for solving SLAM
problems originated from Smith and Cheeseman’s [1]
extended Kalman filter (EKF). With further development,
Paskin [2] presented a low-complexity solution to SLAM
problems using thin junction trees. In order to solve
the problems of high computational and storage require-
ments, a sparse extended information filtering-based SLAM
approach was proposed [3]. After this, an effective solu-
tion to SLAM problems using the Rao-Blackwellized parti-
cle filter (RBPF) was proposed, called FastSLAM [4]–[7].
Subsequently, many researchers have developed different
methods for improving the original FastSLAM algorithm.
In [8] and [9], two techniques were presented to improve
FastSLAM by providing a better proposal distribution.

An integrated technique combining a genetic algorithm (GA)
and particle swarm optimization (PSO) within FastSLAM
was presented in [10]. A novel FastSLAM algorithm based
on the iterated unscented Kalman filter (IUKF) was proposed
in [11]. Zhang et al. [12], [13] presented a new decompo-
sition technique to improve the accuracy and reliability of
FastSLAM. In order to improve consistency and the diver-
sity of particles, Lv et al. [14] proposed a new FastSLAM
algorithm based on revised genetic resampling and a square
root unscented particle filter (SR-UPF). In [15], a more robust
FastSLAM approach was achieved by effective improve-
ment with differential evolution based on square root central
difference (SRCD).

Unfortunately, these probabilistic methods have the com-
mon drawback of consistency problems. Studies [16], [17]
show that the RBPF SLAM can obtain accurate positional
estimates, but only in a short time to meet the consistency
requirements. This drawback can be overcome using interval
analysis (IA) methods rather than probabilistic ones [18].
Indeed, IA provides guaranteed and consistent results, and
does not suffer from biased measurements. Such advantages
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have been highlighted in localization applications [19], [20]
and have provided interesting perspectives for SLAM
problems [21]–[23].

In recent years, a particle filter (PF) strategy for mobile
robot localization involving interval data was introduced
in [24], which proposed the concept of box particle fil-
tering (BPF). A result of the synergy between PF and IA,
BPF is an approach that is aimed at solving a general class
of nonlinear filtering problems. The key idea is to replace
a particle with a multidimensional interval or box of non-
zero volume in the state space. The approach is particularly
appealing in practical situations involving imprecise stochas-
tic measurements that result in very broad posterior densities.
Most recently, various applications [25]–[29] have shown
that accurate and reliable performance for several thousand
particles can be achieved with just a few dozen boxes.

In order to effectively suppress the noise of time-varying
system, a state-of-the-art noise-suppressing method was pro-
posed by Jin et al. [30], [31]. Furthermore, to handle
systems with uncertain dynamics and measurement noise,
Chen et al. [32] developed a new interval Kalman fil-
ter (IKF) algorithm. In some applications [33]–[36], the IKF
has demonstrated better results than those of some exist-
ing robust KFs. In terms of interval nonlinear systems,
Siouris et al. [37] successfully applied the EIKF to track
an incoming ballistic missile system, then He and Vik [38]
used EIKF in an integrated GPS/INS system to solve tracking
problems. Thus, alternative techniques for obtaining more
selective and robust solutions to SLAMproblems are possible
within the IA framework.

The rest of the paper is organized as follows. Section II
presents the filtering scenarios and improvement strategies
for BPF and introduces the EIKF. The scheme for using
combinatorial interval filters in SLAM problems, and its
implementation process, are presented in Section III. The
procedure for using the proposed fast SLAM algorithm and a
performance analysis are presented in Section IV. Section V
provides typical experimental results and comparative analy-
ses, while Section VI concludes the paper.

II. FROM ORDINARY NUMERICAL FILTER
TO INTERVAL FILTER
In this section, we first present a brief description of the
elementary concepts of IA. Then, filtering scenarios for BPF
are described, based on which improved strategies for box
contracting and resampling are studied in detail. Finally,
the EIKF algorithm is introduced.

A. ELEMENTARY CONCEPTS ABOUT INTERVAL ANALYSIS
The main concept of IA is to deal with the intervals of
real numbers instead of dealing with the real numbers them-
selves [39]. A real interval [x] = [x, x̄] is defined as a closed
and connected subset ofRwith x and x̄ denoting the lower and
the upper bounds of x, respectively. The center (midpoint) and
width are denoted as mid([x]) = (x + x̄)/2 and wid([x]) =
(x̄ − x)/2 separatively. The set of n-dimensional real intervals

is denoted by IRn. For any interval, the elementary interval
operations (+,−, ∗,÷) etc. are defined by

[x]� [y] = {x � y |x ∈ [x], y ∈ [y] } (1)

where � denotes any binary operations, and assume 0 /∈ [y]
in case of division.

An interval vector, or a box [x] ∈ Rn, is a Cartesian product
of n intervals, which may be represented as follows:

[x] = [x1]× [x2]× · · · × [xn] = ×ni=1[xi] (2)

In IA, the size of [x] is denoted as |[x]|. An interval matrix
[X ] is a matrix with interval components, and the set of
n×m real interval matrices is denoted by IRn×m. The interval
arithmetic and related properties of interval can be naturally
extended to the context of interval vector and interval matrix.
For more information please refer to [39].

Consider a mapping f : Rn → Rm; then, the interval
function [f ] from IRn to IRm is an inclusion function as shown
in Fig.1. It is obvious that

f ([x]) ⊂ [f ]([x]),∀[x] ∈ IRn (3)

FIGURE 1. Mapping of a box [x] by a vector of function f and its two
different inclusion functions [f ] and [f ]∗.

One of the purposes of IA for f is to provide an inclusion
function [f ] which can be evaluated reasonably such that a
proper size of [f ]([x]) is achieved. Therefore, we need to solve
the CSP commonly expressed as follows:

H : (g(x) = 0, x ∈ [x]) (4)

In fact, the connotation of (4) is to find the optimal box
enclosure of the set of vectors x = (x1,x2, · · · , xn) belonging
to a given prior domain [x] satisfying a set of constraints
g(x) = (g1(x), g2(x), · · · gm(x))T for various real function
gi(x), i = 1, . . . ,m. The solution set S consists of all of the
values of x satisfying g(x) = 0, and can be denoted as follows:

S = {x ∈ [x] |g(x) = 0 } (5)

A contractor for H is any operator that can be used to
contract H , i.e. replacing [x] by a smaller domain [x]′, such
that S ⊆ [x]′ ⊆ [x].
Various constraints methods named contractors are

described in [40], including Gauss elimination, the Krawczyk
method, and forward-backward propagation, etc. Each of
these methods can be suitable for different types of CSP. It is
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remarkable that the consistency conditions be satisfied for
contractor, namely, global consistency and local consistency.
Global consistency represents the ideal solution for CSP and
it is stronger than local consistency. However, for most CSPs,
the existing methods can only reach local consistency.

B. BOX PARTICLE FILTER (BPF) AND
ITS IMPROVED STRATEGY
BPF is a nonlinear filtering algorithm which couples a
sequential Monte Carlo method and IA. The key idea is to use
box particles and a bounded error model, instead of discrete
point particles and probabilistic models for the errors and
the inputs. Details of the BPF algorithm are provided in [24]
and [41]. According to [42], the BPF can be considered an
approximation of the Bayesian filter by interpreting each
box particle as a uniform probability density function (PDF).
In this way, the set of box particles may be interpreted as a
mixture of uniform PDFs. Below, we focus on the main steps
of Bayesian justification.

In terms of IA, for the sake of quantifying uncertainties, the
state vector and the measurement vector become the vectors
of intervals. The propagation and the observation functions
become inclusion functions, denoted as [f ] and [h], respec-
tively. Thus, the system dynamics equations can be defined
as follows: {

[xk+1] = [f ]([xk ], [uk+1])
[zk+1] = [h]([xk+1])

(6)

where [xk ] ∈ IRnx and [zk ] ∈ IRny are the state interval
vector and the measurement interval vector at time step k ,
respectively. The control vector [uk ] is deduced from the
proprioceptive sensor data.

1) PREDICTION
Let U[xi](x) denotes a uniform PDF for [xi] as its support set
in the box [x], if the current PDF is written as

p(xk
∣∣z1,k ) =∑N

i=1
ωikU[xik ]

(xk ) (7)

where N denotes the number of boxes, the ωi is a normalized
weight for i = 1, 2, · · · , N and

∑N
i=1 ωi = 1, ∀i, ωi ≥ 0.

Then, the next step updating of PDF may be expressed as
follows:

p(xk+1|z1,k ) =
∫
p(xk+1|xk )p(xk |z1,k )dxk

=

∫
p(xk+1|xk )

∑N

i=1
ωikU[xik ]

(xk )dxk

=

∑N

i=1
ωik

∫
[xik ]

p(xk+1 |xk )U[xik ]
(xk )dxk

(8)

Assume that the noise vk at time k + 1 is bounded in the
box [vk ]. Consider an inclusion function [f ],∀i = 1 · · · N ,
if xk ∈ [xik ], then, xk+1 ∈ [f ]([xik ]+ [vk ]). Thus,

p(xk+1 |xk )U[xik ]
(xk ) = 0, ∀xk+1 /∈ [f ]([xik ]+ [vk ]) (9)

The connotation of (9) is that, for any [f ], the support for
the PDF terms

∫
[xik ]

p(xk+1 |xk )U[xik ]
(xk )dxk can be approxi-

mated by [f ]([xik ]+ [vk ]), i.e.∫
[xik ]

p(xk+1 |xk )U[xik ]
(xk )dxk ≈ [f ]([x ik ], [vk ]) (10)

According to (8) and (10), the predictive distribution could
be expressed as follows:

p(xk+1
∣∣z1,k ) ≈∑N

i=1
ωikU[f ]([xik ],[vk ])

(xk+1)

=

∑N

i=1
ωikU[xik+1]

(xk+1)

(11)

Equation (11) shows that the prediction PDF p(xk+1
∣∣z1,k )

can be approximated using the weighted sum of N uniform
PDFs with [xik+1|k ] as the support.

2) CORRECTION
The measurement likelihood function for the BPF is taken to
be one component with uniform distribution [42]. A prob-
abilistic model Pw of the bounded measurement noise wk
can be expressed by a single uniform PDF. Such that the
box measurement [zk+1] contains all realisations of zk+1 =
h(xk+1)+ wk . Thus, we obtained the following:

p(zk+1|xk+1 ) = U[zk+1](h(xk+1)) (12)

According to (11) and (12), the measurement update step
can be performed as follows:

p(xk+1|z1,k+1)

=
1

αk+1
p(zk+1|xk+1)p(xk+1|z1,k )

=
1

αk+1

∑N

i=1
ωik U[zk+1](h(xk+1))U[xik+1|k ]

(xk+1)︸ ︷︷ ︸
9i

(13)

where αk+1 =
∫
p(zk+1|xk+1) p(xk+1|z1,k )dxk+1 is a nor-

malized coefficient, each of the terms 9i is a constant func-
tion and with a support being the set

SSψi = {xk+1 ∈ [xik+1] |h(xk+1) ∈ [zk+1]} ⊂ Rnx (14)

In fact, above set defines a CSP; that is, the predicted
box particle [xik+1|k ] can be contracted with respect to the
relationship between the measurement function h and the
measurement [zk+1]. Therefore, a set of new boxes [x̂ ik+1]
may be provided to fit p(zk+1 |xk+1 ) after the CSP. Accord-
ing to the contractility and completeness of contractor [40],
we obtain the following:

U[zk+1](h(xk+1))
∣∣∣[xik+1|k ]∣∣∣U[xik+1|k ]

(xk+1)

= U[zk+1](h(xk+1))
∣∣SS9i ∣∣Uss9i (xk+1)

⇒ U[zk+1](h(xk+1))U[xik+1|k ]
(xk+1)

= U[zk+1](h(xk+1))
1∣∣∣[xik+1|k ]∣∣∣

∣∣SS9i ∣∣Uss9i (xk+1) (15)
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Combining (13) with (15), we defined [x̂ ik+1] as the small-
est box containing SS9i , that is, [x̂

i
k+1] = [SS9i ]. Thus,

p(xk+1|z1,k+1) =
1

αk+1

∑N

i=1
ωik

1
|[zk+1]|

1∣∣[xik+1]∣∣
×
∣∣SS9i ∣∣Uss9i (xk+1)

∝
1

αk+1

∑N

i=1
ωik

∣∣[x̂ ik+1]∣∣∣∣[xik+1]∣∣U∣∣[xik+1]∣∣(xk+1)
(16)

After contracted, each box particle [xik+1] turns into [x̂
i
k+1].

According to (16), the weight is updated by

L ik =
p∏
j=1

L ik (j), L ik (j) =

∣∣[x̂ ik+1(j)]∣∣∣∣∣[xik+1|k (j)]∣∣∣ (17)

where p represents the dimension of state. Therefore, the
posterior distribution p(xk+1|z1,k+1) is approximated by
{ω̂ik+1, [x̂

i
k+1]}, i = 1, · · ·,N , and ω̂ik+1 ∝ ω

i
kL

i
k .

3) RESAMPLING
Compute the effective sample size Neff = 1/

∑N
i=1(ω

i
k )

2 and
choose a threshold Nth. In case of Neff < Nth perform resam-
pling using a modified version of the sequential importance
resampling (SIR) algorithm, in which the uncertainty regions
of the selected box particles are reduced to randomly selected
portions of the initial uncertainty regions.

FIGURE 2. Scenarios for the box particle filter.

Although the BPF algorithm has been proven to be efficient
in various applications [44], the filtering results presented
in [41] are not accurate enough in the context of high non-
linearity and highly ambiguous measurements. As we can see
in Fig. 2, box contracting and resampling are vital through-
out the process. Thus, our proposed improved BPF (IBPF)
schemes mainly involve the following two aspects.

a: LINEAR PROGRAMMING (LP) CONTRACTOR
The original BPF employs the constraint propagation (CP)
technique (i.e. forward-backward propagation) to contract
boxes [24]. However, a well-known drawback of CP is that
decomposition into primitive constraints introduces new vari-
ables in the CSP. This hinders efficient domain tightening.
Meanwhile, the main limitation of CP is its sensitivity to
the multiple occurrence of variables [45]. For some appli-
cations, it is only possible to contract box particles for two-
dimensional cases [46]. Furthermore, the results are by no
means satisfactory as the constraints are accounted for in
an arbitrary order [47], and only provide locally consis-
tentdomains [28]. Below, we will present a strategy, named
linear programming contractor (LP-contractor) that appears
to us to be more efficient than others.

According to the observation equation and real measure-
ment z, we can construct the following function

g(x) = h(x)− z (18)

Then, the function vector g(x) can be bracketed over [x] by
the following constraint

Ax+b ≤ g(x) ≤ Ax+b (19)

Provide that g is differentiable,x0 = mid([x]), and η ∈ [x].
Using the mean-value theorem,

g(x) = g(x0)+ Jg(η)(x− x0) (20)

In order to linearize g(x) into the form of (19), we may
consider the following two algebraic transformations

a) g(x) = g(x0)+ Jg(η)(x− x0)+ Jg(x0)x− Jg(x0)x

⇒ g(x) = Jg(x0)︸ ︷︷ ︸
A

x+ g(x0)− Jg(η)x0 + (Jg(η)− Jg(x0))x︸ ︷︷ ︸
b

(21)

b) g(x) = g(x0)+Jg(η)(x−x0)+Jg(x0)(x−x0)−Jg(x0)(x−
x0)

⇒g(x)=Jg(x0)︸ ︷︷ ︸
A

x+g(x0)−Jg(x0)x0+(Jg(η)−Jg(x0))(x−x0)︸ ︷︷ ︸
b

(22)

According to IA, we find that the number of time inter-
val variables appearing in (22) is less than in (21), so (22)
provides tighter intervals. The CSP, therefore, can be approx-
imated as:

H : (g(x) = 0, x ∈ [x]) (23)

where g(x) = Ax−b, [b] = Ax0−g(x0)−(A−[Jg]([x]))([x]−
x0), A = Jg(x0), and b ∈ [b].
The vector x ∈ [x] is consistent with H if and only if there

exists b ∈ [b], such that Ax−b=0, i.e.

Ax− b = 0⇔ Ax ∈ [b]⇔ Ax ≥ b and Ax ≤ b̄ (24)

Consequently, the smallest box [x]′ containing all the
vectors x that are consistent with H can be com-
puted by solving the following 2n linear programming
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problems.

Opt xi, i = 1, . . . , n

s.t.
(
−A
A

)
x ≤

(
−b
b̄

)
and x ∈ [x] (25)

where operator Opt is alternatively min and max to obtain
Inf xi and Sup xi that hold the corresponding constraint. It is
clear that the outstanding advantage of LP-contractor lies in
its provision of a globally consistent feasible domain for CSP
by simultaneously processing all constraints.

b: DIRECTION SELECTION SUBDIVISION (DSS) RESAMPLING
The original BPF utilizes multinomial resampling, and then
box particles with high weights are subdivided by the corre-
sponding number of realizations along a randomly selective
dimension, which obtains smaller box particles around the
regions with high likelihoods [24]. The filtering precision of
each experiment is different due to the randomness of the
subdivision process. In the bounded error areas, the choice
of the number of divisions for each dimension is not optimal
and remains a subject of research [48]. Thus, a key ques-
tion involves subdivision, i.e., how to choose the divided
dimension. In order to select the divided dimension more
efficiently, Merlinge et al. [27] presented a deterministic
choice of resampling dimension for each box particle. This
is done by normalizing the box diameter vector to select the
longest dimension along the box particle. Inspired by Rule C,
which was investigated in global optimization problems by
Ratz and Csendes [49], we propose, here, a dimension selec-
tion subdivision resamplingmethod (DSS-resampling) for the
IBPF algorithm.

Consider the following global optimization problem

min g(x) (26)

subject to g(x) = h(x)− z and x ∈ [x].
In order to provide reliable and guaranteed solutions

for (26) within the interval framework, interval subdivision
methods can be utilized [50]. The criteria for interval subdivi-
sion dimension selection rules were defined by [51], namely,
each rule selects a dimension k by using a merit function

k = min
{
j

∣∣∣∣j ∈ {1, 2, · · ·, n} and D(j) = n
max
i=1

D(i)
}

(27)

where D(i) is determined by the given rule.
Assume that the inclusion functions of g(x) and its gradient

are available [52]. These inclusion functions are therefore
used to compute bounds for g(x) on [x]. In our work, the main
idea is to minimize the width of the inclusion function, i.e.

wid([g]([x])) = wid ([g]([x])− [g](mid([x])))
mean-value theorem
−−−−−−−−−−−→ ≈ wid (∇[g]([x]) · ([x]− mid([x])))

=wid

(
n∑
i=1

∂[g]([x])
∂xi

· ([xi]− mid([xi]))

)
(28)

where the inclusion function of the gradient of g(x) is
denoted as ∇[g]([x]). Thus, a significant rule may be
determined as:

D(i) =
n∑
i=1

wid
(
∂[g]([x])
∂xi

· ([xi]− mid([xi]))
)

(29)

That is, the ith component is to be chosen for which D(i)
is the largest. Usually, the rules do not specify a certain coor-
dinate direction if the maximum is achieved several times,
so we take the smallest one. When selection of the interval
dimension is finished, the selection will be subdivided by
the corresponding number of realizations in the resampling
stage.

C. EXTENDED INTERVAL KALMAN FILTER
The standard KF is no longer applicable when the system is a
linear interval system. Chen et al. [32] developed a new IKF
algorithm based on a well-defined interval conditional math-
ematical expectation formula. The algorithm has the same
recursive structure as the standard KF. As for the nonlinear
interval system, the EIKF algorithm can be established based
on the IKF and EKF. In what follows, to simplify the notation
in EIKF, the superscript I is used to represent the interval,
i.e. by denoting [xk ] as xIk , and [f ] as f I , etc. The recursive
fashion of EIKF is as follows:

Interval Jacobian matrix AIk =
∂f Ik
∂xk

(x̂Ik ), C I
k+1 =

∂hIk+1
∂xk+1

(x̂Ik+1,k )
1) Initial values

x̂I0 = E{xI0}, 6I
0 = Cov{xI0} (30)

2) Prediction

x̂Ik+1,k = f Ik (x̂
I
k ) (31)

6I
k+1,k = AIk6

I
k (A

I
k )
T
+QI

k (32)

3) Interval Kalman gain K I
k and innovation r Ik

K I
k+1 = 6

I
k+1,k (C

I
k+1)

T (C I
k+16

I
k+1,k (C

I
k+1)

T
+ RI

k+1)
−1

(33)

rIk+1 = zIk+1 − h
I
k+1(x̂

I
k+1,k ) (34)

4) Updating

x̂Ik+1 = x̂Ik+1,k + K
I
k+1r

I
k+1 (35)

6I
k+1 = (I − K I

k+1C
I
k )6

I
k+1,k k = 1, 2, . . . (36)

where the state transition and observation inclusion functions
are denoted as f Ik and hIk , respectively. z

I
k is real measurement.

6I
k is the interval covariance matrix. QI

k and RI
k are the

system noise interval covariance matrix and measurement
noise interval covariance matrix separatively.

It should be noted that the interval measurement vector
zIk shown in the IKF and EIKF is an uncertain interval
vector before the data is actually obtained, but is an ordi-
nary constant vector after it has been realized and obtained.
The filtering scenario of the EIKF for a 2-dimensional case
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FIGURE 3. Scenarios for the extended interval Kalman filter.

TABLE 1. Calculation of interval inverse matrix.

is given by Fig. 3. Remarkably, the iterative formula of
EIKF contains the calculation of interval matrix inversion,
and the Hansen algorithm method [53] can be adopted. In
order to reduce the computational requirements, improve
the real-time performance and avoid some cases of interval
inverse matrix cannot be calculated by the Hansen algorithm.
Zhengang [54] proposed a simple and feasible scheme for
the calculation of the inverse matrix, which combines the
Hansen algorithm with the upper boundary matrix inverse of
the interval matrix. We summarize the algorithm as shown
in Table 1.

III. SCHEME FOR USING COMBINATORIAL INTERVAL
FILTERS TO ACHIEVE SLAM
The aim of this work is to use IBPF to realize simultane-
ous localization and utilize EIKF to complete map learning.
In this way, our approach replaces an ordinary numerical
filter with an interval filter within the traditional FastSLAM

framework. The combined approach relies on its perfor-
mance and could provide a better solution for SLAM
implementation.

A. SCHEME OF SLAM BASED ON COMBINATORIAL
SYNTHETIC INTEGRATION
FastSLAM is a framework using an RBPF, which is based on
the following factorization [55]

p(x1:k ,M |z1:k , u1:k , n1:k )︸ ︷︷ ︸
SLAM posterior

= p(x1:k |z1:k , u1:k−1, n1:k )︸ ︷︷ ︸
trajectory posterior

·

L∏
i=1

p(mi |x1:k , z1:k , n1:k )︸ ︷︷ ︸
landmark posterior

(37)

where x1:k , z1:k , u1:k and n1:k are the robot trajectory,
observations, controls, and correspondences, respectively,
from the start to time k; mi is a local map of the ith

particle and M is a global map. Thus, the posterior prob-
ability p(x1:k |z1:k , u1:k−1, n1:k ) about the potential trajec-
tory was solved applying PF, which implied that one
particle would represent one potential trajectory over one
time step while generating its own map. The posterior
L∏
i=1

p(mi |x1:k , z1:k , n1:k ) was computed analytically when

given information on x1:k and z1:k .
Under the FastSLAM framework, we attempt to employ

IBPF instead of PF to implement simultaneous localiza-
tion, and EIKF instead of EKF to complete map building.
This can be called IBPF-EIKF SLAM for short, and its full
scheme is illustrated in Fig. 4. The method is to associate
the robot’s position with a set of boxes (multi-dimensional
intervals) covering a guaranteed area where all accept-
able positions definitely exist. Each box has the following
form:

[xik ]

=

〈
{([x],[y],[θ ])T }ik ,(m̂

I
1,
∑I

1
)ik ,(m̂

I
2,
∑I

2
)ik , . . . ,(m̂

I
l ,
∑I

l
)ik

〉
(38)

where the superscript i indicates the index of the box par-
ticle. {([x], [y], [θ ])T }ik represents the estimated pose of the
robot at time k , which consists of a position and heading.
(m̂Ij )

i
k is the positional estimate of thejthlandmark conditioned

on the ith box particle, j = 1, 2, . . . , l, and the covariance is
described by

∑I
j . The EIKF uses a two-dimensional model

to describe the landmark feature: mj = (mxj,myj). [zk ] is the
real measurement provided by laser radar. As usual, the total
number of particles is denoted as N .
In above scheme of combinatorial synthetic integration,

the posterior probability at time k is calculated from the one
at time k − 1 and innovation of real measurement, in which
a new box-particle set [xk ] is generated from the box-particle
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FIGURE 4. Scheme of SLAM based on combinatorial synthetic integration.

set at one time-step earlier, [xk−1]. This new box-particle set
incorporates a new control [uk ] and a measurement [zk ] with
associated correspondence nk . First, the trajectory posterior
is extended by sampling new poses, namely, using the con-
trol [uk ] to sample the new robot pose {([x], [y], [θ ])T }ik for
each box particle in [xk−1]. The resulting sample [xik ] for
the ith box particle is then added to a temporary set of box
particles, along with the trajectory of previous poses. Then,
according to the newmeasurement [zk ], the EIKF updates the
observed feature estimate (m̂Ij ,

∑I
j )
i
k . The updated values are

then added to the temporary box-particle set, along with the
new pose. Finally, this set of box particles is resampled, and
N box particles are drawn (with replacement) from the tem-
porary set according to importance weight. The resulting set
of N box particles then forms the new and final box-particle
set [xk ].
During resampling, successive subdivision of the feasible

box actually corresponds to branch-and-bound methods [49].
Thus, we need to manage a list L∗ which contains intervals
whose union includes all states of the considered SLAM
problem. In addition, some information on the intervals can
be stored in L∗ or can be expressed implicitly by the ordering
of the list elements. Then, the information will be used to
decide which interval is to be chosen.

B. SYNCHRONOUS LOCATION WITH IMPROVED
BOX PARTICLE FILTER
The time-discrete kinematic model based on intervals of the
robot’s displacement is formulated as follows:

[xk+1] = [xk ]+ [1dk ] cos
(
[θk ]+ 1

/
2[1θk ]

)
[yk+1] = [yk ]+ [1dk ] sin

(
[θk ]+ 1

/
2[1θk ]

)
[θk+1] = [θk ]+ [1θk ]

(39)

where input vector [uk ] = ([1dk ][1θk ])T consists of the
elementary displacement and the elementary rotation of the
mobile robot at time k . ([x]× [y])T stands for the position of
robot in the global coordinate system, and [θ] is its orientation
with respect to the x axis. More details and elucidation of
parameters are presented in [55].

The measurement vector [zk ] = ([rk ][φk ])T is composed
of a range of measurements r and bearing measurements φ,
which are respectively modeled as follows:[r] =

√
([mx]− [xk ])2 + ([my]− [yk ])2

[ϕ] = arctan( [my]−[yk ][mx ]−[xk ]
)− [θk ]

(40)

In terms of the interval-based uncertainties, the laser range
finder provides interval measurements that are expressed as
[zk ] = [zk − 3σ, zk + 3σ ], where σ denotes the standard
deviation.

Assume that at time step k , the box-particle set is
{ωik , [x

i
k ]}, i = 1, · · ·,N , and has control input [uk ]. The pose

estimation is to be performed as

[xik+1] = P([xik+1]
∣∣∣[xik ], [uk ] ) ≈ [f ]([xik ], [uk ]) (41)

For each box particle, the predicted box measurement is
obtained by

[zik+1] = P([zik+1]
∣∣∣[xik+1] ) = [h]([xik+1]) (42)

With the real measurement box [zk+1] obtained from the
external sensor, the innovation is given by

[rik+1] = [zik+1] ∩ [zk+1] (43)

If [rik+1] = φ, this box particle for which [zik+1] has no
intersection with [zk+1], should be penalized; if [rik+1] 6= φ,
this box particle, for which the predicted value is included
in the [zk+1] should be favored. In order to eliminate the
inconsistent part of the box particles with respect to [zk+1],
LP-contractoris used to preserve appropriate box sizes. Thus,
the likelihood P([zk+1]

∣∣[xik+1] ) of the ith box can be calcu-
lated as

L i = P([zk+1]
∣∣∣[xik+1] ) =∏p

1
L i(j), L i(j) =

∣∣[rik+1(j)]∣∣∣∣[zik+1(j)]∣∣
(44)

where
∣∣[rik+1(j)]∣∣ is the length of the innovation for the ith

box particle and the jth measurement component, and p
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is the dimension of the measurement. After calculating the
likelihood, the weight updating is performed according to

ωik+1 = P([zk+1]
∣∣∣[xik+1] )ωik = L iωik (45)

Normalization is performed as

ωik+1 =
ωik+1∑N
j=1 ω

j
k+1

(46)

At time step k + 1, the state can be extracted by

x̂k+1 =
∑N

i=1
ωik+1mid([x̂k+1]) (47)

We might also use a maximum weight estimate, i.e. where
the state estimate is the center of the box particle with the
larger weight. Given that the BPF estimation x̂k+1 is calcu-
lated using N vectors mid([xik+1]), another confidence in the
estimation based on the confidence of each mid([xik+1]) can
be calculated by using a Gaussian-like mixture strategy with

P̂k+1 =
∑N

i=1
ωik+1((

∣∣∣[xik+1]∣∣∣/2)
+(x̂k+1 − mid([x̂ ik+1]))(x̂k+1 − mid([x̂

i
k+1]))

T )

(48)

where
∣∣[xik+1]∣∣/2 is half width of [xik+1] and represents the

partial confidence generated when using mid([xik+1]).

C. MAP BUILDING BASED ON AN EXTENDED
INTERVAL KALMAN FILTER
Since the estimations between features are independent of
each other, estimation updating for a landmark at time k + 1
depends on whether the landmark is observed at time k .
Therefore, we consider the following cases

1) If a landmark is newly observed, its mean and covariance
are initialized as follows:

(m̂I
new)

i
k+1 = (hI )−1

(
zIk+1, (x

I
k+1)

i
)

(49)

C I
k+1 =

∂hIk+1
∂mI

k+1

(
(x̂Ik+1)

i, (m̂I
new)

i
k+1

)
(50)

(6I
new)

i
k+1 =

(
(C I

k+1)
−1
)T

RI
k+1(C

I
k+1)

−1 (51)

2) If the latest observation data contains the jth landmark
feature in the map, then the mean and covariance of the
landmark are updated by the EIKF as follows:

(ẑIk+1)
i
= hI

(
(m̂I

j )
i
k , (x̂

I
k+1)

i
)

(52)

(C I
k+1)

i
=
∂hIk+1
∂xIk+1

(
(x̂Ik+1)

i
)

(53)

(K I
k+1)

i
= (6I

j )
i
k

(
(C I

k+1)
i
)T

×

(
(C I

k+1)
i(6I

j )
i
k ((C

I
k+1)

i)T + RI
k+1

)−1
(54)

(rIk+1)
i
= zIk+1 − (ẑIk+1)

i (55)

(m̂I
j )
i
k+1 = (m̂I

j )
i
k + (K I

k+1)
i(rIk+1)

i (56)

(6I
j )
i
k+1 =

(
I − (K I

k+1)
i(C I

k+1)
i
)
(6I

j )
i
k (57)

3) If the latest observation data does not contain the jth

landmark feature in the map, then the estimation remains
unchanged, i.e.

(m̂I
j , 6

I
j )
i
k+1 = (m̂I

j , 6
I
j )
i
k (58)

It is obvious that the EIKF estimation for the jth landmark
is an interval, so all estimates of the landmark consist of
two boundary curves which contain all possible optimal (or
suboptimal) estimates [54]. Here, we propose a time-varying
Markov model (TVMM) based weighted average to achieve
more reliable results for the EIKF.

Let (m̂j)k be the optimal (or suboptimal) position estimate
for the jth landmark at time k , where the filtering results of
EIKF correspond to (m̂I

j )k = [(m̂j)k , ( ¯̂mj)k ]. Thus, (m̂j)k can
be approximately represented as

(m̂j)k = αk (m̂j)k + (1− αk )( ¯̂mj)k (59)

where the weighted coefficients αk satisfy 0 ≤ αk ≤ 1.
We can establish the TVMM by discretization the state

value of αk . The s discrete state set of αk is denoted as

Sds = {αi |i = 1, · · ·, s } (60)

Meanwhile, let pi(k) denote the probability of αk = αi at
time k , so the state probability vectorof αk is

Pvect (k) = (p1(k), · · ·, ps(k)) (61)

Define the one-step transition probability as

pij(k) = p(αk = αj
∣∣∣αk−1 = αi ), (i, j = 1, 2, · · ·, s) (62)

According to Pij(k), the transition probability matrix of αk
can be written as

Ptran(k) =
(
pij(k)

)
s×s (63)

where pij(k) > 0, and
∑

j pij(k) = 1.
Combining (61) with (63), the probability prediction equa-

tion is established as

Pvect (k + 1) = Ptran(k)Pvect (k) (64)

In fact, we have to dynamically adjust Ptran(k) in real time.
If we don’t, the filtering precision of EIKFwill be influenced.
As we know in KF, if the state estimation of a system is
relatively accurate at time k , then its innovation vector will
be smaller at time k + 1. In the context of EIKF, according
to the innovation vector zk+1− hk+1

(
(m̂j)k+1

)
at time k + 1,

and combining (31) with (59), we can establish the following
optimization problem:{

min
∥∥∥zk+1 − hk+1 (f Ik (αk (m̂j)k + (1− αk )( ¯̂mj)k

))∥∥∥
0 ≤ αk ≤ 1

(65)
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Consequently, the state value α∗k is obtained by solving the
problem (65), and then calculating the distance between α∗k
and each αi as

di =
∥∥∥α∗k − αi∥∥∥ , i = 1, · · ·, s (66)

Upon the minimum of di, the discrete state value Sds(α∗k )
corresponding to α∗k is obtained, i.e.

Sds(α∗k ) =
{
αi |min(d1, d2, · · ·, ds)

}
(67)

If α∗k = α
q at time k+1, the Markov parameter adjustment

rule of Ptran(k) is given by

pij(k + 1) =

pij(k)+ β
s∑

j=1,j6=q
pij(k) j = q

(1− β)pij(k) j 6= q
(68)

where 0 < β < 1.
With the iterative updating of pij(k) based on (68), the tran-

sition probability matrixPtran(k) can also update dynamically
with system changes, and the constraints pij(k + 1) > 0 and∑

j pij(k + 1) = 1 can also hold.
Furthermore, we adopt the upper-bound matrix (6u

j )
i
k as a

measure of the uncertainty of (m̂j)k .

IV. FAST ALGORITHM OF SLAM BASED ON
COMBINATORIAL INTERVAL FILTERS
Following the scheme of the combined approach presented in
Section III, the procedure for our proposed fast algorithm of
SLAM and a characteristic analysis is now presented.

A. FAST ALGORITHM OF SLAM AND ITS PROCEDURE
Table 2 presents the full schema for the IBPF-EIKF SLAM.
The implementation steps are as follows.

1) The initial box-particle set is generated in a prior-
bounded state space region. Suppose that the system noise
is known, then a position estimate of each box particle is
obtained from the previous box by an inclusion function.

2) According to the latest laser measurement data, the data
association technique is executed on a per-box basis, which
relates the landmarks observed in the external environment to
the landmarks in the map. In our case, the multiple hypothesis
tracking (MHT) algorithm [56] is adopted to implement this
process.

3) For each observed landmark, incorporate the measure-
ment into the corresponding EIKF by updating the mean and
covariance. When the update is finished, the updated values
along with the new pose are added to the temporary box-
particle sets.

4) Upon updating these landmarks to calculate the pre-
dicted measurement, then the innovation and the likelihood
are calculated. The new box-particle set is obtained by
LP-contractor to contract the temporary box-particle set.
5) After several iterations, box particles that have higher

weights are more likely to survive, whereas those with lower
weights are less likely. Thus, DSS-resampling is carried out
depending on the threshold value to rescale each box particle

TABLE 2. IBPF-EIKF SLAM algorithm.

weight. The resulting set of box particles then forms the new
box-particle set.

B. PERFORMANCE ANALYSIS FOR FAST
ALGORITHM OF SLAM
The proposed combinatorial interval filters based on IA can
provide guaranteed and consistent results for the SLAM
implementation. On the one hand, use of boxes is more
efficient in that it requires a significantly smaller set of par-
ticles than the generic PF, thereby reducing computational
requirements and improving real-time application. In our
work, the original BPF has two important improvements.

1) One is to use LP-contractor to solve the CSP, which
provides globally consistent domains for the SLAM problem
by handling all the constraints simultaneously. As can be seen
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TABLE 3. Comparison of different rules.

TABLE 4. Values relative to those obtained with rule A.

FIGURE 5. Consistent solution in new box after different contractor with
local consistency and global consistency.

from Fig. 5, the solution Si = {x ∈ [x]
∣∣gi(x) = 0 } is provided

after CSP H : (gi(x) = 0, x ∈ [x]), i = 1, 2. The initial
box [x] is contracted as [x]′l and [x]′g with local consistency
and global consistency contractors, respectively. It is clear
that any value of [x]′l should have at least one corresponding
solution in all the setsSi taken separately, whereas, any value
of [x]′g corresponds to at least to one solution within S.
Thus, the global consistency contractor may provide tighter
domains, i.e.

S ⊆ [x]′g ⊆ [x]′l ⊆ [x] (69)

Furthermore, in order to quantify the quality of the
LP-contractor, we can define the ratio

γ =
wid([b])
wid([x])

=
wid

((
[Jg]([x])− [Jg]([x0])

)
([x]− x0)

)
wid([x])

(70)

The ratio γ → 0 means that the bracketing becomes more
and more accurate, i.e. the box [x] converges to a point.

2) The other improvement is to useDSS-resampling,which
is more favorable for the choice of subdivision dimensions.
The numerical experience with respect to the required CPU
time, the number of objective functions evaluation (FE),

the derivative evaluation (DE) and the list length for four dif-
ferent rules of global optimization test problems (39 compo-
nents) have been studied in [48] and [49]. It can be concluded
that Rule C is definitely the best choice for the direction
selection rule. The most important results are highlighted in
Tab. 3 and Tab. 4 to show the superiority of Rule C in our
proposed DSS-resampling approach.

On the other hand, the EIKF algorithm shows good stabil-
ity in many applications compared with EKF, so that it can be
an alternative solution that provides a robust way to perceive
the environment surrounding the mobile robot. In our case,
a feasible scheme of a weighted average based on TVMM
is proposed to obtain more precise results for the EIKF.
Meanwhile, a method with low computational complexity
is adopted to calculate the interval inverse matrix to further
improve the real-time usability of the algorithm (see Tab. 1)

V. SIMULATION EXPERIMENTS AND
COMPARATIVE ANALYSIS
The simulation studies and a case study with mobile robot
for the proposed algorithm are given in this section. All of
the experiments were performed on a mobile computer with
an Intel R©CoreTMi5-5200U CPU @ 2.20 GHz with 8 GB of
RAM running underWindows 7. The simulation experiments
were implemented using MATLAB (2014a) and based on
the INTLAB9.0 toolbox, which contains a number of built-in
routines for the interval calculations. The actual experiment
was conducted using Ubuntu14.04 and robot operating sys-
tem (ROS).

A. SIMULATION RESULTS BASED ON
BENCHMARK DATASET
In this study, a comparative analysis of FastSLAM2.0,
Unscented FastSLAM (UFastSLAM) [57], strong tracking
square root central difference FastSLAM (STSRCDFast-
SLAM) [58], BPF-EIKF SLAM, and IBPF-EIKF SLAMwas
conducted using the Car Park dataset [59], which is popular
within the SLAM research community. In the simulation,
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FIGURE 6. Estimated trajectories and landmarks with different algorithms. (a) Odometer trajectories; (b) FastSLAM 2.0 (Np = 100); (c) UFastSLAM (Np =
20); (d) STSRCDFastSLAM (Np = 20); (e) BPF-EIKF SLAM (Nb = 20); (f) IBPF-EIKF SLAM (Nb = 20).

the experimental site used to contain the dataset was located
in a 30 × 45 m2 campus parking area that had a large
number of satellites for high-quality GPS information. The
experimental platform was a four wheeled vehicle equipped
with odometer, GPS, front wheel yaw sensor, and laser range
finder with a 180◦ frontal field of view. Artificial landmarks
were used in the car park, consisting of 60mm steel poles cov-
ered with reflective tape. GPS data was used to determine the
accuracy ground truth and true position of these landmarks.

In simulations, the numbers of particles and box particles
were denoted as Np and Nb, respectively. The vehicle control
noise was set as (0.3m/s, 2◦), the measurement noise was
zero-mean white Gaussian with a covariance diag[σ 2

r , σ
2
ϕ ],

where σr = 0.4m, σϕ = 3◦. For the two interval filtering
based SLAMmethods, we used the 99% interval confidences,
i.e. 3σr , 3σφ , to model a uniform noise. In TVMM, the dis-
crete state set Sds = {0.1, 0.3, 0.5, 0.7, 0.9}. Initially, αk =
0.5 and Pvect (k) = (0.1, 0.1, 0.6, 0.1, 0.1).

Figure 6 (a) depicts the trajectory calculated from the
odometer, which deviates from the ground truth measured
by GPS. From Fig.6 (b), the FastSLAM2.0 results show
that some parts of the estimated trajectory and landmarks
were far from the ground truth and true landmarks. From
Fig. 6 (c), we find that UFastSLAM outperform FastSLAM
2.0 in accuracy and robustness. UFastSLAM computes a

more accurate mean and more precise uncertainty of the
vehicle by applying the unscented particle filter (UPF), which
takes into account a linear regression of weighted points.
Thus, UFastSLAM can effectively reduce the linearization
error and use unscented transformation to further reduce the
number of particles needed. From Fig. 6 (d), the accuracy
of the state estimation with STSRCDFastSLAM has been
improved over that with FastSLAM2.0 and UFastSLAM
because the proposal distribution and the feature position
are calculated using the strong tracking square root central
difference particle filter (STSRCDPF).
It can be seen from Fig. 6 (e), (f) that the two interval-based

SLAM methods present more guaranteed results than those
of FastSLAM2.0. Also, the estimated result of the original
BPF presents considerable error compared with the reference
value. In contrast, the trajectory prediction of IBPF-EIKF
SLAM is more consistent with respect to the ground truth,
and the corresponding landmark estimates are more accurate
than those of the other methods. Thus, equivalent results are
expected with smaller numbers of particles with an interval-
based method, and the performance of IBPF-EIKF SLAM is
better than BPF-EIKF SLAM. Furthermore, it can be con-
cluded that the estimated results of STSRCDFastSLAM and
IBPF-EIKF SLAM are almost the same, and slightly better
than that of UFastSLAM.
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From Fig. 8, we can find the position error of estimated
landmark for two interval-based methods are less than that
of FastSLAM2.0. In spite of the BPF-EIKF SLAM is worse
than FastSLAM2.0 at the tenth landmark, the whole resulting
map of BPF-EIKF SLAM is more accurate. The blue line
also represents the estimation error for IBPF-EIKF SLAM,
but it involves just a general weighted average rather than
TVMM.This illustrates the effectiveness of the TVMMbased
weighted average. Thus, the accuracy of our approach for
landmark estimation is better than FastSLAM2.0 and BPF-
EIKF SLAM. With the exception of the third and twelfth
landmarks, there is little difference in the estimated land-
mark positions between UFastSLAM, STSRCDFastSLAM
and IBPF-EIKF SLAM.

In order to compare the estimation accuracy and stability
of above mentioned algorithms under different measurement
noise level conditions, we set six groups of measurement
noise data for each simulation. For each measurement noise
level, the mean and standard deviation of the root mean
square error (RMSE) were calculated over 30 runs for each
SLAM algorithm. The RMSE is calculated as follows:

RMSE =

√√√√ 1
N

(
N∑
i=1

∣∣x̂ ik − x∗k ∣∣2
)

(71)

where N is the number of particles in each simulation, x∗k
is the true state, and x̂ ik is the estimated state of the ith

particle or box particle at time k .
Figure 7 compares the results of RMSE for trajec-

tory prediction and landmark estimation. At each mea-
surement noise level, the mean and standard deviation for
UFastSLAM, STSRCDFastSLAM and IBPF-EIKF SLAM
increase at a slower rate than for the other two algorithms.
Hence, the ability to suppress noise of UFastSLAM, STSR-
CDFastSLAM and IBPF-EIKF SLAM is stronger than that
of FastSLAM2.0 and BPF-EIKF SLAM, with respect to
increasing measurement of noise levels. The growth rate of
UFastSLAM, STSRCDFastSLAM and IBPF-EIKF SLAM is
relatively similar, but the accuracy and stability of STSRCD-
FastSLAM and IBPF-EIKF SLAM outperform UFastSLAM.
Compared with STSRCDFastSLAM and IBPF-EIKF SLAM,
we find that, with increasing noise level, the influence ofmea-
surement noise on STSRCDFastSLAM is relatively large.

According to the inclusion criterion [43], the true value
of the pose state vector must be contained in the support of
the posterior spatial PDF. In BPF, the credible set Ck (1) is
approximated by the union of all of the box particles, that is,

Ck (1) =
⋃N

i=1
[xik ] (72)

Thus, the inclusion criterion ρk is calculated as:

ρk =

{
1, if x∗k ∈

⋃N
i=1 [x

i
k ]

0, otherwise
(73)

The failure to satisfy the inclusion criteria indicated
the filter divergence. If the inclusion ρk = 1, this

FIGURE 7. RMSE with varying levels of measurement noise. (a) RMSE for
trajectory prediction; (b) RMSE for landmark estimation.

FIGURE 8. Landmark position errors.

indicates that the true value of the state is consistently
contained within the particle support set. As illustrated
in Fig. 9, the IBPF is sufficient to satisfy the inclusion
criterion. This is a useful advantage of the IBPF over the
original BPF.

Figure 10 illustrates themeasurement innovation sequences
of the landmarks and their 95% confidence intervals (2 stan-
dard deviations) for EKF and EIKF. As can be seen, it remains
white and validates the assumed statistic for the model and
sensors. The results further show that EIKF has better robust-
ness and accuracy than EKF.We randomly selected 10 sets of

VOLUME 6, 2018 28185



J. Luo, S. Qin: Fast Algorithm of SLAM Based on Combinatorial Interval Filters

FIGURE 9. Inclusion values.

FIGURE 10. Landmark measurement innovation sequence.

TABLE 5. Comparison of the different contractors.

pose estimation boxes in one trial for comparison of the CP
approach and LP-contractor. From Tab. 5, it is obvious that

LP-contractor provides a much more efficient solution than
the CP approach.

The CPU time for the SLAM process and the average time
taken to run all filtering steps over 30 simulation runs with
each SLAM approach are reported in Tab. 6. The average
times taken by the two interval-based SLAM methods are
longer than those of FastSLAM2.0, UFastSLAM and STSR-
CDFastSLAM with the same number of particles. The run-
ning time of FastSLAM2.0 is proportional to the number of
particles, whereas in the two interval-based SLAM methods,
most of the time is consumed for the calculation of intervals.
However, as mentioned above, a lower number of particles
for the interval-based algorithm are needed to obtain the
same estimation accuracy with FastSLAM2.0 (Np = 100,
Nb = 20). This indicates that our proposed algorithm out-
performs FastSLAM2.0 in computational efficiency while
maintaining the same accuracy. Meanwhile, in spite of
BPF-EIKF SLAM being slightly faster than IBPF-EIKF
SLAM, the results of IBPF-EIKF SLAM are better.

Furthermore, UFastSLAM requires computation of a
matrix square root that can be implemented directly using
the Cholesky factorization. The covariance matrices have low
dimensions and can be expressed recursively. Thus, not only
does UFastSLAM outperform FastSLAM in accuracy and
robustness, it also does this at no extra computational cost.
The increase in dimension results in an increase in computa-
tional cost, so that the computational cost of UFastSLAM is
slightly higher than that of FastSLAM2.0. There is an adap-
tive fading factor step in STSRCDFastSLAM, which results
in extra computational cost. Compared with the other tested
methods, the complexity of STSRCDFastSLAM is moderate.

B. SIMULATION RESULTS BASED ON SIMULATOR
In this study, a simulator developed by Bailey [60] was used
to evaluate the performance of different SLAM approach
mentioned above. We assumed that the data association was
unknown and the individual compatibility nearest neighbor
(ICNN) method was used for the association [61]. The simu-
lation environment had an area of 90 m×80 m with 72 land-
marks, as illustrated in Fig. 12 (a).

The vehicle has a 0.26 m wheel base and is equipped with
a range bearing sensor with a maximum range of 20 m and
a 180◦ frontal field-of-view. Gaussian noise covariances are
generated for both the measurement and the motion. The
control frequency was 40 Hz and observation scans were
obtained every 5 Hz. The control noise and the measurement
noise were respectively set to (0.3m/s, 3◦) and (0.2m, 4◦).
The numbers of particles and box particles were set as
Np = 10 and Nb = 10, respectively.
As can be seen in Fig. 12 (c), because the feature and

the vehicle trajectories were predicted and updated by UPF
in UFastSLAM, a more precise variance and robot uncer-
tainty was calculated. Thus, the estimated trajectories and
landmarks of UFastSLAM outperform FastSLAM2.0. How-
ever, as the feature is continuously added to the state vector,
the dimension of SLAM will continue to increase. This leads
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TABLE 6. Computational costs of different slam algorithms.

to an increase in the radius of the super ellipsoid bounded
by the symmetric sigma point. Although the sigma point can
correctly represent the mean and covariance of the prior dis-
tribution of state variables, it does affect the accuracy of the
algorithm. We find that the accuracy of UFastSLAM gradu-
ally worsens after about half of the trajectory. This is because,
as the robot continues to explore new areas, the new features
are constantly added to the state vector, which increases the
dimension of the scaled unscented transformation (SUT) and
affects the accuracy of estimation.

From Fig. 12 (d), STSRCDFastSLAM combines the
advantages of square root central difference Kalman filter
(SRCDKF) and strong tracking filter (STF). The square root
strategy ensures the symmetry of the covariance matrix,
which effectively reduces the error caused by the system
mutation. The filter gain matrix is adjusted in real time by
introducing the fading factor and by adaptively adjusting
the weight of the corresponding data, which leads to more
accurate andmore robust results. From Fig. 12 (e), we find the
overall accuracy of BPF-EIKF SLAM is slightly lower than
that of UFastSLAM, and there are large errors in some places.
Fig. 12 (f) shows that the estimated positions and landmarks
are close to their true positions. The results show that the
accuracy of the state estimation with IBPF-EIKF SLAM has
been improved over that of FastSLAM2.0, UFastSLAM and
BPF-EIKF SLAM. Also, the estimation accuracy of IBPF-
EIKF SLAM and STSRCDFastSLAM is very similar.

Figure 11 compare the absolute values of vehicle pose
errors in different axes over time of the five tested algorithms.
Apparently, the pose error of FastSLAM2.0 is larger than
those of the two interval-based algorithms. The results show
that the trajectory prediction accuracy of IBPF-EIKF SLAM
is better than that of BPF-EIKF SLAM and FastSLAM2.0.
In addition, we find that the error of STSRCDFastSLAM and
BPF-EIKF SLAM is very similar and slightly smaller than
UFastSLAM.

Figure 13 demonstrates the RMSE for the mentioned
SLAM algorithms in trajectory prediction when varying the
number of particles as 1, 10, 15, 20, 30, 50, 80 or 100
(each run 30 times). It is clear that the RMSE mean val-
ues of trajectory prediction for all five algorithms gradu-
ally reduce with increasing numbers of particles. However,

FIGURE 11. Absolute values of errors in different axis.

the two interval-based algorithms reduce the number of par-
ticles needed to achieve the same accuracy, so the compu-
tational load and real-time usability are improved. Using
only 20 particles, IBPF-EIKF SLAM can achieve the same
error rate as FastSLAM2.0 with 100 particles. With the same
number of particles, the performance in terms of RMSE of
UFastSLAM is slightly inferior to that of IBPF-EIKF SLAM
and STSRCDFastSLAM. It is important to note that, because
the posterior probability is fitted with a uniform distribution
in the two interval-based methods, after a certain level of
accuracy is achieved it is impossible to significantly improve
the accuracy simply by increasing the number of particles.
Therefore, when the number of particles exceeds a certain
number, the RMSE of UFastSLAM and STSRCDFastSLAM
is smaller than that of IBPF-EIKF SLAM.

Furthermore, we employ the percentage of effective par-
ticles number NPeff to measure the efficiency of different
SLAM methods, i.e.

NPeff =
Neff
N
=

1

N ·
∑N

i=1 (ω
i
k )

2
(74)
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FIGURE 12. (a) Simulation environment; (b) FastSLAM 2.0; (c) UFastSLAM; (d) STSRCDFastSLAM; (e) BPF-EIKF SLAM; (f) IBPF-EIKF SLAM. The black line
‘‘-’’ and the red line ‘‘-’’ denote the true trajectory and the estimated trajectory of vehicle, respectively. The blue ‘‘∗’’ denotes the landmark location, and
the red ‘‘∗’’ denotes the estimated landmark. The magenta ellipse is the covariance of the estimated landmarks, and the green rectangular represents box
particle.

FIGURE 13. RMSE vs. number of particles.

Thus, a series of simulation experiments were carried out
under the map conditions shown in Fig. 12 (a). The speed
control noise of the vehicle was set at 0.4 m/s, the angular
noise of measurement was set at 1.5◦, and the range noise of
measurement was set at ten group values: 0.01 m, 0.05 m,
0.09 m, 0.15 m, 0.3 m, 0.4 m, 0.55 m, 0.7 m, 0.85 m and
1.0 m (each run 30 times). As shown in Fig. 14, for the ten

FIGURE 14. Percentage of effective particle number with increasing
measurement noise levels in range.

sets of measurement noise, the effective particle percentage
of the proposed algorithm is greater than 82%, which means
that only 18% of particles were useless for the SLAM filter.
Compared with FastSLAM 2.0, the other three methods also
had a higher effective particle number.

To verify the consistency of our proposed algorithms,
the average normalized estimation error squared (NEES)
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FIGURE 15. Consistency with different SLAM algorithms. The red line ‘‘-’’
and red dotted line ‘‘–’’ denote the lower bound and the upper bound of
consistency test, respectively.

is used as a measure [17]. For an available true state x∗k
and the estimated mean and covariance {x̂k , P̂k}, we can use
NEES over NR Monte Carlo runs to characterize the filter
performance:

εt = (x∗k − x̂k )
T P̂−1t (x∗k − x̂k ) (75)

The average NEES is calculated as follows:

ε̄t =
1
NR

NR∑
i=1

εit (76)

Thus, 30 Monte Carlo simulations were performed with
the two-sided 95% probability concentration region for ε̄t
bounded by the interval [2.19, 3.93]. Fig. 15 shows that,
because a more accurate estimate without accumulating lin-
earization error is achieved in UFastSLAM, many particles
contain accurate information repetitively. This induces the
possibility of maintaining consistency. As for STSRCDFast-
SLAM, a better proposal distribution is proposed and the
adaptive partial systematic resampling method maintains par-
ticle diversity. Consequently, the consistency of STSRCD-
FastSLAM is prolonged for longer than that of UFastSLAM
and FastSLAM2.0. The consistency of IBPF-EIKF SLAM is
better than that of the other tested methods. This is because
the main advantage of the interval-based approach lies in its
ability to provide guaranteed and consistent results. Com-
pared with BPF-EIKF SLAM, we find that the improved
strategies in IBPF-EIKF SLAM for box contracting and
resampling effectively enhance consistency.

C. CASE STUDY WITH A MOBILE ROBOT
The IBPF-EIKF SLAM algorithm was implemented and
tested using a differential drive wheeled robot equipped with
a SLAMTEC laser radar (RPLIDAR-A1) with a maximum
range of 6m and a 360ř frontal field of view (see Fig. 16). The
mobile robot moved at a speed of 0.5 m/s with a maximum

FIGURE 16. Mobile robot platform.

FIGURE 17. Experimental scene.

steering speed of 0.3 rad/s. The control frequency was 40 Hz,
and observation scans were obtained at 5 Hz. The experimen-
tal site was in a conference room in the New Main Building
of Beihang University, Beijing, and the experimental scene is
depicted in Fig. 17.

In order to validate the performance of the proposed
method, five experiments were carried out with the mobile
robot using GridSLAM [62], GMapping [63], UFastSLAM,
IBPF-EIKF SLAM, and STSRCDFastSLAM. In this study,
we set 27 landmarks, with the resolution of the resulting
map set to 25cm2/cell. The motion of the mobile robot
was controlled via a laptop keyboard, which was based on
the installed software package teleop_twist_keyboard under
ROS. Since the mobile robot had horizontal movement,
the starting point was set as the coordinate origin (0, 0).
We selected the start point, end point and each turning point
as measurement points. These measurement points were con-
nected in sequence as the true trajectory to measure the
localization accuracy (see Fig. 19).

Figure 18 illustrates typical experimental results for the
five tested algorithms. In order to provide a consistent perfor-
mance comparison, only 10 particles were used in each case.
As can be seen in Fig. 18(a), GridSLAM failed to map the
environment correctly. AlthoughGMapping can complete the
final map learning, it contains clear deviations (Fig. 18(b)).
Figure 18(c) shows that the map constructed by IBPF-EIKF
SLAM is consistent with the actual environment; the edge
of the map is distinct and there is no overlap or distortion.
Figure 18 (d) and (e) illustrate the results of UFastSLAM and
STSRCDFastSLAM, respectively. We find there are some
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FIGURE 18. The generated 2-dimensional floor plan occupation grid map
for different SLAM algorithms. (a) GridSLAM; (b) GMapping; (c) IBPF-EIKF
SLAM; (d) UFastSLAM; (e) STSRCDFastSLAM.

TABLE 7. Comparative performance of different algorithms.

serrated edges on the map created by UFastSLAM, whereas
STSRCDFastSLAM generates a consistent map that is the
same as that generated by IBPF-EIKF SLAM.

Table 7 compares the results of the five algorithms in
producing the same precision map. It can be seen that the

FIGURE 19. Estimated trajectory for IBPF-EIKF SLAM. The mobile robot
starts at position ‘‘Start’’ and moves along the black line in the direction
of the purple arrow until position ‘‘End’’.

FIGURE 20. Absolute values of maximum error for different SLAM
algorithms (Np = 10, Nb = 10).

number of particles required for STSRCDFastSLAM, UFast-
SLAM, and IBPF-EIKF SLAM are lower than for the other
two algorithms. Although GMapping is currently the most
effective method for building grid maps, IBPF-EIKF SLAM
takes less time to complete the mapping and thus meets real-
time requirements well.

From Fig. 19, it can be concluded that the trajectory
defined by the location boxes correctly follows the trajec-
tory defined by the reference points, and all the reference
points are included in the localization boxes. Consequently,
the localization boxes demonstrate the consistency of the
proposed IBPF method. In order to quantify the maximum
error generated by the whole process for different algorithms,
Fig. 20 depicts the maximum error of estimated trajectory
in different axes. For IBPF-EIKF SLAM, we find that the
maximum error of pose estimation in the x-direction is no
more than 3 cm, and in the y-direction is about 2.5 cm.
Thus, the experimental results show that our method can
accurately estimate the trajectory of the mobile robot, and
that the constructed map clearly reflects the real environment,
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thereby demonstrating the feasibility and effectiveness of the
IBPF-EIKF SLAM method.

VI. CONCLUSION AND REMARKS
This paper describes the development of a fast SLAM algo-
rithm that replaces traditional numerical filters with com-
binatorial interval filters within a FastSLAM framework.
The combinatorial interval filters approach is based on the
interval framework which seems to be a good methodology
for SLAM applications in the case of non-white and biased
measurements. One of the main advantages of interval-based
approaches is its ability to provide guaranteed and consistent
results. The proposed scheme of SLAM based on combina-
torial synthetic integration has two advantages: (1) Instead
of point particles and probabilistic models for the errors
and inputs, the key concept in BPF is to use box particles
and a bounded error model to achieve noise processing.
Each weighted box particles is sequential recursive under the
IA framework, which effectively reduces the computational
complexity and enhances the real-time performance of the
algorithm. The improved schemes for box contracting and
resampling further enhance the consistency of estimation.
(2) EIKF is similar to standard EKF in terms of statistical
performance and iterative form, but the EIKF algorithm has
strong adaptability and robustness. For the estimated inter-
val of EIKF, the weighted averages based on TVMM were
demonstrated to provide more reliable results. A series of
simulations and experiments demonstrate the superior perfor-
mance of our interval-based approach.

In our work, each box particle is seen as approximating
a uniform distribution. In fact, simply increasing the num-
ber of box particles caused no significant improvement in
filtering accuracy. Thus, ways to optimize boxes and select
probability density functions should be part of future research
work; for example, by using Gaussian distributions. Solutions
to this problem will benefit the building of more accurate
maps with fewer particles for SLAM systems. Based on
the Gaussian components, we plan to employ the Dirichlet
process (DP) to determine the number of components and
find better ways to determine the number of box particles.
In addition, since the unscented Kalman filter (UKF) is better
than the EKF in dealing with nonlinear problems, we intend
to develop an interval UKF (IUKF), instead of EIKF, for
map learning. Another perspective of this research is to adapt
the IBPF for visual SLAM problems, and to combine with
some deep learning methods [64], [65] and image processing
techniques.
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