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ABSTRACT Several methods exist in classification literature to quantify the similarity between two time
series data sets. Applications of these methods range from the traditional Euclidean-type metric to the more
advanced Dynamic Time Warping metric. Most of these adequately address structural similarity but fail
in meeting goals outside it. For example, a tool that could be excellent to identify the seasonal similarity
between two time series vectors might prove inadequate in the presence of outliers. In this paper, we have
proposed a unifying measure for binary classification that performed well while embracing several aspects
of dissimilarity. This statistic is gaining prominence in various fields, such as geology and finance, and is
crucial in time series database formation and clustering studies.

INDEX TERMS Time series, classification, database clustering, similarity measures, empirical recurrence
rates, empirical recurrence rates ratios, bootstrapping.

I. INTRODUCTION
In the modern age, the necessity to construct efficient tools to
classify and categorize time series instances is undeniable.
Their applications are numerous. One may check whether
global temperature variations during the present decade are
similar to the ones in the last decade, or whether a volcano’s
eruption pattern influences that of a neighboring one. These
longitudinal data use temporal dynamism and the data collec-
tion machinery, which has contributed to treating each time
series as an instance. The fundamental decision is which of
these instances (i.e. time series vectors) are ‘‘similar’’ to each
other, and as a result, can be clustered together. As Liao [1]
narrates, several application domains have witnessed such
clustering exercises over the years.

As Fulcher and Jones [2] and Wang et al. [3] point out
that the principal obstacles one needs to overcome are
choosing an adequate representation of the instances and
deciding on a proper measure of discrepancy or separation
between the time series. Despite an extensive literature on
both obstacles [1], [3], [6], unanimity on the existence of a
‘‘best’’ or ‘‘ideal’’ distance measure in a classification frame-
work is elusive [4]. For instance, Euclidean type distances,
aimed at unearthing the level of closeness between two
time series, suffer in the almost constant presence of noise

and misalignments in the series [3]. A large set of distance
measures have been proposed [5] to circumvent problems
like these. One of the goals of this paper is to offer a useful
addition to the list.

The most prevalent choice is the time domain form,
where the distance between two time series relies on the
aggregated distance between the specific measurements.
A new, unclassified time series can often be categorized
by finding its similarity to another, with a known classifi-
cation label. This is typically termed the ‘‘instance-based’’
approach [3], [6]. The observation that a time series of any
length can be condensed into a short, summary vector of
essential features (such as the mean, variance, skewness etc),
enables another way of classification, [7] a ‘‘feature-based’’
type. Fulcher and Jones [2] proposed an automated method
for generating such feature-based representations and noted
that each classification tool could be perfectly categorized as
either instance-based only or feature-based only. For instance,
shapelets-based classifications [16], [17] exploit minimum
distance of particular time series subsequences. Another
purpose of the present work is to propose such a hybrid
approach embracing good properties from both instance and
feature-based categorizations. Some work [34] has been done
along those lines.
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The paper’s layout is as follows: the next section intro-
duces the kernel fraction. Following that, the section
offers along with observations on its appealing structure.
Section 3 describes ways to exploit this fraction on simu-
lated data sets through the introduction of several metric-like
measures. Section 4 describes the use of bootstrapping and
its relevance in the current instance. Section 5 analyzes three
real data sets to unify the proposed ideas. The final section
concludes with thoughts on future directions.

II. EMPIRICAL RECURRENCE RATES RATIO
In statistical literature, random variables that model
unbounded counts (such as the number of lightning strikes per
month, the number of accidents per day) are often assumed
to follow a Poisson distribution. The probability of having x
such events is given by:

fX (x) = P(X = x) = e−λ
λx

x!
, for x = 0, 1, 2, . . . (1)

where λ is the rate of their occurrence. Notationally,
we write X ∼ Pois(λ). This variable requires the following
definitions, although later on in our work, we will see how
the proposal still remains relevant in more general settings.

A. DEFINITIONS AND NOTATIONS
Let X1 ∼ Pois(λ1), X2 ∼ Pois(λ2) and X1 be inde-
pendent of X2. The conditional test (C test) developed by
Przyborowski and Wilenski [9] is often used to test the differ-
ence between the two Poisson means. It is based on the fact
that the sum S = X1 + X2, follows a Poisson distribution with
rate parameter, λ1 + λ2, and the conditional distribution of
X1 given S = s is distributed as Binomial(s, p12), where
p12 = λ1/(λ1 + λ2) = w12/(1 + w12) with w12 = λ1/λ2.
Thus, for the C-test, testing H0 : λ1 = λ2vs.λ1 6= λ2 is
equivalent to testing both H0 : w12 = 1vs.w12 6= 1 and
H0 : p12 = 0.5vs.p12 6= 0.5.

Building upon the C test, Ho [10], [11] introduced
the Empirical Recurrence Rates (ERR) statistic which was
later applied to a variety of fields by Tan et al. [12] and
Ho and Bhaduri [13]. For a given input sequence X , and
discretized equidistant points h, 2h, . . . lh, . . . ,Nh(= T ) for
a fixed choice of the unit time h, the ERR statistic EX ,l is
defined as

EX ,l =
nXl
lh

(2)

where nXl = total number of occurrences for X in (0, lh).
The ERR statistic can be extended to an Empirical Recur-
rence Rates Ratio (ERRR) time series to measure (through
a ratio of the two empirically observed rates) the amount
of dependence between two time series X1 and X2. The
time period should first be discretized into equidistant
points h, 2h, . . . lh, . . . ,Nh(= T ) for a fixed choice of the unit
time h. The ERRR,RX1,X2,l , at these time points can then be
sequentially generated as

RX1,X2,l =
nXl

nXl + nYl
, for nXl + nYl > 0 (3)

where nXl = Total number of occurrences for X1 in(0, lh);
nYl = Total number of occurrences for X2 in(0, lh); and
l = 1, 2, . . . ,N .
Thus an ERRR can be expressed as a ratio of two ERR’s:

RX1,X2,l =
EX1,l

EX1+X2,l
=

EX1,l
EX1,l + EX2,l

(4)

We must be careful to disregard a few initial points that make
the denominator vanish (the burn-in period). If the rates are
independent of time, the ERRRs are essentially tracks of the
maximum likelihood estimators (MLEs) of pijs. Exploiting
MLE’s invariance, these can be used to find the MLEs of
wij = λi/λj. Various time series vectors in applied science are
plagued with numerous zero values. Examples include sand-
storms or strong hurricane counts. This zero inflation, season-
ally or otherwise, creates problems in stochastic analyses
through unreliable parameter estimates and volatile forecasts.
ERRR analyses provide an improved methodology. Through
cumulation or the summing up of past values, it reduces
the number of zeros. It generates ‘‘pseudo-observations’’
over quieter time regions. Additionally, its structure makes
it bounded by 0 and 1. We will demonstrate below how the
nature and strength of dependence between the two time
series instances are contained in this statistic as well.

Algorithm 1 ERRR Calculation Based on Two Incoming
Time Series

Input: A stream of (x1, y1), (x2, y2), (x3, y3), . . . ..
Parameter: sf (x): sampling frequency of the X series.
sf (y): sampling frequency of the Y series.
Ensure: sf (x) = sf (y)
if sf (x) = sf (y)
then
/* variable declarations */
sum(x): sum of the X values from x1 to xi
sum(y): sum of the Y values from y1 to yi
ERRR(X ,Y ): ERRR value from the X and Y series.
for all new (xi, yi) in stream do
ERRR(X ,Y )← sum(x)/(sum(x)+ sum(y))

end for
else
ERRR(X ,Y )← NA
end if

B. MOTIVATING EXAMPLES
To elucidate ERRR’s workings, we reiterate the artificial
example studied by Ho and Bhaduri (2007). Let us assume
that a pair of discrete time sequences is given by:

X1 = 1, 0, 0, 2, 4, 2, 2, 4, 2, 0, 0, 0, 0, 0, 0, 2, 4, 2, 2, 4, 2,

0, 0, 0, 0, 0, 0, (5)

X2 = 2, 4, 2, 1, 0, 0, 0, 0, 0, 2, 4, 2, 2, 4, 2, 0, 0, 0, 0, 0, 0,

2, 4, 2, 2, 4, 2, (6)

A passing glance confirms their inverse dependence: active
periods of one sequence usually accompanying dormant
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periods of the other. At times, negative correlations like
these contribute to the overall dissimilarity in this particular
instance, however, it simply affirms a horizontal shift. The
measures we introduce later can weed out these shifts, both
horizontal and vertical). The ERRR curve constructed out of
this pair resembles a clear sinusoidal pattern, depicted in the
first panel of Fig (1).

Owing to the similarity of their cumulative strengths,
the oscillations are about 0.5. Put differently, RX1,X2,l = 0.5
at a given time t = l will indicate the two sequences are
fairly equally active (or equally competitive) till that time
while RX1,X2,l < 0.5 will imply X2 is more active. Similarly,
RX1,X2,l > 0.5 will mean X1 is more active. Thus deviation
from the baseline 0.5 in either direction suggests deviation
from perfect independence and the existence of an underlying
bond.

This can be further confirmed by another pair, which unlike
the first, is directly related:

X1 = 3, 4, 5, 6, 7, . . . (7)

X2 = 1, 2, 3, 4, 5, . . . (8)

Here, the first series drags up the second along with
itself and the generated ERRR curve, lying on one side
of the 0.5 line shows clear monotonicity (the second panel
of Fig (1)). We note that the first pair, though inversely
related, were equally intense (the non-zero numbers were
same for both). Ho and Bhaduri [15] examine other exam-
ples of inverse dependence with varying intensities leading
to a baseline different from 0.5. In the present context of
unearthing similarity, we shall not pursue such generalities,

FIGURE 1. Behavior of ERRR curves under different artificial scenarios.

but instead reflect on the insights these two synthetic data
sets have to offer: if two time series are negatively (inversely)
dependent, the generated ERRR curve should exhibit a wavy
pattern (if moreover, they are equally intense, then it should
fluctuate about the 0.5 line), if they are positively (directly)
dependent, the ERRR curve should show a monotonic trend.
Later sections will describe how in many instances, this
notion of dependence induces that of similarity.

C. EXPLOITING THE STRUCTURE OF ERRR
In section 3, we shall define distance measures that will quan-
tify several features of the ERRR curve and aid our under-
standing of the mutual interplay between the participating
time series. But even without those measures, the structure
of ERRR is amenable to a wide array of important inter-
pretations. Its usefulness in differentiating dependence from
independence under mild parametric assumptions offers a
glaring case in point.

For two gamma distributed variables X ∼ Gamma(m, λ)
and Y ∼ Gamma(n, λ), it is known that the ratio R = X

X+Y ,
under the assumption of independence, will have a Beta(m, n)
distribution. Noting the similarity in structure, one can devise
ERRR based tests to choose between:

H0 : X and Y are independent (9)

Ha : X and Y are dependent (10)

where the critical region will be

{RX ,Y ∈ [0, 1] : β1− α2 ;m,n ≤ RX ,Y ≤ β α2 ;m,n} (11)

with β1− α2 ;m,n and β α2 ;m,n being the lower and upper α2 point
from a Beta(m, n) density. This ‘‘body’’ rejection region
follows since unlike traditional normality based tests, under
the assumption of dependence (one may set Y = X for
instance, a case of perfect dependence), the fraction will tend
to cluster around 0.5.

1) SIMULATION STUDY
To elucidate the test’s performance in terms of power,
we performed the following simulation study: 104 copies of
two variables U and V were generated from an exponential
distribution with rate 5 − ‘‘correlation tracker’’. 106 copies
of another variable W were generated from an exponential
distribution with rate ‘‘correlation tracker’’. New variables
X and Y were defined as:

X = min(U ,W ) (12)

Y = min(V ,W ) (13)

and theoretically it can be shown that X and Y have expo-
nential distributions with rates 5 and 5 and are positively
correlated if:

0 < correlation tracker < min(5, 5) = 5 (14)

The variable ‘‘correlation tracker’’ measures the amount of
dependence between X and Y : higher its value, stronger is the
dependence. Using the reproductive property of exponentials,
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we have
∑10000

i=1 Xi =d
∑10000

i=1 Yi ∼ Gamma(10000, 5)
and thus, under the assumption of independence, the ERRR
statistic:

RX ,Y =

∑10000
i=1 Xi∑10000

i=1 Xi +
∑10000

i=1 Yi
∼ Beta(10000, 10000)

(15)

Using 106 simulations, α = 0.1 and a critical region of
the form (11), we have evaluated the probabilities of correct
dependence identifications, condensed in the power curve
shown in Fig (2).

FIGURE 2. Power curve from Beta testing for independence.

To demonstrate stronger confirmation of the test,
we sequentially changed the exponential rate from 5 to 4, 3,
and 2. We found that the test is able to pick up even meager
amounts of positive dependence with remarkable precision.
As the correlation tracker increases, implying intensified
positive dependence, the identification naturally becomes
simpler, which justifies the overall increasing monotonicity
of the power curve.

The Gamma parameterization, at first glance, might seem
too restrictive. We point out that for non-standard distribu-
tions, the law of large numbers takes over both the numer-
ator and the denominator of the ERRR statistic. Cauchy-like
distributions (as the ratio of two normal-like densities) may
then be employed as the null density. Hinkley [18], among
others, provides excellent resources for that purpose. Noting
that the present section intends to prove the utility of the form
of ERRR through an easy example, we refrain from pursuing
more intricate technicalities.

III. MEASURES AND INDICES FOR ERRR CURVES
A cursory glance at the ERRR curve suggests clues regarding
the dependence dynamics: a wavy ERRR curve in general,
implies inverse dependence while a monotonic ERRR curve
suggests a direct dependence. Stronger quantification of these
intuitions can, however, be had from the following indices,
each of which enjoys metric-like properties. In the definitions

to follow, I (A) denotes the indicator of an event A, taking two
values: 1 if the event A happens, 0 otherwise.

A. INDEX OF COMPETITIVENESS Ic
Given two time series X and Y of length n each, this index
captures the proportion of times the generated ERRR curve
lies above the 0.5 line. Formally, thus:

Inc (X ,Y ) =
1
n

n∑
i=1

I {Ri(X ,Y ) > 0.5} (16)

this is extremely useful in detecting shifts of the form
identified by [4] among others. The underlying idea revolves
around the notion that if one time series consistently domi-
nates or is dominated by another, with or without maintaining
a similar shape, the ERRR curve will consistently be on one
side of the 0.5 line. For the pair depicted in the first panel
of Fig (3), the Y series is created by adding a white noise of
average magnitude 2 (and a very small variance, to preserve
the shape) to an already existing time series X .

FIGURE 3. Shift detection using Ic index.

The resulting ERRR curve is shown in panel 2 and indi-
cates a competitiveness index of 0, all the ERRR values being
less than 0.5. Flipping the roles of X and Y , one could still
preserve a shift translation, but could have an Ic index of 1.
Extreme values of competitiveness indices close to 0 and 1 are
thus indicative of the existence of possible shifts.

The measure has a metric-like property: Inc (X ,X ) = 0
since Ri(X ,X ) = 0.5 ∀i = 1(1)n, by definition. However,
Inc (X ,Y ) = 0 does not necessarily imply X = Y as the above
example on shift suggests. To understand the sensitivity of
this measure, we have paired several Y series, with various
amounts of average shifts, to the constant X series shown in
panel 1, found the ERRR curves and collected the resulting Ic
indices in panel 3. As it is clear that the index picks up even
negligible shifts with remarkable precision.
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Algorithm 2 Inc (X ,Y ) Calculation Based on Two Incoming
Time Series
Input: A stream of (x1, y1), (x2, y2), (x3, y3), . . . ..
Parameter: sf (x): sampling frequency of the X series.
sf (y): sampling frequency of the Y series.
Ensure: sf (x) = sf (y)
if sf (x) = sf (y)
then
/* variable declarations */
sum(x): sum of the X values from x1 to xi
sum(y): sum of the Y values from y1 to yi
ERRR(X ,Y ): ERRR value from the X and Y series.
IND(X ,Y ): logical, whetherERRR > 0.5(= 1) or not (=0)
Ic(X ,Y ): competitiveness index.
for all new (xi, yi) in stream do
ERRR(X ,Y )← sum(x)/(sum(x)+ sum(y))
if ERRR(X ,Y ) > 0.5
then
IND(X ,Y )← 1
else
IND(X ,Y )← 0
end for

Ic(X ,Y )← mean(IND(X ,Y ))
else
ERRR(X ,Y )← NA
end if

B. INDEX OF EXTREMENESS Ie AND
DESCRIPTIVE MEASURES
Visual similarity between two time series is often caused by
an inherent correlation structure that makes one dependent
on the other. Noting that the two terms ‘‘correlated’’ and
‘‘dependent’’ should not be confused, nor used interchange-
ably, we observe the Beta distribution related test to check
for independence between X and Y detailed in the previous
section. We assume that the X and Y series are purely random
sequences in themselves, meaning that there exists zero corre-
lation among the X or among the Y values. For practical time
series, however, the existence of autocorrelation proves this
is hardly the case, and a new measure, termed the index of
extremeness, defined on the ERRR curvewill prove beneficial
in identifying dependence under this general case. We define
it as:

Ine (X ,Y ) =
1
n

n−2∑
i=1

I {(Ri+1 − Ri)(Ri+2 − Ri+1) < 0} (17)

and it measures the proportion of extremes (i.e. both peaks
and valleys) from the ERRR curve calculated from the pair
under consideration. Like Ic, this index too follows metric-
like properties:

a) Ine (X ,X ) = 0: This follows since Ri(X ,X ) = 0.5
∀i = 1(1)n and this ERRR curve is entirely devoid of peaks
and valleys.

b) Ine (X ,Y ) = Ine (Y ,X ): This follows since Ri(X ,Y ) =
1−Ri(Y ,X ) ∀i = 1(1)n and under reflection about a constant,
the number of peaks and valleys remain unaltered.

To conduct our simulation studies under dependence,
we have generated 100 observations from each of twoAutore-
gressive processes of order 1 (AR(1)):

Xt = ρ1Xt−1 + Ut (18)

Yt = ρ1Yt−1 + Vt (19)

such that correlation(Xt ,Yt ) = ρ. If active periods of one
series are usually accompanied by dormant periods of the
other, then the two series are inversely dependent, and the
ERRR curve is expected to be considerably wavy, thereby
inflating the proportion of peaks and valleys over a period
of stable flow. Care must be taken to ignore the first few
oscillations (till around the 40th time point in this case) since
they represent an unstable burn-in period, and their inclusion
in the proportion calculationwill bemisleading. This scenario
is depicted on the top panel of Fig (4), where the two AR(1)
series share an extreme negative correlation of −0.9.

FIGURE 4. Behavior of ERRR curve under direct and inverse dependence.

On the other hand, if the two series behave similarly, then
the ERRR series is expected to be a lot less wavy over
the burn-in disregarded stable period and consequently, this
proportion should go down. This is confirmed by the lower
panel of Fig (4), where the two AR(1) series have been drawn
with a high correlation of 0.9.

To confirm this pattern, we have simulated the pair using
several ρ values between−1 and 1 and calculated the Ie index
in each case. Figure (5) describes the findings. As the pair gets
strongly positively related, the Ie index tends to fall.

Feature-based classification analyses, as detailed in the int-
roduction, are prevalent in literature: Nanopoulos et al. [21]
and Deng et al. [22] used control chart ideas on the average,
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FIGURE 5. Dependence detection using Ie index using AR(1) models.

FIGURE 6. Plots of ERRR based methods using AR(1) models.

standard deviation, skewness, and kurtosis of the time series.
Features derived from wavelets and Fourier transforms have
been examined by Morchen [23] while Wang et al. [24], [25]
proposed thirteen summary features to characterize both
univariate and multivariate time series. In a similar spirit,
the distribution of ERRR values also contains useful informa-
tion about the dependence structure. The violin plots graphed
in the first panel of Fig (6) have been generated using the
same AR(1) process with different values of the correlation
parameter.

These violin plots are essentially smoothed versions of
histograms containing boxplots and kernel density estimates
as additional measures. A change in the correlation parameter
lead to several changes in the distribution of these ERRR
values, the most notable one among them being a consid-
erable drop in the dispersion among these values. These
changes can be confirmed using the range and variance curves
shown above.

To quantify the amount of symmetry in a distribution, one
often calculates the coefficient of skewness defined as:

γ1 = E[(
X − µ
σ

)3] =
µ3

σ 3 (20)

where µ and σ are the mean and standard devia-
tion, respectively. For symmetric distributions such as
the normal or uniform, this measure equals 0. Interest-
ingly enough, through the skewness curve on panel 3,
we observe a transition in the nature of symmetry of the
ERRR distribution - as ρ increases, the distribution gradually
changes from being negatively skewed (long left tail) to posi-
tively skewed (long right tail), with being roughly symmetric
at independence.

Evaluating the kurtosis through

γ2 =
E(X − µ)4

[E(X − µ)2]2
=
µ4

σ 4 (21)

is a useful way to garner information about the peakedness
of the underlying density. Distributions such as the normal
have this measure equal to 3. Panel 4 (Fig (6)) depicts how
the intensity of dependence controls this feature of the ERRR
density - higher the strength of dependence, sharper is the
resulting ERRR distribution.

IV. SIMILARITY MEASURES FROM BOOTSTRAPPED
TIME SERIES
The purpose of this section is to amplify our confidence
in both the measures introduced above and the conclusions
reached about the similarity of two time series vectors. For
this, we resort to bootstrapping, a powerful and intuitive
statistical tool introduced by Efron [28], primarily to study
standard errors or parameter estimates obtained from inde-
pendently and identically distributed realizations.

The time series we observed is just one instance of the
infinitely many possibilities that could have stemmed from
similar initial conditions. Our conclusions about similarity
would be several times stronger if they can somehow with-
stand the test of this averaging over the numerous unob-
servable possibilities. Unless we have absolute knowledge
about the process that governs the evolution (such as the
AR(1) model in the previous section), going back in time and
observing another evolution of the process is not feasible.
Rearranging or permuting the time series offers a structural
alternative. Caution must, however, be exercised since rear-
ranging every value indiscriminately will lead one to lose the
underlying dependence structure (such as the autocorrelation)
within time series. Hall [27] and Carlstein [26] thus general-
ized Efron’s nascent idea into block bootstrapping, whichwas
implemented recently by Ho and Bhaduri [15] in a related
instance.

The process runs thus: fixing b as the block size, we will
sample chunks of the original time series YI+1,YI+2, . . . ,
YI+b for I ∈ {0, 1, .., n− b}, chosen at random. Joining these
blocks one after another will create a new time series with
strikingly similar properties to the original one. To be precise,
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assume that one can generate blocks YIj+1,YIj+2, . . . ,YIj+b
for j ≥ 1 continuously and create a new time series,
Y ∗1 ,Y

∗

2 , . . . identical to

YI1+1,YI1+2, . . . ,YI1+b,YI2+1,YI2+2, . . . ,YI2+b, . . .

The sequence of the first n values of this time series
Y ∗1 ,Y

∗

2 , ..,Y
∗
n will then constitute the block resample. For

implementation purposes, sufficiently many Ijs were chosen
from {1, 2, .., n−b} independently and with repetition. Tech-
nically, this is the moving blocks method.

Block bootstrapping is relevant and advantageous in the
present context because by choosing blocks in their entirety,
some resemblance regarding the dependence structure to the
parent series can be maintained. Breakages can only happen
at the joining points of the blocks. This method thus general-
izes usual bootstrapping where the block size may be argued
to be 1. The technique thus will be instrumental in detecting
horizontal shifts.

To implement the ideas above, we shall keep the X series
unaltered, while bootstrapng the Y series with the intention
of answering such questions as: given X and Y are similar
(or non-similar), could there be an instance when they might
ever appear non-similar (or similar)? This is undeniably a
stronger analysis. We have fixed the block size at b = 10, and
for each simulation, we have found the summary measures
from the ERRR curve resulting from the fixed X and boot-
strapped Y , and we have done 10000 simulations. The distri-
butions of the descriptive measures are shown in Fig 7 below:

FIGURE 7. Distribution of descriptive measures from bootstrap generated
ERRR curves using a block size of 10 and simulation strength of 10000.

If we examine the skewness panel for instance, we will
find stronger credence in the fact that negative dependence
between the two time series observations roughly implies a
negatively skewed ERRR distribution (panel 3, Fig. 6). As the
correlation parameter increases (panel 3, Fig. 7), the boxes get
elevated implying it is difficult to construe an ERRR curve
generated from two positively dependent series (probably
thus similar in appearance) as being negatively skewed.

FIGURE 8. Distribution of Ie indices from bootstrapped time series.

It is also possible to depict the distribution of competitive-
ness or extremeness indices garnered from bootstrap gener-
ated ERRR series. Figure 8 below reveals this for the Ie index:
From the falling levels of the boxes and their shrinking

spread with an increase in ρ, we prove that as the pair
grows more dependent, the resulting ERRR curve grows less
wave-like and situations insinuating otherwise are extremely
unlikely.

V. REAL DATA ANALYSIS
The type of similarity and dissimilarity, or dependence and
independence, that may abound between two time series
vectors are numerous and controlling the correlation param-
eter between the two AR driven processes is only one method
to generate such a type. While useful in understanding the
way the proposed mechanism works, in reality, this approach
would be impractical due to our lack of knowledge of the
mechanism that drove the instances (fitting a time series
model could be one alternative) and uncertainty due to the
type(s) of internal dependencies.

Thus, to show the utility of ERRR and related measures,
we have taken recourse to an extensive set of time
series databases available at the UCR repository [8]. Each
database houses a set of time series, with their classifi-
cation labels known, undoubtedly an advantageous aspect
with respect to calculating misclassification probabilities.
Different databases contain different numbers of clusters
and various lengths of the involved time series data sets.
We choose a subset of these time series for training
purposes (the same training set as has been mentioned in
the repository); calculate the ERRR series and some of the
desired related measures to understand how ‘‘similarity’’ and
‘‘dissimilarity’’ feel like in this particular instance (since not
all types of ‘‘dissimilarity’’ can be tracked by a change in
the ρ parameter); quantify the notion of distinction through
some summary measures (such as percentile); and use it on
the test set, to eventually calculate misclassification rates.
In this work, we are concentrating on binary classification,
which is why we have chosen five data sets: ‘‘gunpoint,’’

VOLUME 6, 2018 30861



M. Bhaduri, J. Zhan: Using ERRR for Time Series Data Similarity

‘‘ECG,’’ ‘‘Yoga,’’ ‘‘Wafer,’’ and ‘‘Coffee,’’ each containing
two clusters.

For instance, for the data set titled ‘‘gunpoint,’’ we have
two classes and 200 time series of length 150 each. 50 of them
were selected in the training set and the remaining 150 in the
testing set. On the former, we have 24 time series in cluster 1,
and 26 in cluster 2. We have done C24

2 ERRR computations
on cluster 1 to get the ‘‘range’’ statistic, C26

2 computations
on cluster 2, to get the same statistic, pooled the distribu-
tions together, to generate knowledge on how ‘‘similarity’’
is viewed through the lens of this statistic for this data set.
This is graphed in the first panel of Figure 9.

FIGURE 9. Distribution of range statistic for ‘‘gunpoint’’ data set.

Next, we performed 24×26 ERRR calculations, taking
members from clusters 1 and 2 to quantify the dissimilarity
distribution (panel 2) in this instance. We note that dissim-
ilarity tends to inflate the range statistic, as demonstrated
through simulations in the previous section: a greater propor-
tion of observations in the dissimilarity distribution tend to
cluster around the right tail, compared to that of the similarity
distribution. Numerical summaries confirm this: the first
quartile from the similarity distribution is 0.06935, compared
to 0.09161 from the dissimilarity one. This difference is
significant due to the fact that the ERRR construction bounds
the range statistic within one unit.

One may use these numerical summaries to identify
whether two time series in the test set belong to the same
cluster. If the ERRR range for instance, from a pair, turns
out to be in excess of 0.06935, we might say they belong to
different categories and are dissimilar. To construct stronger
cutoffs, however, we have employed bootstrapping tech-
niques on the training set and have stuck to the range and
extremeness index statistics while classifying time series in
the different databases.

We have tested the method on five different datasets, using
time series of varying lengths: these are ‘‘gunpoint,’’ ‘‘ECG,’’
‘‘Yoga,’’ ‘‘Wafer,’’ and ‘‘Coffee,’’ all containing two clusters.

According to experimental results based on these three real
data sets, as shown in Figures 10 through 14, our ERRR

FIGURE 10. Misclassification rates for ‘‘gunpoint’’ data set.

FIGURE 11. Misclassification rates for ‘‘ECG’’ data set.

based approach always perform better than its traditional
counterparts such as the Euclidean metric and Dynamic
Time Warping [19] in terms of smaller misclassification
rates. In each of these figures, the misclassification rates
for the ERRR based measures consistently lie below those
from the Euclidean and Dynamic Time Warping technique.
The Euclidean one, being the most primitive, and suffering
from noise and misalignments described previously, gives the
worst classification performance in most of the examples.
In the ‘‘ECG’’ data set, where this is not the case, the prob-
lems with noise and misalignment are less severe. Dynamic
TimeWarping, in general, offers a marked improvement over
the Euclidean metric. Between the ERRR based measures
too, neither one consistently dominates the other, although
we found that the Ie based extremeness index gives lower
misclassification rates in most of the cases. This, arguably,
is due to the range based measure’s sensitivity to outliers,
similar to a problem faced by the Euclidean metric. Measures
capturing other descriptive properties of the ERRR distribu-
tion, are likely to perform better than the range.
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FIGURE 12. Misclassification rates for ‘‘Yoga’’ data set.

FIGURE 13. Misclassification rates for ‘‘Wafer’’ data set.

FIGURE 14. Misclassification rates for ‘‘Coffee’’ data set.

VI. CONCLUSION AND FUTURE WORK
This article popularized a nascent statistic termed Empir-
ical Recurrence Rates Ratio and introduced a novel
way to quantify the similarity between two time series.

Three measures relying on the ERRR curve have been
introduced, and many of summary measures on the values
themselves have been employed in conjunction with a
sophisticated method of block bootstrapping to suggest the
superiority of the technique over established classification
methods such as Euclidean Distance or Dynamic Time
Warping. One could also combine more sophisticated feature
selection [29]–[31] and classification methodologies [33].
We avoided the problem of feature correlation [32]. We have
also demonstrated how, unlike others, this tool can differen-
tiate dependence from independence between a pair of time
series values, and at the same time stay robust on issues like
noise and the presence of outliers. The measures defined on
ERRR have several metric-like properties and are a useful
addition when classifying time series databases. Currently,
we are trying to extend similar measures and indices to non-
binary classification problems. Serra and Arcos [20] provides
multiple other similarity measures. ERRR based analyses
will be comparable to them as well. The method avoids the
need of decomposing the time series into seasonality compo-
nents based on local polynomial regression [35], de-noising
it using methods shown in [37], or weeding out outliers using
Local Outlier Factors [40]. All calculations can be done using
packages in R. For instance, measuring the proportion of
extremes could be done using the quantmod package [36].
An easy and intuitive construction, computational efficiency,
and effectiveness in identifying both structural similarity and
underlying dependence make ERRR applicable to a wide
range of classification problems.
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